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AND GLYCOSYLTRANSFERASE GENES

IN STREPTOMYCETES, PRODUCING
ANGUCYCLIC ANTIBIOTICS
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The heterologous expression of oxygenase genes urdM,
ovmOIIl, lanM2, [ndZ5 and glycosyltransferase gene
urdGT2 in different angucycline producers of genus
Streptomyces has been carried out. The introduction of genes
urdM, lanM?2 and urdGT?2 results in the accumulation of new
glycosylated compounds in several strains under investigation.
A number of processed recombinant strains display strepto-
mycin sensitivity and decrease in total antibacterial activity.
The obtained data is an evidence of changes in antibiotics
production, resulting from post-polyketide synthase (post-
PKS) tailoring gene expression across streptomycete strains.
Our study demonstrates the potential of post-PKS tailoring
genes for generation of novel bioactive metabolites.
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Introduction. The angucyclic polyketide antibi-
otics are microbial quinone natural products bear-
ing a characteristic four-ring frame of the aglycon
moiety, which is assembled in an angular manner
[1]. The classification of the angucyclines, which
numbers more than a hundred different compounds,
is related to the tetracyclic benz[a]anthracene sys-
tem and its derived compounds. Angucyclines
show a multitude of valuable biological activities
such as anticancer, antibacterial, antiviral, enzyme
inhibitory etc. Angucycline producing organisms
exclusively belong to order Actinomycetales, basi-
cally to genus Streptomyces — Gram-positive,
mycelial, sporulating bacteria.

Though all the angucyclines possess antibiotic,
particularly anticancer, activities, the range of
their activity greatly depends on the presence of
functional groups and glycosyl residues in their
molecules [2]. Namely, bioactivity is usually
defined by the arrangement and quantity of keto-,
hydroxygroups and sugars. These functionalities
are introduced by oxygenases and glycosyltrans-
ferases (GT’s). The need for new polyketides is
caused by the emergence of pathogenic strains and
tumor cells resistant to traditional chemicals.
Modern methods of genetic engineering allow the
construction of artificial secondary metabolic
pathways by combining the directed mutagenesis
and heterologous gene expression approaches in
foreign cells (of other species).

Combinatorial biosynthesis anticipates system-
atic modification and interchange of genes
involved in biosynthesis of natural products with
the consequential production of ‘unnatural’ or
‘hybrid’ natural products [2, 3].

Here, we report the use of combinatorial biosyn-
thesis approach for modification of the biosynthe-
sis pathways of five angucyclic antibiotics, i.e.
urdamycin A (), landomycins A and E (2), simocy-
clinone D8 (3) and oviedomycin (4) (Fig. 1). The
aim of current work was to perform heterologous
cross-expression of four oxygenase genes urdM,
ovmOIll, lanM?2, IndZ5, descending, respectively,
from S. fradiae Tu2717, S. antibioticus ATCC 11891,
S. cyanogenus S136, S. globisporus 1912 and one gly-
cosyltransferase gene urdGT2from S. fradiae
Tu2717 in these strains and in two S. globisporus
mutants deficient oxygenase genes. This approach
has been used to obtain the collection of recombi-
nants producing novel compounds with altered
bioactivity and to investigate the changes in their
secondary metabolism.
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Fig. 1. Structural formulae of urdamycin A (/), landomycin E (2), simocyclinone D8 (3), oviedomycin (4)

Materials and methods. Bacterial strains and
plasmids used in this work are listed in accompa-
nying table. Escherichia coli strains were grown at
37°C in LB for routine applications [4].
Streptomyces strains were grown at 30 °C. Solid
oatmeal medium was used for streptomycetes
sporulation and plating of E. coli — Streptomyces
matings [5]. Growth dynamics and antibiotic pro-
duction of Streptomyces strains were examined in
TSB (120 h of incubation). Where required,
strains were grown in the presence of antibiotics
and chromogenic substrates as described elsewhere
[6]. Bacillus subtilis, B. cereus, S. albus and Sarcina
flava were used as test-cultures for determining
antibiotic activity of obtained mutants. Agar plugs
were cut from solid media and put on the surface of
test culture. The diameter of growth inhibition
zones was measured on 16", 24" and 48™ hour of
the cultivation. The resistance spectra were analysed
by means of antibiotic disc diffusion method.

