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Microscopic models of hardness 

Recent developments in the field of microscopic hardness models 
have been reviewed. In these models, the theoretical hardness is described as a 
function of the bond density and bond strength. The bond strength may be 
characterized by energy gap, reference potential, electron-holding energy or Gibbs 
free energy, and different expressions of bond strength may lead to different hardness 
models. In particular, the hardness model based on the chemical bond theory of 
complex crystals has been introduced in detail. The examples of the hardness 
calculations of typical crystals, such as spinel Si3N4, stishovite SiO2, B12O2, ReB2, OsB2, 
RuB2, and PtN2, are presented. These microscopic models of hardness would play an 
important role in search for new hard materials.  

Key words: hardness, bulk modulus, shear modulus, ionicity, 
superhard materials.  

HARDNESS TESTS 

Hardness is an important mechanical property of materials. It is defined as the 
resistance of a material to localized deformation [1—7]. In materials science, there 
are two principal operational definitions of hardness: (i) Scratch hardness: 
Resistance to fracture or plastic deformation due to friction from a sharp object; (ii) 
Indentation hardness: Resistance to plastic deformation due to a constant load from 
a sharp indenter. Indentation hardness test is the usual type of hardness test. It can 
be done using Vickers as well as Knoop indenters. The Vickers test uses a 
symmetrical square pyramidal indenter. The Knoop test uses an asymmetrical 
rhombic-based pyramidal diamond indenter. In microindentation hardness testing, 
a pyramid is impressed into the surface of the test specimen using a known applied 
load of 1 to 1000 gf. The load per unit area of impression is taken as the measure of 
hardness: 

cSWH /= ,    (1) 

where Sc is the contact area for Vickers hardness or the projected area for Knoop 
hardness and W is the maximum applied load. The Knoop and Vickers hardness 
values differ slightly. For hard materials, their values are close enough to be within 
the measurement error.  

Syntheses of new classes of hard and superhard materials provide new 
challenges for the measurement of hardness [8—15]. Since the hardness is strongly 
dependent on an indentation load, the load should always be reported with the 
hardness outcome. Brazhkin et al. [16] pointed out that necessary criteria for 
comparing hardness among very hard substances can be established by providing 
the details regarding the type of indenter, applied loads, indentation time, sample 
orientation, quality of the tested surface, and so on. Figure 1 shows the load 
dependence of the Vickers hardness for the sample of BN nanocomposite 
synthesized by Dubrovinskaia et al. [17]. As can be seen, its hardness even reached 
145 GPa at low loads. A constant hardness is reached at loads from 4.9 to 9.8 N.  
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Fig. 1. Load dependence of the Vickers hardness for the sample of superhard BN nanocomposite. 
The loading time is 20 s. (the data from [17]). 

PHYSICS OF HARDNESS 

Superhard materials are defined as having a hardness of above 40 GPa. At 
present the experimental hardness can vary by more than 10% even for the same 
material; scientists have therefore been keen to devise a theoretical method for 
predicting the hardness of a material with a more certainty. In order to design the 
new superhard materials [18—30], clarifying the nature of hardness is of utmost 
importance. In recent years many attempts to develop a physical definition of 
hardness have been made. 

Hardness and elastic modulus  

For a material to be hard it must support the volume decrease created by the 
applied force, therefore, it should have a high bulk modulus. For compounds with a 
given bonding type, for example, the group IV elements (see Fig. 2), III—V 
compounds (see Fig. 3), and II—VI compounds, the hardness correlates roughly 
with the bulk modulus [31]. Thus, the bulk modulus was used to predict the 
hardness of a new material.  

Ideally, one would hope to use ab initio computations to determine B as a 
function of applied strain, but this is computationally very expensive. Therefore, 
some empirical relations of bulk modulus were proposed [32—35]. Cohen [32] 
first proposed a relationship for the bulk modulus B of a compound solid, which 
follows: 

5.3

)2201972(
4 d

fN
B ic −

= ,    (2) 

where Nc is the bulk coordination number, d is the bond length, and fi is an 
empirical ionicity parameter. 

As pointed out in the review article by Brazhkin et al. [35], the cohesive energy 
(i.e. total bonding strength) is also a good correlator/predictor of bulk modulus. 
There is a clear correlation between the molar volume Vm, bulk modulus K and 
cohesive energy Ec, 
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Fig. 2. Hardness vs. bulk moduli for group IV elements. 
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Fig. 3. Hardness vs. bulk moduli for cubic III—V compounds. 

 
Zhang et al. [33] have studied the relation between the lattice energies and the 

bulk moduli of binary inorganic crystals by the concept of the lattice energy 
density. They have found that the lattice energy densities are in good linear relation 
with the bulk moduli for the same type of crystals.  

Although there is a correlation between the hardness values and the bulk moduli 
for particular classes of materials, there are still limitations to the use of bulk 
modulus for predicting hardness [36]. For example, the bulk modulus of α-Al2O3 
exceeds that of B12O2, however, its hardness is significantly less. The bulk modulus 
of Os is comparable with that of diamond, while its hardness is approximately 
3.50 GPa, far smaller than that of diamond. 
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Teter [37] and Brazhkin et al. [35] pointed out that hardness values correlate 
better with shear moduli than with bulk moduli, as shown in Fig. 4. The shear 
modulus describes the resistance of a material to anisotropic shape change. It 
depends on both the plane of shear and the direction of shear. It indicates how well 
a material resists a tearing force. For covalent crystals, the shear modulus 
correlates roughly with hardness [38], which is also applicable for metals as well as 
ionic crystals. In order to be hard, the material must not deform in a direction 
different from the applied load, in other words, it must have a high shear modulus.  
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Fig. 4. Hardness vs. shear moduli. 

