
УДК 633.854.78:576.3

Л.Л. ЮШКИНА 1 , Е.В. НЕСТЕРОВА 2 , В.В. КИРИЧЕНКО 1 , Т.А. ДОЛГОВА 3 , В.Н. ПОПОВ 2

¹ Институт растениеводства им. В.Я. Юрьева, Харьков
 ² Харьковский национальный аграрный университет им. В.В. Докучаева
 ³ Национальный фармацевтический университет, Харьков

ЦИТОГЕНЕТИЧЕСКОЕ ИЗУЧЕНИЕ МЕЖВИДОВОГО ГИБРИДА HELIANTHUS PRAECOX × **H. ANNUUS**, **ЕГО РОДИТЕЛЬСКИХ ФОРМ И ДВУХ БЕККРОССОВ**

© Л.Л. ЮШКИНА, Е.В. НЕСТЕРОВА, В.В. КИРИЧЕНКО, Т.А. ДОЛГОВА, В.Н. ПОПОВ, 2009

Введение. Полиморфный род Helianthus насчитывает 49 дикорастущих видов однои многолетнего типа развития [1]. Каждый вид является потенциальным источником ценных в селекционном отношении признаков (устойчивость к болезням, засухоустойчивость, жирнокислотный состав масла и др.). Из литературных источников известно, что однолетние виды подсолнечника (в том числе культурный) в отличие от многолетних достаточно хорошо скрещиваются между собой [2, 3]. Однако несмотря на относительно хорошую завязываемость семян, у межвидовых гибридов, полученных скрещиванием однолетних видов, могут возникать серьезные нарушения при рекомбинации хромосом вследствие их частичной или полной негомологичности. Это является существенным препятствием вовлечения межвидовых гибридов в селекционный процесс [4, 5].

Использование однолетнего дикого вида Helianthus praecox Engelm. & Gray как источника генов ценных признаков – устойчивости к ложной мучнистой росе [6, 7], фомопсису [6], новых типов ЦМС [8], высокого содержания олеиновой кислоты (около 40 %) [9] и др. в селекции подсолнечника, по мнению Георгиевой-Тодоровой [10], затруднено из-за низкой фертильности гибридов F_1 , которая возникает в результате нарушений в мейозе. Одним из путей решения данной проблемы может быть проведение беккроссирования межвидовых гибридов F₁ культурной формой подсолнечника, что позволит создать жизнеспособное фертильное потомство с хозяйственно ценными признаками. Отбор стабильных генотипов с интрогрессивными признаками, формирующих нормальные гаметы и жизнеспособное потомство, предполагает изучение хода мейоза у последовательных беккроссов [4]. Мейоз у межвидового гибрида H. $praecox \times H$. annuus и беккроссов (ВС₁ и ВС₂), полученных с участием культурного подсолнечника, изучен недостаточно [11]. В связи с этим целью настоящего исследования явилось изучение мейоза в материнских клетках пыльцы у однолетних форм подсолнечника *H. praecox* и *H. annuus*, их межвидового гибрида F_1 , а также поколений BC_1 и BC_2 .

Материал и методика. В качестве материнской формы использовали дикий однолетний диплоидный вид *H. praecox* Engelm. & Gray (образец PRA-380, полученный из Североаме-

риканской опытной станции, 2n=34), а отцовской — селекционно-ценную инбредную линию X908-Б культурного подсолнечника (*Helianthus annuus*, 2n=34) селекции Института растениеводства им. В.Я. Юрьева. Для получения межвидового гибрида *H. praecox* \times *H. аппииз* использовали метод ручной кастрации материнской формы в утренние часы. Первый беккросс (BC_1) получали от скрещивания F_1 с инбредной линией ($F_1 \times X908$ -Б), второй беккросс (BC_2) — путем скрещивания BC_1 с этой же линией ($BC_1 \times X908$ -Б).

Для изучения мейоза у родительских форм, межвидового гибрида F₁ и двух последовательных беккроссов вырезали сегменты корзинок с пыльниками на R₂ стадии онтогенеза [12] и фиксировали их в уксусном алкоголе (1:3) в течение 12 ч. Затем трижды промывали этиловым спиртом и оставляли на хранение в 70%ном растворе этилового спирта при температуре +4 °C. Хромосомы материнских клеток пыльцы (МКП) окрашивали реактивом Шиффа (фуксинсернистая кислота) после горячего гидролиза по Фельгену [13]. Мейоз изучали на давленных в капле 2%-ного ацетокармина временных препаратах. Для каждой формы подсолнечника исследовали в среднем от 2,2 до 4,5 тысяч делящихся клеток у 3-5 растений.

