PACS: 71.20.Nr

М.М. Гаджиалиев, З.Ш. Пирмагомедов, Т.Н. Эфендиева

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ БАРИЧЕСКОГО КОЭФФИЦИЕНТА КРАЯ ЗОНЫ ПРОВОДИМОСТИ АРСЕНИДА ГАЛЛИЯ

Институт физики им Х.И. Амирханова Дагестанского научного центра РАН ул. Ярагского, 94, г. Махачкала, 367003, Россия

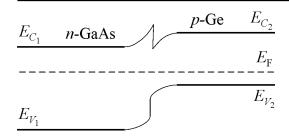
Статья поступила в редакцию 12 февраля 2013 года

Исследована вольт-амперная характеристика (BAX) гетероструктуры (Γ C) n-GaAs—p-Ge npu гидростатическом давлении до 8 GPa npu комнатной температуре. По результатам экспериментальных данных найдено, что барический коэффициент дна зоны npoводимости арсенида галлия γ C1 paвен 120 meV/GPa.

Ключевые слова: давление, потенциал, переход, смещение, диффузия, напряжение, контакт, емкость, градиент

Досліджено вольт-амперну характеристику (BAX) гетероструктури (ГС) n-GaAs-p-Ge npu гідростатичному тиску до 8 GPa npu кімнатній температурі. За результатами експериментальних даних знайдено, що баричний коефіцієнт дна зони провідності арсеніда галія γ_{C_1} дорівнює 120 meV/GPa.

Ключові слова: тиск, потенціал, перехід, зміщення, дифузія, напруга, контакт, ємність, градієнт


Широкое применение ГС в электронной технике [1] стимулирует исследование их в разнообразных внешних условиях.

Исследование поведения гетероперехода (ГП) при внешних воздействиях, в частности всестороннего давления, может предоставить новые данные о динамике краев зон, составляющих Γ С.

В настоящей работе исследуется ВАХ ГС n-GaAs-p-Ge при всестороннем давлении с целью определения барического коэффициента края зоны проводимости арсенида галлия.

Коэффициенты зависимости краев зон полупроводника от гидростатического давления не поддаются простому экспериментальному определению и известны только для некоторых материалов. В работе [2] предложен новый метод определения барического коэффициента давления с использованием резких полупроводниковых ГП.

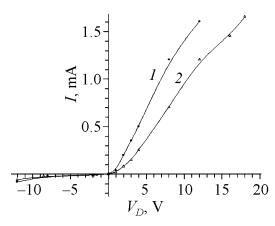
На рис. 1 представлена модель энергетической диаграммы резкого анизотропного $\Gamma\Pi$ *n*-GaAs–*p*-Ge Шокли–Андерсона [3].

Рис. 1. Энергетическая диаграмма резкого гетероперехода *n*-GaAs-*p*-Ge

В работе [4] был определен таким методом барический коэффициент потолка валентной зоны германия $\gamma_{V_2} = -10 \text{ meV/GPa}.$

Согласно теории с ростом всестороннего давления изменяются энергии края дна зоны проводимости E_C и потолка валентной зоны E_V [5]. Метод экспериментального определения ба-

рических коэффициентов краев зон заключается в следующем. В [2] показано, что если примесные уровни мелкие (т.е. уровни, энергии которых расположены вблизи краев разрешенных зон), то изменение уровня Ферми с изменением давления соответствует изменению края зоны вблизи этого уровня. В этой же работе установлено, что в ГП n-p произведение заряда электрона на изменение диффузионного напряжения V_D с изменением давления (напряжение на границе n- и p-полупроводников в отсутствие внешнего напряжения) состоит из разности между барическим коэффициентом потолка валентной зоны полупроводника p-типа и барическим коэффициентом дна зоны проводимости полупроводника n-типа и при гидростатическом давлении выражается следующим образом:


$$e\left(\frac{\Delta V_D}{\Delta P}\right)_{n-p} = \frac{\Delta E_{V_2}}{\Delta P} - \frac{\Delta E_{C_1}}{\Delta P},\tag{1}$$

где e — заряд электрона; ΔV_D — изменение диффузионного (контактного) напряжения; ΔP — изменение давления; ΔE_{V_2} , ΔE_{C_1} — изменения соответственно потолка валентной зоны дырочного полупроводника и дна зоны проводимости электронного полупроводника гетеропары.

Из выражения (1) следует, что из экспериментальных данных ВАХ при всестороннем давлении можно вычислить барический коэффициент либо потолка валентной зоны $\gamma_{V_2} = \frac{\Delta E_{V_2}}{\Delta P}$, либо дна зоны проводимости $\gamma_{C_1} = \frac{\Delta E_{C_1}}{\Delta P}$, если найти изменение диффузионного напряжения ΔV_D и использовать из литературы значение одного из указанных барических коэффициентов.

В настоящей работе с целью вычисления барического коэффициента дна зоны проводимости арсенида галлия $\gamma_{C_1} = \frac{\Delta E_{C_1}}{\Delta P}$ были измерены ВАХ ГП $\emph{n-GaAs-p-Ge}$ в зависимости от гидростатического давления до 8 GPa при комнатной температуре.