 
Bulk modulus B and shear modulus G can be obtained from elastic stiffness 

constants Cij and elastic compliance constants Sij of considered crystal systems [39, 
40]:  
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Theoretical definition of hardness 

Although the better correlation has been observed between the hardness and 
shear modulus, the dependence is not yet unequivocal and monotonic [35]. For 
example, the bulk and shear moduli of tungsten carbide are as high as 439 and 
282 GPa, respectively, which are among the highest as known, but its hardness is 
only 30 GPa [27]. Indeed, there is no one-to-one correspondence between hardness 
and bulk modulus or shear modulus.  

For theoretical study, an appropriate definition of hardness is necessary and 
essential. Gao et al. [41, 42] took an important step towards the goal of theoretical 
characterization of hardness by developing a semi-empirical formula for the 
hardness of a material based on ionicity, bond length, and the number of electrons 
available for bonding, and succeeded in estimating the hardness of a number of 
covalent materials using the semi-empirical formulae.  

Gao et. al. [41] pointed out that the hardness of covalent crystals is intrinsic and 
equivalent to the sum of resistance of each bond per unit area to the indenter. In an 
indentation test, the bond breaking can occur. According to Gilman’s assumption 
[38], energetically breaking an electron-pair bond inside a crystal means that two 
electrons become excited from the valence band to the conduction band. In other 
words, the resistant force of bond can be characterized by energy gap Eg. Based on 
this assumption, the hardness of covalent crystals should have the form:  

H (GPa) = ANaEg,    (4) 

where A is the proportional coefficient and Na is the covalent bond number per unit 
area. 

Following Gao’s work, Šimůnek and Vackar [43, 44] proposed another 
expression for hardness by introducing the bond strength concept  

ijSCH
Ω

= ,     (5) 

where C is the proportional coefficient and Ω is the volume of a pair of ij atoms. Sij 
is the bond strength between atoms i, j.  

Recently, Li et al. [45, 46] have also suggested a hardness formula: 

qXpNH abV += ,    (6) 

where p and q are the constants, NV is the bond density, Xab is the bond 
electronegativity and, 

b

b

a

a
N
X

N
X

abX = ,     (7) 

where Xa and Xb are the electronegativity of atoms a and b, respectively. Na and Nb 
are the coordination numbers of atoms a and b, respectively.  

More recently, based on Gibbs free energy of atomization θΔ atG , Mukhanov et 
al. [47] have proposed a thermodynamic formula for the hardness calculations: 

αβε=
θΔ

VN
GatH 2 ,     (8) 
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where V is the molar volume, N is the maximum coordination number, α is the 
coefficient of the relative plasticity, β is the coefficient allowing for a contribution 
of the bond polarity, ε is the ratio of the amount of valent electrons per atom to the 
amount of bonds that this atom forms with the neighboring atoms. 

In addition, the work of Gilman [38] indicates that the hardness can often be 
related to a shear instability such as associated with a structural phase transition in 
tetrahedral semiconductors.  

CALCULATIONS OF CHEMICAL BOND IONICITY AND HARDNESS 

Chemical bond ionicity  

As mentioned above, the ionicity of chemical bond plays a significant role in 
mechanical properties such as hardness, bulk modulus. According to Pauling’s rule 
[48], if we consider a crystal, in which cation A, carrying a charge + Ze, is 
coordinated by N anions B, then each A—B bond is said to have a Pauling bond 
valence of QAB = Z/N. In a stable coordinated structure the total bond valence of the 
bonds that reach an anion from all the neighboring cations is equal to the charge of 
the anion. Then, the ionicity of A—B bond can be calculated as follows: 

4
)(exp1

2
BA

AB
XXQfi

−−−= ,    (9) 

where XA and XB are the electronegativity of atoms A and B, respectively. 
Another noted scale of ionicity is Phillips’ ionicity. Phillips’ criterion for the 

ionicity is more accurate spectroscopically than that of Pauling, which is based on 
the data on heats of the formation of solids [49, 50]. 

Reviews concerning the bond ionicity and its application had been made by 
Phillips [51], Van Vechten [52, 53], Levine [54, 55]. However, it is known that 
PVL (Phillips-Van Vechten-Levine) theory can deal with binary crystals only. In 
order to calculate the bond ionicity of a multicomponent crystal, the 
multicomponent crystal must be decomposed into pseudobinary crystals containing 
only one type of chemical bond. A crucial method decomposing the complex 
crystal into pseudobinary crystals each containing only one type of chemical bond 
is proposed by Zhang [56, 57]. For the multibond crystal AaBb…, the subformula 
for any kind of chemical bond A—B can be expressed as:  

BB)(AAA)(B

CBCA
⎥
⎦

⎤
⎢
⎣

⎡ −
⎥
⎦

⎤
⎢
⎣

⎡ −
N

bN
N

aN ,   (10) 

where A, B,… represent different elements or different sites of the same element in 
the crystal formula, and a, b,… represent numbers of the corresponding element, 
N(B—A) represents the number of B ions in the coordination group of the A ion, 
and NCA represents the nearest coordination number of the A ion. These binary 
crystals are related to each other, and every binary crystal includes only one type of 
chemical bond. However, the properties of these pseudobinary crystals are 
different from those of real binary crystals, although their chemical bond 
parameters can be calculated in a similar way.  