Для оценки стабильности мейоза у гибридов определяли мейотический индекс, который представляет собой процент нормальных тетрад от общего числа изученных. При мейотическом индексе 90 % и выше растение считается цитологически стабильным, т.е. способным воспроизводить в потомстве стабильное число хромосом (в нашем случае 34 хромосомы для диплоидных видов подсолнечника) [14].

Полученные данные подвергали статистической обработке путем попарного сравнения вариантов между собой с использованием критериев t-Стьюдента и ф-Фишера [15].

Результаты исследований и их обсуждение. Родительские формы подсолнечника характеризовались небольшим количеством хромосомных нарушений в МКП (табл. 1). Максимальный процент нарушений в мейозе наблюдали в профазе I (9,52 у дикой формы и 7,25 у культурной). На этой стадии были выявлены униваленты (4,76 % у *H. praecox* и 2,9 % у *H. annuus*), а также элиминация одной или двух пар

хромосом (4,76 % у *H. praecox* и 4,35 % у *H. ап- пииs*, табл. 2). Среднее количество хиазм на один мейоцит у дикой и культурной форм составило соответственно $20,4\pm1,14$ и $20,94\pm\pm0,56$, а на бивалент $-1,20\pm0,07$ и $1,23\pm0,03$. Количество закрытых (кольцевых) бивалентов у обеих родительских форм было также примерно одинаковым: $3,35\pm1,09$ у *H. praecox* и $3,75\pm0,59$ у *H. annuus*.

Второе деление мейоза у подсолнечника заканчивается образованием тетрад по симультанному (одновременному) типу с изобилатеральным расположением микроспор (рисунок). При образовании тетрад количество клеток с нарушениями снижается по сравнению с профазой I в 2,3 раза у дикой формы и в 4,6 раза у культурной (табл. 1). При этом у H. ргаесох наблюдали 2,39 % тетрад с микроядрами, 0,72 % триад, 0,24 % полиад (пентады) и 0,72 % клеток с двумя и четырьмя пикнотическими ядрами (табл. 3). У культурной формы среди нарушений на этой стадии были выявлены только тетрады с микроядрами (0,95 %) и триады (0,63 %). Таким образом, мейотический индекс у дикой и культурной форм подсолнечника составил 95,92 и 98,41 % соответственно.

Так как использованные в исследовании родительские формы являются диплоидными и имеют 2n = 34, то у их гибрида при нормальной конъюгации в профазе I теоретически должны образовываться 17 бивалентов. Действительно, у гибрида H. $praecox \times H$. annuus большей частью формировались 17 бивалентов, но мейоз проходил с существенными нарушениями. Количество МКП с 17 бивалентами (рисунок) в F₁ составило 76,21 %, что на 14–16 % ниже по сравнению с родительскими формами (табл. 2). Среди нарушений профазы мейоза І у гибрида F₁ наблюдали элиминацию хромосом (1—4 пары), появление лишних хромосом (2,34 % клеток), униваленты (2,92 %), поливаленты (7,28 %) и другие типы нарушений, представленные сочетанием поливалента с различным количеством унивалентов в клетке (1,94 %). Выявленные в МКП элиминация и появление лишних хромосом могут быть обусловлены асимметричными делениями в митозах клеток археспориальной ткани растений, что и приводит к образованию анеуплоидных клеток. Наибольший процент нарушений в профазе мейоза I в F₁ был

связан с элиминацией одной пары хромосом ($16_{\rm II}-6,31\%$) и образованием тетравалента ($15_{\rm II}+1_{\rm IV}-5,34\%$) в клетках.

На стадии метафазы I (рисунок) для гибрида первого поколения наиболее характерным было наличие хромосом (от 1 до 6) за пределами экваториальной пластинки. В анафазе І наблюдали отставания унивалентных хромосом и образование мостов. Максимальное количество нарушений у гибрида F_1 приходилось на стадии анафазы мейоза I и II (66,7 и 70,1 % соответственно). На стадии образования тетрад процент клеток с нарушениями снизился до 55,2. В этот период (табл. 3, рисунок) у гибрида F_1 наблюдали широкий спектр нарушений: монады (0,5 %), диады (15,5 %), триады (18,3 %), полиады (пентады, гексады, единичные гептады – 3,3 %). Кроме того, были выявлены клетки с неравноценными и пикнотическими ядрами, нарушением цитокинеза, в сумме составившие 8,5 %, а также тетрады с микроядрами (9,0 %). Возникновение диад и триад связано с отсутствием второго деления мейоза в МКП. Формировать микроядра могут отставшие хромосомы, а также фрагменты, которые не успели включиться в одно из ядер. Мейотический индекс гибрида F_1 составил 44,8%.