Plasmid DNA from E. coli was isolated using
standard protocols [4]. E. coli transformation and
intergeneric matings (using E. coli ET12567
(pUB307) as a donor) were performed as described
previously [5, 6]. Enzymes and kits for molecular
biological manipulations were purchased from stan-
dard commercial sources and used as described by
the manufacturer.

Secondary metabolites from the culture medi-
um were extracted with equal volume of ethyl acetate
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on the 48—72™ hour of Streptomyces strains growth
in 25 ml of SG at 28 °C in a rotary shaker (120 rpm)
as described [4]. The combined organic extracts
were dried and dissolved in 30 ul of methanol for
thin layer chromatography (TLC). TLC analysis
was carried out on SilG-25 silica gel plates
(«Merck», Germany) with chloroform/methanol
(9 : 1) as solvent. R¢ values are not presented as
appearance of blots different from control was cru-
cial and sufficient in these experiments.

In each separate experiment of heterologous
gene expression we analysed few exconjugants to
ensure unambiguous result.

Results and discussion. Heterologous expression of
urdM. Introduction of angular hydroxyl in 12b posi-
tion of urdamycin A (/) molecule of S. fradiae
Tu2717 is the unique reaction in angucycline biosyn-
thesis (Fig. 1). Moreover, additional olivose is
attached to this group, obviously, intensifying anti-
cancer properties of the antibiotic [10]. The protein
UrdM consists of two parts: oxygenase and reduc-
tase. It is involved in oxygenation at 12b position of
urdamycin precursor. In order to provide effective
heterologous expression of urdM a 1,5-kb Xbal-
EcoRI fragment of S. fradiae Tu2717 DNA contain-
ing this gene was cloned into the conjugative expres-
sion vector of pKC1218E [6] next to erythromycin
resistance gene promoter giving pKCI1218EurdM
(Fig. 2, a). By means of intergeneric E. coli —
Streptomyces conjugation pKCI1218EurdM was
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Bacterial strains and plasmids used in this study
Strains/plasmids Relevant characteristics Source or reference
E. coli DH5a F-(@80dA(lacZ)M15 recAl endA1 gyrA96 thil deoR ~ MBI Fermentas

(lacZYA-argF) U169)

E. coli ET12567 (pUB307)
conjugative plasmid pUB307

Oviedomycin producer
Symocyclinone producer

S. antibioticus ATCC 11891
S. antibioticus Tu6040
S. cyanogenus S136 Landomycin A producer

S. globisporus SMY622
S. globisporus M12

Landomycin E overproducer

S. fradiae Tu2717 Urdamycins producer

S. globisporus E7

dam-13::Th9 (Cmr) dem-6 hsdM; contains RK2-based C. Smith, UMIST Manchester, UK

J. Salas, University of Oviedo, Spain

A. Bechtold, Albert- Ludwigs-
University of Freiburg, Germany
A. Bechtold, Albert- Ludwigs-
University of Freiburg, Germany

(7]

IndM2 disruption mutant of S. globisporus 1912 [8]

A. Bechtold, Albert- Ludwigs-
University of Freiburg, Germany

S. globisporus SMY622 with mutated /ndE [9]

pSET152 E. coli — Streptomyces conjugative vector (ori ColE1, P. Leadlay, Cambridge university,
Amr, lacZ, oriT RK2, intPeC31, attPeC31) England
pKC1139 pUWL201 E. coli — Streptomyces shuttle expression [6]
vector with erm E promotor and plJ101 replicon, Thr
pKCI1218E E. coli — Streptomyces shuttle expression vector with  C. Olano, University of Oviedo, Spain
ermE promotor and SCP2 replicon, Am*
pUWL201 E. coli — Streptomyces shuttle expression vector with [6]
ermE promotor and plJ101 replicon, Thr
pKCI218EABX3 pKCI218E, where IndZ4Z5 cloned downstream to This work
ermE promotor
pKCI1218Eurd M pKCI218E, where urdM cloned downstream to ermE »
promotor
pSETovmOIIl pSET152, carries ovmOII1 »
pPSETurdGT?2 pSET152, carries urdGT2 »
pUWLIlanM?2 pUWL201, where lanM?2 cloned downstream to ermE >
promotor
pUWLurdGT2 pUWL201, where urdGT2 cloned downstream to »
ermE promotor