Equation (10) also can be rewritten in another form 

nN
aN AB)AB(

CA

−      (11) 

and  
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B)(A

aNN
bNN

n
−
−

= ,    (12) 

where the prefix N(B—A)a/NCA represents the relation between the number of B 
ions and the total number of ions bonded to the central A ion, and the subscript 
[N(A—B)bNCA]/[N(B—A)aNCB] represents the ratio of the element B to A, n. 
According to Eq. (11), each type of bond has its corresponding subformula, and the 
sum of all subformulae equals the crystal formula, which is called the bond-valence 
equation. 

After decomposing a complex crystal into different kinds of pseudobinary 
crystals, which form an isotropic system, and introducing an effective charge of a 
valence electron by Pauling’s bond valence method [48], PVL theory can be used 
directly to calculate the chemical bond parameters in a complex crystal compound.  

By analogy with the work of PVL, average energy gap μ
gE  for every μ bond in 

pseudobinary crystals can be separated into homopolar μ
hE  and heteropolar Cμ 

parts.  
Homopolar gap μ

hE  can be interpreted as produced by the symmetric part of the 
total potential, while the ionic or charge-transfer gap Cμ results from the effect of 
the antisymmetric part. The average valence-conduction band gap is given by 

222 )()()( μμμ += CEE hg .    (13) 

The ionicity and covalency of any type of chemical bond is defined as follows: 
22 )/()( μμμ = gi ECf ;    (14) 

22 )/()( μμμ = ghc EEf      (15) 

and 
48.2)/(74.39 μμ = dEh  (eV),    (16) 

where dμ is the bond length. For any binary crystal, i.e. ABn type compounds, 
heteropolar Cμ part is defined as 
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F π3)( ;    (19) 



www.ism.kiev.ua;  www.rql.kiev.ua/almaz_j 16

μ

*μ
μ )(

b

e
e v

nN = ;      (20) 

μ

μ

μ

μ
μ +=

CB

*
B

CA

*
A* )()(

)(
N
Z

N
Z

ne ;    (21) 

[ ]∑ νν

μ
μ =

ν
b

b Nd
dv 3

3

)(
)( ,     (22) 

where μ
bv  is the bond volume, ( μ

en )* is the number of effective valence electrons 

per μ bond, μ
eN  is the number of valence electrons of μ bond per cubic centimeter. 

μ
Fk  and μ

sk  are Fermi wave number and Thomas-Fermi screening wave number of 
valence electrons in a binary crystal composed of only one type of bond μ, 
respectively. aB is the Bohr radius and n is the ratio of element B to element A in 
the subformula. *

A )( μZ  and *
B )( μZ  are the numbers of effective valence electrons 

of the A and B ions, respectively, and *
A )( μZ = μμ

CAABNQ , *
A )( μZ = 

μμμμ − BBCBAB )]8/()[( ZZNQ , μ
ABQ  is the Pauling bond valence of A—B bonds, μ

BZ  is 

the number of valence electrons of the B atoms. Δ μ
AZ  is the correction factors from 

d electron effects such as the crystal field stable energy and Janh-Teller effect, etc. 
[58, 59], bμ is proportional to the square of the average coordination number μ

cN  

2)( μμ β= cNb ;     (23) 
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+
=
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where bμ depends on a given crystal structure. The typical value of β is 
0.089 ± 10% [54]. 

If the dielectric constant of the crystal is known, the value of β can be deduced 
from the Kramers-Kronig relation of dielectric function at the long wave limit, 
which is written as 
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μ

μ

μ11)ε( χ+=χ+=∞ ∑ F ,   (26) 

where χ is the macroscopic linear susceptibility, χμ is the total macroscopic 
susceptibility of a binary crystal composed of only one type of bond μ, μ

FE  is the 
Fermi energy, Fμ is the fraction of the binary crystal composing the actual complex 
crystal. Dμ is the periodic dependent constants tabulated in [54].  
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Hardness of polar covalent crystal 

Equation (4) is suitable for the hardness calculations of pure covalent crystals 
only. For polar covalent crystals, besides covalent component, partial ionic 
bonding has to be considered. Ionic bonding results from long-range electrostatic 
force, which is not directly related to hardness [38]. Phillips’ homopolar band gap 
Eh characterizes the activation energies of dislocation glide in polar covalent 
crystals and the strength of the covalent bonding. On the other hand, the partial 
ionic bonding results in the loss of covalent bond charge, further results in a 
smaller effective covalent bond number per unit area (Na) in comparison with that 
of pure covalent crystals. This screening effect can be described by a correction 
factor, e–1.191fi. The hardness of polar covalent crystals is expressed as follows [41]: 

HV (GPa) =14(Nae–1.191fi)Eh;   (27)  

3/2

2/
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑ VZn

V
ZnN ii

ii
a ,   (28) 

where ni is the number of the ith atom in the cell, Zi is the valence electron number 
of the ith atom. Also Eq. (27) can be expressed as:  

HV (GPa) = 556 5.2

191.1

d
eN if

a
−

 = 350 5.2

191.13/2

d
eN if

e
−

,  (29) 

where d is the bond length. 
The Vickers hardness of diamond measured under 9.8 N loads is about 96 GPa, 

which is in agreement with the calculated hardness [41]. The calculated hardness of 
α-Al2O3, 21 GPa, is in agreement with its Vickers hardness measured under 2.5 N 
loads [60]. The calculated hardness of stishovite (SiO2) is 30 GPa [41]. An 
appreciable scatter in hardness measurements of stishovite was observed, ranging 
from 21 to 33 GPa [61]. The hardness of a stishovite single crystal determined 
from the Vickers diamond pyramid hardness tests under 2 N loads is 31.8±1.0 GPa 
along the c-axis and 26.2±1.0 GPa along a perpendicular direction [62]. Therefore, 
a comparison of values from different studies is only of a limited significance. 
Here we suggest that calculated hardness values may correspond to a comparative 
Vickers hardness tested under a comparative load that is taken approximately as 

cal
Vdia

V

H
H

N8.9 , where dia
VH  is the Vickers hardness of diamond under 9.8 N loads 

and cal
VH is the calculated hardness.  