Беккроссирование гибрида F_1 культурной формой подсолнечника привело к значительному уменьшению нарушений в мейозе (с 50 % в F₁ до 12,79 % у ВС₁, табл. 1). Общее количество МКП с нарушениями в профазе І достоверно не отличалось от аналогичного показателя у гибрида F₁. У первого беккросса не были выявлены клетки с 13, 14 и 18 бивалентами (табл. 2), а также снизилось в 4,3 раза количество клеток с 16 бивалентами, но значительно увеличилось количество клеток с унивалентами (в 9,3 раза $16_{II} + 2_{I}$ и в 2 раза $15_{II} + 4_{I}$). Таким образом, максимальный уровень нарушений в мейозе у ВС1 приходился на стадию профазы І и составил 23,3 %. Однако при формировании тетрад количество нарушений у ВС1 снизилось по сравнению с гибридом F₁ в 4 ра-

Частота материнских клеток пыльцы с нарушениями

Форма и комбинация скрещивания	Изучено клеток на раз- ных стадиях мейоза		Профаза I		N	1етафаза I	Анафаза I		
	всего	с нарушениями,	всего	с нарушения- ми, %	всего	с нарушениями, %	всего	с наруше- ниями, %	
H. praecox H. annuus F ₁ BC ₁ BC ₂	2255 2233 3952 4495 3072	$4,79 \pm 0,45***$ $2,65 \pm 0,34***$ $50,0 \pm 0,8$ $12,79 \pm 0,24***$ $9,60 \pm 1,68***$	105 69 206 206 102	$9,52 \pm 2,86$ $7,25 \pm 3,12$ $23,79 \pm 2,97$ $23,30 \pm 2,95$ $40,20 \pm 4,85$	328 311 556 660 464	$8,54 \pm 1,54$ $3,55 \pm 1,05$ $47,1 \pm 2,12$ $15,15 \pm 1,40$ $13,79 \pm 1,60$	307 313 261 565 376	$\begin{array}{c} 2,28 \pm 0,85 \\ 4,15 \pm 1,13 \\ 66,7 \pm 2,92 \\ 10,79 \pm 0,40 \\ 7,45 \pm 1,35 \end{array}$	

Примечание. Достоверно отличаются от F_1 при *** $P \le 0,001$.

Уровень конъюгации хромосом и частота хромосомных

Форма и комбинация скрещивания	Изучено, шт.		Количество хиазм		Количество закрытых	Количество бивален-			
	рас- тений	кле- ток	на мейоцит	на бивалент	бивалентов на мейоцит	13 _{II}	14 _{II}	15 _{II}	
H. praecox	3	105	$20,4 \pm 1,14$	$1,20 \pm 0,07$	$3,35 \pm 1,09$	0	0	$1,90 \pm 1,3$	
H. annuus	3	69	$20,94 \pm 0,56$	$1,23 \pm 0,03$	$3,75 \pm 0,59$	0	0	$1,45 \pm 1,4$	
F_1	5	206	$19,89 \pm 1,59$	$1,17 \pm 0,09$	$2,89 \pm 1,60$	$0,97\pm0,7$	$0,97 \pm 0,7$	0.97 ± 0.9	
BC_1	5	206	$19,77 \pm 1,12$	$1,16 \pm 0,07$	$2,7 \pm 1,09$	0	0	$0,49 \pm 0,5$	
BC_2	4	102	$20,00 \pm 1,13$	$1,18 \pm 0,07$	$2,92 \pm 1,14$	3,92±1,9	$1,96 \pm 1,4$	$6,86 \pm 2,5$	

Примечание. Достоверно отличаются от F_1 при ** $P \le 0.01$; *** $P \le 0.001$.