transferred to the cultures S. globisporus Smy622,
S. globisporus E7, S. globisporus M12 and S.
cyanogenus S136. These cultures were selected on
purpose, because none of their secondary metabo-
lites comprises angular hydroxyl in 12b position
and such experiments would help us understand
better the substrate specificity of UrdM. The
analysis of secondary metabolites extracts from
obtained four recombinant strains by means of
TLC discovered distinct changes in spectra of syn-
thesized colored compounds for . globisporus
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E7urdM and S. globisporus M12 urd M. Apparently,
E7+urdM strain no longer produced 2,3-dehydro-
UWMBG typical for initial E7 strain. Instead, there
are three new compounds present on TLC (Fig. 2,
b). M12 + urdM, generates no aromatic secondary
metabolites at all, at least in detectable quantities.
E7 + urdM strain most likely produces compounds
with one, two and three sugars, as judged from
changes in mobility and color of compounds. The
experiment shows that 11-hydroxylation is advan-
tageous for the glycosyltransfer and this can serve
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pKC1218E urd M8kb Am’
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)

LaE .

e ~
1912 E7 E7urdM

b

Fig. 2. Recombinant plasmid pKC1218 Eurd M map (a) and

change in spectrum of secondary metabolites for S. globis-

porus ETurdM (b); Am'— apramycin-resistance gene; LaE —
landomycin E

an evidence that the 11-hydroxylation normally
precedes the glycosyltransfer in landomycins
biosynthesis. It also shows that LndGT?2 possesses
broadened substrate specificity regarding its agly-
con acceptor substrate.

Heterologous expression of lanM?2. Over the past
decade, two gene clusters encoding landomycin bio-
syntheses, namely, the trisaccharidal landomycin
E (2) produced by S. globisporus 1912 (Fig. 1) and
the hexasaccharidal landomycin A produced by S.
cyanogenus S136 have been cloned and sequenced
[11]. The studies revealed that both clusters display
an extraordinarily high degree of identity. Previous
investigation of /nd M2 gene descending from S. glo-
bisporus 1912 [8] asserted the role of its correspon-
ding flavoprotein as oxidoreductase, responsible
for the attachment 6-hydroxyl during the biosyn-
thesis of landomycins precursor. With the purpose
of lanM?2 heterologous expression the amplifying
replicative shuttle plasmid pUWLIlanM2, where
lanM2 is cloned downstream to erythromycin resist-
ance gene promoter (Fig. 3, a) was transferred to
the cells of three strains. We selected thiostrepton
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resistant exconjugants in the matings of E. coli
(pUWLlanM2) with S. fradiae Tu2717, S. antibioti-
cus Tu6040 and S. globisporus E7. 6-hydroxyl group
is absent in the molecule of urdamycin A (/), pro-
duced by S. fradiae Tu2717, so we intended to
introduce this hydroxyl function, aiming to redis-
tribute electron density in ring B. Unfortunately, we
did not reveal changes in the secondary metabo-
lites spectrums for this recombinant, as well as for
E7 + lanM2. Concerning S. antibioticus Tu6040 car-
rying pUWL/Ian M2, the spectrum differs in princi-
ple (Fig. 3, b). S. antibioticus Tu6040 is the produc-
er of a complex angucyclic antibiotic simocycli-