Hardness of multicomponent compound systems 

The hardness surely involves the cooperative softening of many bonds. When 
there are differences in the strength among different types of bonds, the trend of 
breaking the bonds will start from a softer one. The hardness of multicomponent 
compound systems can be expressed as a geometric average of hardness of all 
pseudobinary systems in the solid [41], 

μ
μ
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μ

μ

⎥
⎦

⎤
⎢
⎣

⎡
Π=

n

VV
n

HH
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)( ,    (30) 
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where nμ is the number of bonds of type μ composing the actual complex crystal. 
The hardness, μ

VH , of pseudobinary compound composed of μ-type bond can be 
calculated using Eqs. (27)—(29).  

Nevertheless, it should be noted that Eq. (30) has to be applied with care in 
systems with large anisotropy, in which nμ will vary along the different directions 
of the crystal. 

γ-Si3N4. Recently, it has been reported that cubic Si3N4 (γ-Si3N4) with a cubic 
spinel structure could be synthesized at pressures above 15 GPa and temperatures 
exceeding 2,000 K, yet persists metastably in air at an ambient pressure to at least 
700 K [63]. This new superhard cubic Si3N4 phase opens considerable industrial 
scope in materials science [64, 65]. 

Equilibrium structural parameters for the γ-Si3N4 spinels calculated by using the 
GGA are a = 7.65 Å, u = 0.382 [66]. In this structure the Si atom is in octahedral 
coordination with six N atoms (denoted as Sio) and simultaneously in tetrahedral 
coordination with four N atoms (denoted as Sit).  

Pauling [48] pointed out that crystal structures obey the Electrostatic Valency 
Principle: an ionic structure will be stable to the extent that the sum of the Puling 
bond valence, μ

ABQ , of the bonds that reach an ion equal to the charge on that ion. 
For example, in Fig. 5 each Sit4+ is surrounded by 4N3– ions. The Sit is thus in 4 
fold coordination. Thus, μ

ABQ = 1. That’s to say each N ion contributes one 
negative charge to the Sit. So the +4 charge on the Sit ion is balanced by 4 × 1 = 4 
negative charge from the 4N ions. 
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Fig. 5. Coordination and Pauling bond valence in γ-Si3N4. 

 
According to Eq. (13), γ-Si3N4 can be decomposed into the sum of 

pseudobinary crystals as follows: 

γ-Si3N4 = SitSio
2N4 = 
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26 ×× o = SitN + 2SioN3/2. 

From Fig. 5 it is seen that the Pauling bond valence, μ
ABQ , of the Sit—N and 

Sio—N bonds are 1 and 2/3, respectively. For SitN, *
A )( μZ = μμ

CAABNQ = 1 × 4 = 4, 
*

B )( μZ = μμμμ − BBCBAB )]8/()[( ZZNQ  = [(1 × 4)/(8–5)] × 5 = 20/3. For SioN3/2, 
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*
A )( μZ = μμ

CAABNQ = (2/3) × 6 = 4, *
B )( μZ = μμμμ − BBCBAB )]8/()[( ZZNQ  = 

[((2/3) × 4)/(8–5)] × 5 = 40/9.  
The bond volumes of the Sit—N and Sio—N bonds, μ

bv  (SitN) and μ
bv  (SioN), 

may be calculated as follows:  
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where V is the cell volume, d(SitN) and d(SioN) are the lengths of the Sit—N and 
Sio—N bonds, respectively. N(Sit) and N(Sio) are the coordination numbers of the 
Sit and Sio atoms, respectively. n(Sit) and n(Sio) are the numbers of the Sit and Sio 
atoms in a cell, respectively. 

As shown in Table 1, the calculated hardness values of the Sit—N and Sio—N 
bonds are 57.9 GPa and 25.1 GPa, respectively. The average hardness of the γ-
Si3N4 spinels can be calculated as follows:  

∑
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= ( ) )16684/(116684 1.259.57
×+××× ×  = 30.9 (GPa). 