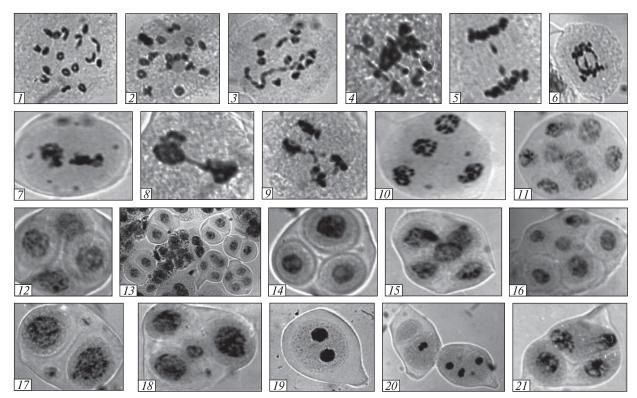
за и составило 13,65 %. На этой стадии мейоза (табл. 3) выявлены триады (8,29 %), тетрады с микроядрами (4,26 %), а также небольшое количество диад (0,42 %) и полиад (0,33 %). Мейотический индекс у первого беккросса составил

86,3 %.

Повторное беккроссирование культурной формой подсолнечника (ВС2) привело к снижению общего количества МКП с нарушениями в мейозе до 9,6 % (табл. 1). Уровень нарушений на стадии профазы I в 1,7 раза превышал показатель первого беккросса. Основной вклад в это значение привнесли клетки с такими изменениями, как образование унивалентов (1611+ $+2_{\rm I} - 8,82\%$, $15_{\rm II} + 4_{\rm I} - 3,92\%$), их комбинации с поливалентами (9,8 %), а также элиминация пар хромосом ($15_{II} - 6,86 \%$, 13_{II} и 16_{II} по 3,92 %, $14_{\rm H}$ – 1,96 %). Последующие стадии мейоза у ВС2 характеризовались меньшим количеством нарушений по сравнению с ВС1 (табл. 1). На стадии образования тетрад у второго беккросса (табл. 3) наблюдали тот же спектр нарушений, что и у BC_1 , с преобладанием тетрад с микроядрами (3,34 %) и триад (2,59 %), диады и полиады были представлены единичными клетками (по 0,19 %). Мейотический индекс у второго беккросса достиг 93,7 %.

Таким образом, у межвидового гибрида подсолнечника H. praecox \times H. annuus происходит нарушение конъюгации хромосом в профазе I, приводящее к появлению большого количества нарушений (55,2 %) при формировании тетрад. Согласно классификации Г.Д. Карпеченко [14], конъюгация у данного межвидового гибрида подсолнечника проходит по неопределенному типу, т.е. имеет место разнообразие числа бивалентов (от 13 до 18) и унивалентов (2 и 4) в клетках. Беккроссирование межвидового гибрида F₁ культурной формой подсолнечника снижает разнообразие числа бивалентов (только 15, 16 и 17), но увеличивает процент унивалентов в клетках. Несмотря на то, что количество нарушений на стадии образования тетрад у первого беккросса по сравнению с F_1 снижа-

на разных стадиях мейоза у подсолнечника


Таблица 1

	Телофаза I		Метафаза II		Анафаза II		елофаза II	Тетрады	
всего	с нарушениями, %	всего	с нарушениями, %	всего	с нарушениями, %	всего	с нарушениями, %	всего	с нарушениями,
314 309 379 527 425	$4,46 \pm 1,16$ $2,91 \pm 0,96$ $29,82 \pm 2,35$ $10,82 \pm 1,35$ $8,94 \pm 1,38$	224 306 442 499 357	$3,13 \pm 1,16$ $1,96 \pm 0,80$ $51,4 \pm 2,38$ $16,62 \pm 1,67$ $5,88 \pm 1,25$	310 305 371 536 434	$3,23 \pm 1,0$ $1,64 \pm 0,73$ $70,1 \pm 2,38$ $11,01 \pm 1,35$ $7,83 \pm 1,30$	250 305 603 586 375	$4,0 \pm 1,24$ $1,64 \pm 0,73$ $41,8 \pm 2,0$ $8,19 \pm 1,13$ $9,33 \pm 1,5$	417 315 1134 916 539	$4,08 \pm 0,97***$ $1,59 \pm 0,7***$ $55,2 \pm 1,48$ $13,65 \pm 0,59***$ $6,31 \pm 1,05***$