(p%rilgl) pUWLIanM2 9kb
T Ori ColE1 Ap'
a
Novel
Sym compounds

5.0

S.ant. S.ant.lanM?2
b
Fig. 3. Recombinant plasmid pUWL/anM2 map (a) and
change in spectrum of secondary metabolites for S. antibi-
oticus lanM?2 (b); Tsr— thiostrepton-resistance gene; Ap" —
ampicillin-resistance gene; Sym — symocyclinone D8
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none D8 (3), which biosynthetic cluster has been
cloned and sequenced [16], still little is known
about the mechanisms and timing of oxygenation-
reduction reactions. One of simocyclinone’s dras-
tic peculiarities is a unique epoxyfunction in aro-
matic ring B (Fig. 1). We surmise that oxygenase
domain of lanM?2, due to its low substrate speci-
ficity could facilitate aromatization of this ring and
the recombinant strain produces as-yet-unidenti-
fied aglyca along with the final compound.

IndZ4/Z5 heterologous expression. The pair of
genes IndZ4 and IndZ5, was declared to be respon-
sible for the 11-hydroxylation that occurs during
landomycin E (2) biosynthesis [13]. The authors
also showed that hydroxylation at position 11 is not
dependent on the length of the side chain and may
occur at different stages during landomycin A
biosynthesis. This opportunity encouraged us to
introduce this pair of genes, encoding hydroxylase
and reductase to S. fradiae Tu2717, as urdamycins
just lack 11-hydroxyl. Interestingly, landomycin F,
was approximately threefold less active against the
MCF-7 breast cancer cell line than its correspon-
ding 11-hydroxy analogue, landomycin D [13]. We
brought [ndZ4/75 consisting of the plasmid
pKCI1218EABX3 (Fig. 4, a) to the culture S. fradiae
Tu2717. TLC analysis detected new major metabo-
lite in comparison to wild type strain (Fig. 4, b).
Previously we concluded that all oxygenations steps
except the 11-hydroxylation occur before Lan/
LndGT?2 adds the first sugar moiety to landomyci-
none precursor [9], in contrast to urdamycins
biosynthesis where first glycosylation step precedes
all oxygenations. Therefore, it is interesting to
know how the presence of additional hydroxyl
would affect UrdGT2’s ability to attach first olivose
to urdamycinone precursor molecule.

ovmOIII heterologous expression. ovmOIIl gene
originates from Streptomyces antibioticus ATCC
11891 oviedomycin (4) biosynthesis genes cluster
[14]. At least three oxygenations take place in
oviedomycin formation. They are the result of
ovmOI, OII and OIII expression. OvmOIII reveals
similarity to flavin-type hydroxylases of Rhodococcus
sp., that modify 7-ethoxycumarin and rifampin [14].
Consequently, it is considered that ovmOIII is
involved in hydroxylation, or ketogroup attachment
in the first or fourth positions of the oviedomycin pre-
cursor. The presence of oxygen in 4" position of ovi-
edomycin is an unprecedented case among angucy-
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Fig. 4. Recombinant plasmid pKCI1218EABX3 map (a)
and change in spectrum of secondary metabolites for S. fra-
diae IndZ4/75 (b)

clines. For heterologous expression of ovmOIIl we
engineered an integrating bifunctional plasmid
pSETovmOIIl. The plasmid was heterologously
expressed in four cultures S. globisporus Smy622, S.
globisporus E7, S. globisporus M 12 and S. cyanogenus
S136. No legible change in the spectra of secondary
metabolites was discovered by TLC analysis. It is,
obviously, predefined by inability of ovimOIII oxyge-
nase to recognize heterologous substrates, or the fact
that gene descends from a «taciturn» cluster and is
naturally expressed only at very specific conditions.