Table 1. Chemical bond parameters and hardness of cubic γ-Si3N4 
spinels, which are estimated by using β = 0.089. Structural parameters 
are from the results obtained within the GGA, where HV av (average 
hardness) is calculated  

γ-Si3N4 

(GGA) 
Bond 
type

μ
ABQ  μ

cN  *)( μ
AZ *)( μ

BZ *)( μ
en dμ, 

Ǻ 

μ
bv , 

Ǻ3 

μ
eN , 

Ǻ–3 

μ
hE , 

eV 

μC , 
eV 

μ
if  μ

VH  HV av, 
GPa 

SitN 
 

1 4 4 20/3 8/3 1.75 3.04 0.87 9.91 6.04 0.27 57.9 30.9 a = 7.65 Å 
[66] 

u = 0.382 SioN3/2 2/3 4.8 3 40/9 16/9 1.86 3.65 0.49 8.55 8.94 0.52 25.1  
 
The measured hardness values of γ-Si3N4 are still quite controversial. From the 

correlation between the Vickers hardness and shear modulus presented by Teter 
[37], Soignard et al. estimated the hardness of γ-Si3N4 at a value of 30 GPa [67]. 
Jiang et al. [68] reported a Vickers hardness of 32.78—37.27 GPa for a 
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polycrystalline sample. But the applied loading conditions were not clearly 
described. Based on the nanoindentation tests under 5 mN loads, the Vickers 
microhardness of dense γ-Si3N4 was estimated to be between 30 and 43 GPa [69]. 
Here, our calculated hardness of γ-Si3N4 spinels, 30.9GPa, should be 
corresponding to the Vickers hardness under about 3N loads. 

ReB2, OsB2 and PtN2. ReB2 [70, 71], OsB2 [72] and PtN2 [73] have attracted 
considerable attention due to their superior mechanical properties. PtN2 with the 
pyrite structure is a semiconductor. ReB2 with the hexagonal structure and OsB2 
with the orthorhombic structure possess stronger covalency and weaker metallicity 
like WC. In [41] the calculated hardness of WC is in agreement with its 
experimental value. This implies that the method mentioned above may be 
employed to estimate the hardness of ReB2 and OsB2. 

According to Eq. (13), ReB2, OsB2, and PtN2 can be decomposed into the sum 
of pseudobinary crystals as follows: 

ReB2 = 3/4ReB8/7 + 1/4ReB8/7 + 3/7BB; 

OsB2 = 1/2OsB8/7 + 1/4OsB8/7 + 1/4OsB8/7 + 2/7BB + 1/7BB; 

PtN2 = PtN3/2 + 1/4NN. 

From Fig. 6 it is seen that Pauling bond valence values μ
ABQ of the Re—B and 

B—B bonds are 1/2 and 1/3, respectively. The ionicity of pseudobinary compound 
composed of the μ-type bond in these compounds can be calculated using Eqs. 
(13)—(22). The Na of pseudobinary compound ReB8/7 may be obtained using Eq. 
(28) as, 

3/2
2
1

7
8

2
1

3/2

CA

CBAB7
8

CAAB

82
78

2 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

××
××+×

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
= μμμ

μμμμ

bb
a vvN

NQNQ
N , 

where the valence electron of B is 3. The Na of pseudobinary compound PtN3/2 may 
be calculated using Eq. (28) as, 

3/2
3
5

3
1

2
3

3
1

3/2
CA

B

B
CBAB2

3
CAAB

)]62/()46[(

)]2/()
8

[(

μ

μμ
μ

μ
μμμμ

×××××+×=

=
−

+=

b

ba

v

vN
Z

ZNQNQN
, 

where the valence electron of N atom, μ
BZ , is 5. The calculated results are listed in 

Table 2. 
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Fig. 6. Coordination and Pauling bond valence in ReB2. 
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Table 2. Chemical bond parameters and hardness of ReB2, OsB2, RuB2 
and PtN2, which are estimated by using β = 0.089. Where HV av.  
and HV exp are the calculated and experimental Vickers hardness, 
respectively μ

hE  

 Bond 
type 

μ
ABQ μ

cN *)( μ
AZ  *)( μ

BZ  *)( μ
en dμ, Ǻ

μ
bv , 

Å3 

μ
eN , 

Å–3

μ
AZ  

μ
hE , 

eV 

μC , 
eV

μ
if

μ
aN , 

Å–2

μ
vH  HV av, 

GPa 
HVexp, 

GPa 

ReB8/7 1/2 7.47 4 35/6 4/3 2.257 2.874 0.464 2.090 5.278 2.435 0.175 0.312 18.4 23.7 26.9 
[74] 

ReB2 

ReB8/7 1/2 7.47 4 35/6 4/3 2.226 2.757 0.483 2.045 5.462 2.703 0.196 0.320 19.1  (2.94 N) 