ассоциаций на стадии профазы мейоза I

Таблица 2

тов на мейоцит, %			Унивал	пенты, %	Поливал	Другие	
16 _{II}	$17_{ m II}$	18 _{II}	$16_{II} + 2_{I}$	15 _{II} + 4 _I	$14_{\mathrm{II}} + 1_{\mathrm{VI}}$	15 _{II} + 1 _{IV}	нарушения, %
$2,86 \pm 1,6$ $2,90 \pm 2,0$ $6,31 \pm 1,7$ $1,46 \pm 0,8$ $3,92 \pm 1,9$, ,		$3,81 \pm 1,9$ $2,90 \pm 2,0$ $1,46 \pm 0,8$ $13,59 \pm 2,4$ $8,82 \pm 2,8$	0.95 ± 0.9 0 1.46 ± 0.8 2.91 ± 1.2 3.92 ± 1.9	$ \begin{array}{c} 0 \\ 0 \\ 1,94 \pm 1,0 \\ 0,49 \pm 0,5 \\ 0 \end{array} $	$0 \\ 0 \\ 5,34 \pm 2,5 \\ 2,43 \pm 1,1 \\ 0,98 \pm 0,9$	$0 \\ 0 \\ 1,94 \pm 1,0 \\ 1,94 \pm 1,0 \\ 9,80 \pm 2,9$

Мейоз в материнских клетках пыльцы гибрида $Helianthus\ praecox \times Helianthus\ annuus:\ 1-17_{II}$ в диакинезе; $2-18_{II}$ в диакинезе; 3- поливалент в диакинезе; 4- хромосомы за пределами экваториальной пластинки; 5- отставание унивалентных хромосом в анафазе $I;\ 6-$ мосты в анафазе $I;\ 7-$ микроядра в метафазе $II;\ 8-$ сохранившийся мост и хромосомы за пределами экваториальной пластинки; 9- отстающие хромосомы в анафазе $II;\ 10-$ микроядра в телофазе $II;\ 11-$ 8 ядер на стадии телофазы $II;\ 12-$ нормальная тетрада; 13- диады; 14- триада; 15- пентада; 16- гексада; $17,\ 18-$ разнокачественные ядра тетрад; $19,\ 20-$ пикнотические ядра; 21- нарушение цитокинеза

Таблица 3 Частота нормальных и измененных тетрад в материнских клетках пыльцы у подсолнечника

Форма и ком- бинация скре-	Всего изучено клеток,	Средняя част	гота тетрад, %	Монады	Диады	Триады	Полиады	Другие нарушения
щивания шт.		норма	с микроядрами					
H. praecox	417	95,92 ± 0,9 ***	2,39 ± 0,8 ***	0	0	$0,72 \pm 0,4$	$0,24 \pm 0,2$	$0,72 \pm 0,4$
H. annuus	315	98,41 ± 0,7 ***	$0.95 \pm 0.5 ***$	0	0	0.63 ± 0.4	0	0
F_1 BC_1	1134 916	44.8 ± 1.5 $86.3 \pm 1.1 ***$	9.0 ± 0.8 $4.26 \pm 0.6 ***$	0.5 ± 0.2	$15,5 \pm 1,1$ $0,42 \pm 0,2$	$18,3 \pm 1,3$ 8.29 ± 0.9	$3,3 \pm 0,5$ 0.33 ± 0.2	$8,5 \pm 0,8$
BC_2	539	$93,69 \pm 1,0 ***$	$3,34 \pm 0,8 ***$	0	$0,12 \pm 0,19$ $0,19 \pm 0,19$, ,	$0,19 \pm 0,19$	0

Примечание. Достоверно отличаются от F_1 при *** $P \le 0{,}001$.

ется в 4 раза, мейотический индекс (86,3%) указывает на цитологическую нестабильность растений BC_1 . Повторное беккроссирование культурной формой подсолнечника хотя и приводит к увеличению количества нарушений на стадии профазы I, но последующие

стадии мейоза проходят со значительно меньшими нарушениями, и количество измененных тетрад снижается по сравнению с BC_1 в два раза. Мейотический индекс у BC_2 достигает 93,7 %, что указывает на вероятную цитологическую стабильность растений.

Авторы выражают благодарность А.В. Шарыпину за обработку и подготовку фотографий к публикации.