As it is well known, that most oxygenases taking
part in aromatic polyketyde antibiotics biosynthe-
sis are not cytochrome P450-dependent (for exam-
ple LndE/LanE and UrdM are flavin-dependent),
this, obviously stipulates for their low substrate
specificity, while cytochrome P450-dependent oxy-
genases are highly tailored [2]. These qualities are
very important for the combinatorial biosynthesis
of polyketide antibiotics.
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Fig. 5. Recombinant plasmid pUWLurdGT2 map (a);

change in spectrums of secondary metabolites for S. antibioti-
cus urdGT2 and M12 urdGT2 (b)

S.ant. S.ant.urdGT2

Heterologous expression of urdGT2. Bioactive
natural products frequently include saccharide
chains, which contribute to specific interactions
with the biological target. Combinatorial biosyn-
thesis approaches are being used in antibiotic-pro-
ducing actinomycetes to generate derivatives with
novel sugars in their architecture. Recent advances
in this area indicate that glycosyltransferases
involved in the biosynthesis of natural products
have substrate flexibility regarding the sugar donor
and also, less frequently, with respect to the agly-
con acceptor [2, 15].

The first glycosyltransfer step in urdamycins
biosynthesis is carried by UrdGT2, which is close-
ly related to Lan/LndGT2. However, the acceptor
substrates of these glycosyltransferases appear to
be quite different (one is a carbon-GT, and the
other is an oxygen-GT). Previously, we have
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shown that protein UrdGT2 reveals remarkably
broadened substrate specificity, as its heterologous
expression in the /[ndE-minus mutant of S. globis-
porus 1912 (E7) yielded three novel prejadomycin
analogues that differ in their C-glycosidically
bound moieties [9]. Hence, urdGT2 turned out to
be a promising candidate for combinatorial
biosynthesis. Generated in advance pUWLurdGT2
plasmid (Fig. 5, a) was employed to introduce
urdGT?2 into three strains — S. globisporus Smy622,
M12 and S. antibioticus Tu6040.

The changes in aromatic secondary metabolites
spectra took place in two cases (Fig. 5, b). Concer-
ning S. antibioticus + urdGT2, its spectrum also
differs radically from the original strain, but more
profound investigation is needed to elucidate the
structures of its secondary metabolites.

Traditional studies on antibiotic resistance,
antibacterial activity, and mutation maintenance
examination for the obtained strains with obvious
changes in antibiotic biosynthetic pathways were
carried, using wild type strains as controls. To con-
firm effective replication and passing of heterolo-
gously expressed recombinant plasmids that carry
urdM, lanM?2 and urdGT2 genes we cultivated the
strains in the course of five generations in nonse-
lective conditions with consequent verification of
antibiotic resistance maintenance on media con-
taining selective agents. Approximately 85 % of
colonies inherited replicative plasmids after five
passages under nonselective conditions ascer-
tained that new features of these recombinants are
quite stable. We also analyzed the antibiotic resist-
ance spectra of the mentioned strains against
twelve antibiotics of different classes and observed
unanticipated streptomycin sensitivity in case of
E7 + urdGT?2. In order to test the changes in anti-
bacterial activity of recombinant strains in com-
parison with landomycin E (2) we used four bacte-
rial species as test-cultures — Bacillus subtilis, B.
cereus, Streptomyces albus and Sarcina flava. The
diminution of antibacterial activity against .S. albus
in case of S. globisporus E7 carrying urd-genes was
found. These results apparently point at the deep-
er changes in physiology of the strains and resist-
ance mechanisms caused by overexpression of
urdGT2 and urdM genes under ermE gene promot-
er and undoubtedly can be a subject of future work.

The heterologous expression of Streptomyces
oxygenase and glycosyltransferase genes is known
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to be an effective and beneficial approach to obtain
recombinant strains with altered secondary metabo-
lism. Here we report the generation of collection
of angucycline-producing strains that carry various
heterologous oxygenase and GT genes. We demon-
strated here that introduction of certain post-PKS
tailoring genes into actinomycete species provokes
them to produce modified compounds that could
possess valuable activities. The production of these
antibiotics testifies low degree of substrate-speci-
ficity of oxygenases UrdM, LanM2 and glycosyl-
transferase UrdGT?2. Their genetic determinants are
promising candidates for combinatorial biosynthe-
sis of ‘hybrid’ angucyclines. More detailed chemi-
cal analysis and biological assays of mentioned
compounds will also clarify the linkage between
their structure and bioactivity.