Выражение (1) приведено в работе [2] в случае ГП n–p. По методу, предложенному в [3], была получена ГС из электронного арсенида галлия ($n = 2 \cdot 10^{15} \text{ cm}^{-3}$) и дырочного германия ($p = 2 \cdot 10^{12} \text{ cm}^{-3}$). По данным рентгеноструктурного анализа, пограничная область ГП — монокристалл. Энергетическая диаграмма ГП показана на рис. 1.

Рис. 2. Вольт-амперная характеристика гетероперехода n-GaAs-p-Ge при всестороннем давлении и комнатной температуре: I – при P = 0, 2 – при P = 1.5 GPa

Измерения ВАХ в зависимости от давления на образцах ГС с размерами $1 \times 2 \times 2$ mm проводились в аппарате высокого давления типа плоской наковальни с лункой и тороидальной подложкой.

На ГП согласно теории [2] возникает контактное напряжение, обусловленное обменом носителями между контактирующими полупроводниками. Когда к ГС прикладывается всестороннее давление, контактное напряжение V_D меняется в том случае, если давление приводит к неодинаковому изменению уровней Ферми в составляющих ГС материалах.

Результаты измерения ВАХ ГС с ростом давления при 300 К показали, как и в работе [4], уменьшение как прямых, так и обратных токов. Причем изменение прямых токов в десятки раз превышает изменение обратных. Эти изменения обусловлены ростом ширины запрещенных зон, составляющих ГС, и вариацией контактного потенциала, как показано в работе [2].

На рис. 2 представлена ВАХ в прямом и обратном направлениях приложенных напряжений при P=0 и P=1.5 GPa. Величина контактного напряжения на ГП определялась как напряжение, отсекаемое на оси абсцисс при нуле тока касательной, проведенной к кривой прямого тока как при P=0, так и при P=1.5 GPa. Как видно из рис. 2, при токе, равном нулю, получаем, что при P=0 контактный потенциал $V_D=0.7$ V, а при P=1.5 GPa $V_D=0.5$ V.

С ростом давления контактный потенциал уменьшается: $\frac{\Delta V_D}{\Delta P} \approx -130 \text{ mV/GPa};$

$$\gamma_{V_D} = e \frac{\Delta V_D}{\Delta P} = -130 \text{ meV/GPa}.$$

Используя выражение (1) для определения барического коэффициента дна зоны проводимости $\gamma_{C_1} = \frac{\Delta E_{C_1}}{\Delta P} = \frac{\Delta E_{V_2}}{\Delta P} - e \left(\frac{\Delta V_D}{\Delta P}\right)_{n-p}$, литературное зна-

чение $\gamma_{V_2} = \frac{\Delta E_{V_2}}{\Delta P} = -10 \text{ meV/GPa}$ [5] и полученную нами величину $\gamma_{V_D} = -130 \text{ meV/GPa}$, имеем $\gamma_{C_1} = -10 \text{ meV/GPa} + 130 \text{ meV/GPa} = 120 \text{ meV/GPa}$.

Полученное нами значение $\gamma_{C_1} = 120 \text{ meV/GPa}$ близко расчетному значению, данному в работе [5].

- 1. Ж.И. Алферов, В.М. Андреев, В.И. Корольков, Е.Л. Портной, Д.Н. Третьяков, ФТП **4**, 167 (1970).
- 2. Y. Kanda, Phys. Lett. 14, 289 (1965).
- 3. R.L. Anderson, Solid-State Electron. 5, 341 (1962).
- 4. М.М. Гаджиалиев, З.Ш. Пирмагомедов, Т.Н. Эфендиева, ФТП 44, 1222 (2010).
- 5. *М.И. Даунов, И.К. Камилов, С.Ф. Габибов*, ФТТ **46**, 1766 (2004).

M.M. Gadjialiev, Z.Sh. Pirmagomedov, T.N. Efendieva

EXPERIMENTAL DETERMINATION OF THE BARIC COEFFICIENT OF CONDUCTION BAND EDGE OF GaAs

The current voltage characteristic of the n-GaAs-p-Ge heterostructure (HS) was measured at room temperature and the pressure up to 8 GPa for the purpose of determining dependences of GaAs conduction band bottom on the hydrostatic pressure. The HS samples of $1 \times 2 \times 2$ mm in size were measured in the high-pressure device of the plane anvil type with a hole and a toroidal support. Using the value of the HS built-in voltage obtained from experimental data and the literature value of the coefficient of the pressure dependence of the Ge valence band top derived from the theoretical formula

$$e\left(\frac{\Delta V_D}{\Delta P}\right) = \frac{\Delta E_{V_2}}{\Delta P} - \frac{\Delta E_{C_1}}{\Delta P}$$

, it was found that the baric coefficient of GeAs conduction band edge was 120 meV/GPa.

Keywords: pressure, potential, junction, displacement, diffusion, voltage, contact, capacitor, gradient

- **Fig. 1.** The energy diagram of the *n*-GaAs–*p*-Ge sharp heterojunction
- **Fig. 2.** Current voltage characteristic of the *n*-GaAs–*p*-Ge heterojunction at hydrostatic pressure and room temperature: I at P = 0, 2 at P = 1.5 GPa