L.L. Yushkina, E.V. Nesterova, V.V. Kirichenko, T.A. Dolgova, V.N. Popov

CYTOGENETIC STUDY OF AN INTERSPECIFIC HYBRID HELIANTHUS PRAECOX × H. ANNUUS, ITS PARENTAL FORMS AND TWO BACKCROSSES

Meiosis of wild species ($H.\ praecox$) and cultivated sunflower ($H.\ annuus$), their F_1 interspecific hybrid as well as two backcross generations has been studied. A low level of chromosomal abnormalities in the parents was detected. Interspecific hybridization between the wild and cultivated samples has led to a considerable (50 %) increase of meiosis abnormalities in sunflower pollen mother cells. Backcrossing of hybrids by cultivated sunflower decreased the chromosomal abnormalities level to 12,8 % in BC_1 and 9,6 % in BC_2 . Cytological stability of plants restored in BC_2 only.

Л.Л. Юшкіна, О.В. Нестерова, В.В. Кириченко, Т.А. Долгова, В.М. Попов

ЦИТОГЕНЕТИЧНЕ ВИВЧЕННЯ МІЖВИДОВОГО ГІБРИДА HELIANTHUS $PRAECOX \times H$. ANNUUS, ЙОГО БАТЬКІВСЬКИХ ФОРМ ТА ДВОХ БЕККРОСІВ

Вивчали мейоз у дикого виду (H. praecox) та культурної форми (H. annuus) соняшника, їх міжвидового гібрида F_1 , а також двох поколінь беккросів. Виявили невисокий рівень порушень мейозу у батьківських форм. Міжвидове схрещування дикої та культурної форм привело до значного (50%) збільшення порушень в материнських клітинах пилку соняшника. Беккросування гібридів культурною формою знизило кількість клітин з порушеннями до 12,8% у BC_1 і 9,6% у BC_2 , а цитологічна стабільність рослин відновлювалась тільки у другого беккроса.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Schilling E.E.*, *Heiser C.B.* Infrageneric classification of Helianthus (Compositae) // Taxonomy. 1981. № 30. P. 393–403.
- 2. Гаврилова В.А., Анисимова И.Н. Генетика культурных

- растений. Подсолнечник. СПб.: ВИР, 2003. 209 с.
- 3. Попов В.Н., Юшкина Л.Л., Шарыпина Я.Ю., Кириченко В.В. Генотипические особенности скрещиваемости культурного подсолнечника с дикими видами и использование эмбриокультуры при отдаленной гибридизации // Цитология и генетика. 2005. 39, № 1. С. 3—8.
- Георгиева-Тодорова Й. Генетични и цитогенетични изследвания на род Helianthus L. — София, 1990. — 132 с.
- Jan C.C. Cytology and interspecific hybridization // Sunflower Technology and Production. – Madison, USA, 1997. – P. 497–558.
- Korell M., Brahm L., Fried W., Horn R. Interspecific and intergeneric hybridization in sunflower breeding. 2. Specific uses of wild germplasm // Plant Breed. Abstr. – 1996. – 66, № 8. – P. 1081–1091.
- Miller J., Fick G. The genetics of sunflower // Sunflower Technology and Production. – Madison, USA, 1997. – P. 441–495.
- Serieys H.A. Identification, study and utilization in breeding programs of new CMS sources // Helia. – 1996. – 19. – P. 144–160.
- 9. Seiler G. The genus Helianthus as a source of genetic variability for cultivated sunflower // Proc. 12th International sunflower conference. Novi Sad, Yuogoslavia, 1988. V. 1. P. 17—58.
- Georgieva-Todorova J. Interspecific hybridization and its application in sunflower breeding // Biotechnol. & Biotechnol. equipment. – 1993. – № 4. – P. 153–157.
- 11. *Vassilevska-Ivanova R., Telbizova T.* Hybridization of *Helianthus praecox ssp. praecox* Engl. & Gray (2*n* = 34) with cultivated sunflower *Helianthus annuus* L. (2*n* = 34). 3. Cytological studies on backcross and sib-pollinated generation // Biotechnol. & Biotechnol. equipment. − 1993. − № 4. − P. 139−141.
- 12. Schneiter A., Miller J. Description of sunflower growths stages // Crop Sci. 1981. 21. P. 901–903.
- Паушева З.П. Практикум по цитологии растений. М.: Агропромиздат, 1988. – 217 с.
- 14. *Пухальский В.А., Соловьев А.А., Бадаева Е.Д. и др.* Практикум по цитологии и цитогенетике растений. М.: Колос, 2007. 198 с.
- 15. *Лакин Г.Ф.* Биометрия. М.: Высш. шк., 1980. 294 с.

Поступила 12.09.07