 BB 1/3 7 7/3 7/3 2/3 1.82 1.5070.442  9.000 0 0 0.366 45.5   

OsB2 OsB8/7 1/2 7.47 4 35/6 4/3 2.2152.7870.478 1.978 5.530 3.0730.2360.318 18.3   

 OsB8/7 1/2 7.47 4 35/6 4/3 2.1482.5420.525 1.888 5.967 3.7340.2810.338 19.9   

 OsB8/7 1/2 7.47 4 35/6 4/3 2.3083.1540.423 2.104 4.993 2.2810.1730.293 16.4   

 BB 1/3 7 7/3 7/3 2/3 1.8751.6910.394  8.360 0 0 0.339 39.1   

 BB 1/3 7 7/3 7/3 2/3 1.8 1.4960.446  9.250 0 0 0.368 47.0   

RuB2 RuB8/7 1/2 7.47 4 35/6 4/3 2.1992.7270.489 1.956 5.630 3.2230.2470.323 18.6   

 RuB8/7 1/2 7.47 4 35/6 4/3 2.1652.6030.512 1.911 5.852 3.5580.2700.333 19.5   

 RuB8/7 1/2 7.47 4 35/6 4/3 2.2522.9290.455 2.028 5.307 2.7410.2110.308 17.5   

 BB 1/3 7 7/3 7/3 2/3 1.9021.7650.378  8.068 0 0 0.329 36.7   

 BB 1/3 7 7/3 7/3 2/3 1.7741.4320.466  9.590 0 0 0.378 50.2   

PtN2 PtN3/2 1/3 4.8 2 20/9 8/9 2.0874.4540.200 1.697 6.409 1.1690.0320.215 18.3   

 NN 2 4 8 8 4 1.4051.3592.943  17.100   1.294307.2   

 
The calculated average hardness of ReB2 is 23.7 GPa, which is close to the 

measured comparative Vickers hardness of ReB2 under 2.94 N loads, 26.9±1.3 GPa 
[74]. According to the bond lengths existing in the cell, all B—B and Os—B bonds 
per unit cell of the OsB2 with the orthorhombic structure could be classified into 
five groups, with lengths of 1.875, 1.800, 2.215, 2.148, and 2.308 Å, respectively. 
As shown by the dotted line in Fig. 7, there are only Os—B bonds with a bond 
length of 2.308 Å in the (100)[010] direction. These bonds are the softest. 
Therefore, the (001) plane of OsB2 could be the easiest slip planes. According to 
[41], the weakest bond plays a determinative role in the hardness of materials. We 
may expect that the hardness of OsB2 would be smaller in the direction parallel to 
the easy-slip planes, i.e., the (001) 
planes. The calculated average 
hardness of OsB2 is 22.8 GPa. The 
calculated hardness of the 
pseudobinary compound composed 
of Os—B bonds of bond length 
2.308 Å, 16.4 GPa, is much closer 
to the measured comparative 
Vickers hardness of OsB2 under the 
1.96 N load, 17.8 ± 0.7 GPa [74]. 
Similarly, the calculated hardness 
of the pseudobinary compound 
composed of Ru—B bonds of bond 
length 2.252 Å, 17.5 GPa is close to 

 
Fig. 7. Bonding structure of the (100) plane of OsB2. 
The vertical dotted line indicates the (100)[010] 
direction. 
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the measured comparative Vickers hardness of RuB2 under 1.96 N load, 
15.1 ± 1.1 GPa [74].  

The calculated hardness of the pseudobinary compound PtN3/2 in PtN2 is 
18.6 GPa. The hardness of N—N bonds is 307 GPa, which is far greater than that 
of a diamond indenter. Thus, the N—N bonds might not break in a hardness test. 
Similarly, for the compounds with anionic cluster, for example CaCO3, its C—O 
bond may not break in a hardness test. The anionic cluster CO3 would slip as one 
unit under the indenter, and does not contribute to the hardness of CaCO3. The 
hardness of CaCO3 results just from the resistance of the Ca—O bond. 

Hardness of boron icosahedral structured materials 

The structure of α-rhombohedral boron contains a huge hole along the c-axis 
between the icosahedra. In Fig. 8 the dotted lines show the 3-centre bonds between 
the 6 equatorial boron atoms in each icosahedron and 6 other icosahedra in the 
same sheet at 2.025 Å. The sheets are stacked so that each icosahedron is bonded 
by six 2-centre B—B bonds. B12 units in the layer above are centered over 1 and 
those in the layer below are centered under 2 [75]. In the boron carbide structure 
the huge hole accommodates a three-atom chain. In the structures of B12O2 the O 
atoms form pairs instead of three-atom chains [76]. 

 

1 

2

1 

2 

1 

2 

 
Fig. 8. Basal plane of α-rhombohedral boron. The dotted triangles denoted as 1 or 2 show the 3-
centre bonds between the 6 equatorial boron atoms in each icosahedron to 6 other icosahedra.  

 
The α-rhombohedral form of boron is the simplest one in boron-rich solids. The 

36 valence electrons of each B12 unit are distributed as follows: 26 electrons just 
form the 10 3-centre/2-electron bonds (denoted BBB1) and 3 normal 2-centre/2-
electron bonds (denoted BB1) within the icosahedron and 6 electrons share with 6 
other electrons from 6 neighboring icosahedra in adjacent planes to form the 
rhombohedrally directed normal 2-centre/2-electron bonds (denoted BB2); this 
leaves 4 electrons, which is just the number required for contribution to the 6 
equatorial 3-centre/2-electron bonds (denoted BBB2). Thus, α-boron has 4 bond 
types. B12 can be decomposed into the sum of pseudobinary crystals as follows [77, 
78]: 

B12 = 10 (BBB1) + 3 (BB1) + 2 (BBB2) + 3 (BB2),  (31) 

where the coefficient is the number of bonds in cell. 
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B12O2 has the same space group R 3 m as B12 [79]. Each of the two oxygen 
atoms links to three B12 icosahedral, while oxide atoms are not bonding, see Fig. 9. 
It can be decomposed into the sum of pseudobinary crystals as follows: 

B12O2 = 10 (BBB1) + 3 (BB1) + 3 (BB2) + 6 (BO4/3).  (32) 

Polar site 

Equatorial 
site 

O atom 

 
Fig. 9. Atomic structure of B12O2. 