A.H. Kobvirsuckuit, b.0. Ocmaut, B.O. @edoperko

NEPEKPECTHAA 'ETEPOJIOTMYECKAS
BOKCITPECCHA TEHOB OKCUT'EHA3
N INTMKO3MJITPAHC®EPA3bI
Y CTPEIITOMULUETOB, TPOAYLINPYIOLLINX
AHTUBUOTUKU AHTYUUKINHOBOI'O PAOA

IMpoBeneHa reteponornyeckast IKCIIPECCUsi FEHOB OK-
cureHas urdM, ovmOI11, lanM?2, [ndZ5 v Tnuko3unTpaHc-
depasbl urdGT2 B pa3HbIX BUAAX MPOMYLICHTOB aHTYLIMK-
JVUHOB w3 pona Streptomyces. BBenenue reHoB urdM,
lanM2 vt urdGT2 B HEKOTOpBIE U3 MCCIIETyeMbIX IITAMMOB
00yC/IOBNIMBAEeT HAKOIICHWE MMM HOBBIX TJIMKO3WIMPO-
BaHHBIX coequHeHnii. OOHAPYKEHO MOSIBIIEHNE YyBCTBU-
TEJIbHOCTH K CTPENITOMULIMHY U PE3KOe CHIDKEHME 00IIeit
aHTUOAKTePUATTbHON aKTUBHOCTH Yy HEKOTOPBIX U3 TIOJTY-
YEHHBIX PeKOMOMHAHTHBIX ITaMMOB. [IpencraBneHHbIe
JMAHHbBIE CBUIETETbCTBYIOT O MOAMGMUKAIUY TTPOLYKIINYI
AHTUOMOTUKOB, KOTOPAsI SIBJISIETCS CIEACTBUEM IKCIIPEC-
CHM TeHOB TocTIoMMKeTuaHoro cuHrte3a (moct-IKC) B
IITaMMax CTPeTOMUIIETOB. Hatm nccienoBanms neMoH-
ctpupyloT noteHiuan reHoB nocT-[1KC B co3nanum HoO-
BBIX OMOJIOTUIECKU aKTUBHBIX METa0OTUTOB.

A.M. Kobunsucokuii, b.0. Ocmaw, B.O. @edopenko

NNEPEXPECHA I'ETEPOJIOTTYHA
EKCITPECIA TEHIB OKCUTEHA3
TA TTIIKO3UJITPAHC®EPA3U
Y CTPEIITOMILIETIB, IO MPOAYKYIOTbH
AHTUBIOTUKUN AHT'YLUUKIITHOBOI'O PALY

3miiiCHEHO TeTepOJIOTIYHY €KCIIPECito TeHiB OKCUTeHAa3
urdM, ovmOIll, lanM2, IndZ5 Ta rnikosuntpaHcdepasu
urdGT2y pi3HUX BUIiB MPOAYLIEHTIB aHTYIUKIIiHIB 3 poIy
Streptomyces. Beenenns reHiB urdM, lanM2 ta urdGT2 y
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NesiKi 3 JOCTIKYyBaHUX IITAMiB 3yMOBIIIOE HAKOTTMYEHHS
HUMU HOBUX ITTIKO3UTHOBAHUX CIIONYK. BusiBneHo BUHUK-
HEHHST 9y TJIMBOCTI IO CTPENITOMIIINHY Ta pi3Ke 3HUKEeHHS
3arajibHOi aHTUOAKTEPiHOT AKTUBHOCTI Y AESIKMX i3 oJiep-
JKaHUX peKOMOiHAHTHUX mTaMiB. OTpUMaHi daHi € CBim-
YyeHHsIM Moaudikaliii mpoayKilii aHTHOIOTHKIB, sIKa € Ha-
CJIIIKOM €KCIpecii TeHiB IMOCTHOMIKETUIHOTO CUHTE3Y
(mmoct-T1KC) y mramax crpentoMinertiB. Hamri mocin-
JKEHHSI JeMOHCTPYIOTh ITOTeHIian TeHiB mocT-I1KC y
CTBOPEHHI HOBUX 0i0JIOTYHO aKTUBHUX METAOOJIITiB.
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