 
The distinct feature of the chemical bonding of boron solids is three-center or 

icosahedral bonding. Thus, the first problem of extending Eq. (29) to boron-rich 
systems is how the bond length of three-center bonds is determined. For 2-centre/2-
electron bonds, the bond length is defined by the distance between two nuclei of 
bonding atoms. In Fig. 10 we employ spx hybrid orbits to show the sketch of the 2-
centre/2-electron bond and 3-centre/2-electron bond. For 3-centre/2-electron bonds, 
the bond length can be taken as the diameter of a circle shown in Fig. 10. If the 
distances (denoted l) between pairs of atoms in the 3-centre/2-electron bond are 
equal, the bond length of 3-centre/2-electron bonds d3c2e can be  
expressed as [77]: 

d3c2e= l
3

2 .     (33) 

The calculated results of hardness and chemical bond parameters of B12O2 are 
shown in Table 3.  
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B B 

B 

 
b 

Fig. 10. Sketch of the 2-centre/2-electron bond (a) and 3-centre/2-electron bond (b). 

 

Table 3. Hardness and chemical bond parameters of B12O2, where HV av. 
are calculated  

Bond type dμ, Ǻ vb
μ, Ǻ3 μ

eN , Ǻ–3 μ
hE , eV μ

if  μ
VH  HV av, GPa 

BB1 1.798 4.270 0.468 9.276 0.000 49.3 44.6 
BBB1 2.076 6.573 0.304 6.494 0.000 25.9  
BB2 1.664 3.385 0.591 11.240 0.000 69.8  
BO4/3 1.476 2.362 1.073 15.132 0.460 83.7  

 
Recently the orthorhombic B28 single crystal [9, 10] and B13N2 have been 

synthesized [80]. The measured Vickers hardness of the orthorhombic B28 is about 
39—61 GPa under 4.9 N loads [81]. The calculated hardness of the orthorhombic 
B28 and B13N2 by Mukhanov et al. is 48.8 GPa and 40.3 GPa, respectively [47]. The 
calculated hardness of B13N2 by Gou et al. is 40.8 GPa [82]. These indicate that 
they are two new superhard materials. 

Hardness of nanocrystals 

In nanocrystals, the conduction/valence band edges shift generally to higher 
energy relative to the bulk material when the crystal size is decreased [83]. 
According to the Kubo theory [84], the band gap (Eg nano) of a nanocrystal should 
increase inversely with the volume V, the energy shift δ is given by 

3/13/12

22

)3(
2

ee DN
b

NmV
=

π
π=δ h ,   (34) 

where b is the constant, D is the cluster diameter and Ne is the electron density of 
the material, and 

Eg nano= Eg bulk + δ,     (35) 

where Eg bulk is the band gap energy of the bulk material.  
An expression for the hardness including quantum confinement effects for 

nanocrystals can be obtained by substituting Eq. (34) into Eq. (4) [85], 
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H (GPa) = ANa (Eg bulk + δ) = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+ 3/1

e
bulkga DN

bEAN .   (36) 

Defining k = A Na b/Ne
1/3, Eq. (36) can be simplified to [86], 

HV
 
nano = HV

 
bulk + k/D.     (37) 

Eq. (37) indicates that the hardening mechanism of nanocrystalline materials 
differs from the Hall-Petch relation for coarse-grained materials where HV n = H0 + 
k/D1/2 [87, 88]. However, Eq. (37) agrees with the result given in [89], showing 
that the nucleation stress for nanocrystalline materials is inversely proportional to 
the grain size, σn ∼ 1/D. 

Hardness and mulliken overlap population 

Since the first-principles calculation is the current standard model for designing 
materials, it is highly desirable to estimate the hardness directly from the 
information of the first-principles calculation. Segall et al. [90, 91] found 
correlations of overlap population with bond strength. If we take the average 
overlap population per unit volume of bond to characterize the strength of bond, 
the relation between hardness and overlap population of crystals is expressed as 
follow [92]:  

HV = ANa(P/vb),     (38) 

where Na is the covalent bond number per unit area, A is a proportional coefficient, 
P is the Mulliken overlap population [93] and vb is the bond volume. For crystals 
with the diamond structure there are 16 bonds in a cell of the cell volume V, the 
bond volume can then be expressed as vb = V/16. Na can be expressed as (16/V)2/3 
or vb

–2/3. Thus, their hardness should have the following form [92]: 

HV(GPa) = APvb
–5/3.   (39) 

For the hardness calculation of crystals with partial metallic bonding like NbN 
and ReC, a correction of the formula should be considered. The DOS of ReC is 
shown in Fig. 11, where the vertical line is the Fermi level (EF) [94].This phase 
showed metallic behavior because of finite N(EF) at the Fermi level. There is a 
deep valley (Ep) at the left of the Fermi level (EF), which is named pseudogap. So, 
the electrons occupying the levels above Ep become delocalized, and the material is 
said to have metallicity. The number of free electron in a cell can be estimated as 
[94] 

∫=
F

P

E

Efree dEENn )( ,    (40) 

where N(E) is the density of state. The hardness is suggested as  

HV(GPa) = 740 (P – P′)vb
–5/3,    (41) 

where, P′  is metallic Mulliken population and   

P′= nfree/V.     (42) 

Also the metallicity of crystals may be defined as 

fm = /P P′ .     (43) 
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Fig. 11. DOS of ReC. N(E) is the density of state, Ep is the pseudogap energy. 

 
It is to be noted that owing to the high sensitivity of Mulliken population to the 

basis set [95], constant A in Eq. (38) depends also on the basis set. The typical 
value of A in Eq. (38) is 740. Figure 12 shows the relationship between the 
hardness calculated by Mulliken population and the experimental values of 
hardness. From the inset in Fig. 12, it can be seen that although a few data appear 
relative big error, the variation trend of Mulliken population hardness and 
experimental hardness is accordant. Especially for individual classes of materials, 
Mulliken population hardness method may provide good predictions. The 
calculated hardness values of crystals with partial metallic bonding are listed in 
Table 4. The results show that ReC has high hardness of 29.4 GPa, which agrees 
with its measurement value [35]. Contrarily, IrC exhibits low hardness value due to 
high metallicity.  
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Fig. 12. Comparison between the hardness calculated by Mulliken population and the 
experimental values of hardness. 
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Table 4. Mulliken population hardness of transition metal compounds 
[94]. The bond length, d (Ǻ), Mulliken bond overlap population, P, the 
volume of bond, vb (Ǻ3), calculated hardness, HV calc (GPa), and available 
experimental Vickers hardness, HV exp (GPa) 

 Structure D, Å P P′ fm vb, Ǻ3 HV calc HV exp 
HfC NaCl 2.344 0.408 0.008 0.02 4.293 26.1 25.5 
TaC NaCl 2.213 0.41 0.066 0.16 3.613 30.1 29.0 
WC WC 2.223 0.38 0.019 0.05 3.590 31.8 30 ± 3 
ReC WC 2.157 0.34 0.054 0.16 3.271 29.4  
OsC WC 2.165 0.317 0.089 0.28 3.347 22.7  
IrC WC 2.192 0.317 0.143 0.45 3.501 15.9  
TiC NaCl 2.159 0.333 0.006 0.02 3.353 32.3 28.6, 29 ± 3 
ZrC NaCl 2.344 0.35 0.007 0.02 4.297 22.5 25.8 
TiN NaCl 2.112 0.278 0.055 0.20 3.167 24 23 
ZrN NaCl 2.288 0.27 0.043 0.16 3.994 16.7 15 
HfN NaCl 2.314 0.325 0.044 0.14 4.131 19.4 15.9, 17 ± 2 
VN NaCl 2.067 0.262 0.128 0.49 2.944 16.3 13, 15 ± 1 
NbN NaCl 2.204 0.247 0.094 0.38 3.567 13.6 13, 14 ± 1 

 
These theoretical hardness approaches have been employed to the hardness 

calculations for the hard materials [96—106]. These studies indicate that 
microscopic models of hardness possess a good predictive power especially for 
strong covalent solids.  

Anisotropy of hardness is also a very interesting topic. Recently, Šimůnek has 
suggested a method to calculate the anisotropy of hardness [107]. We may also 
employ Eq. (30) to study the anisotropy of hardness in the crystals, when nμ is 
taken as the number of bond of type μ along a direction of the crystal. It should be 
noted that in some cases, a primary slip plane may play a dominant role in 
anisotropy of hardness.  

According to the above microscopic models of hardness, three conditions 
should be met for a superhard material: higher bond density or electronic density, 
shorter bond length, and greater degree of covalent bonding. A class of superhard 
materials is thus expected to be compounds with the shortest bond lengths; these 
are composed of the light elements from periods 2 and 3 of the periodic table. 
Recent synthesis of BC5 [108], B28 [9, 10], and M-carbon [22] indicate that the 
covalent and polar-covalent compounds formed by light elements still play an 
important role in search for superhard materials. Another relatively new field of 
research is borides, carbides and nitrides of dense transition metals, since dense 
transition metals, such as the 5d metals, have the high valence electron densities. 
The introduction of light metals into a boron network should also deserve 
investigation, for example, B13N2 [80], B12N2Be [77]. Nanocrystallinity is a means 
for further hardening of the traditional superhard bulk materials. However, a 
further study on hardening mechanism in nanoceramics is still necessary. The 
microscopic hardness models introduced here can play an important role in 
designing superhard materials. 

This work is supported by the National Natural Science Foundation of China 
(Grant 50672080). 
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Зроблено огляд останніх розробок в області мікромоделей твердості. У 
цих моделях теоретичну твердість описано як функцію щільності та міцності зв’язку. 
Міцність зв’язку може бути охарактеризована шириною забороненої зони, опорним 
потенціалом, енергією утримання електрона або вільною енергією Гіббса. Тому різні 
вирази міцності зв’язку приведуть до різних моделей міцності. Зокрема, докладно описано 
модель твердості, основану на теорії хімічного зв’язку складних кристалів. Наведено 
приклади розрахунків твердості типових кристалів, таких як шпінель S3N4, стишовіт 
SiO2, B12O2, ReB2, OsB2, RuB2 и PtN2. Ці мікромоделі твердості будуть грати важливу 
роль в пошуку нових твердих матеріалів. 

Ключові слова: твердість, модуль об’ємного стиснення, модуль зсуву, 
ионність, надтверді матеріали.  

 
Дан обзор последних разработок в области микромоделей твердости. В 

этих моделях теоретическая твердость описана как функция плотности и прочности 
связи. Прочность связи может быть охарактеризована шириной запрещенной зоны, 
опорным потенциалом, энергией удержания электрона или свободной энергией Гиббса. 
Поэтому различные выражения прочности связи приведут к различным моделям 
твердости. В частности, подробно описана модель твердости, основанная на теории 
химической связи сложных кристаллов. Привены примеры расчета твердости типичных 
кристаллов, таких как шпинель S3N4, стишовит SiO2, B12O2, ReB2, OsB2, RuB2 и PtN2. Эти 
микромодели твердости будут играть важную роль в поиске новых твердых материалов. 

Ключевые слова: твердость, модуль объемного сжатия, модуль 
сдвига, ионность, сверхтвердые материалы.  
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