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1. Introduction

A considerable literature exists on the dynamics of vortex tubes,
particularly on the topic of the Burgers’ vortex (Burgers 1948). In
an influential paper that contains substantial references, Moffatt,
et al. (1994) coined the simile Burgers’ vortices are the sinews of
turbulence and thus identified the heart of the problem; that is,
these filament-like vortices stitch together the large-scale anatomy
of vortical dynamics. Despite the twisting, bending and tangling
they undergo, they appear to be the preferred states of Navier-
Stokes turbulent flows. The purpose of this paper is to investigate
the enduring subject of turbulence in the light of the recent ad-
vances made in the geometry of Kähler manifolds. We believe that
evidence exists that suggests that turbulent vortical dynamics may
be governed by geometric principles.

The incompressible Navier-Stokes equations, in two dimensions,
are

(1)
∂u

∂t
+ u · ∇u +

1

ρ
∇P = ν∇2u ,

(2)
∂ρ

∂t
+ ∇ · (ρu) = 0 .

Here, u(x, t) is the fluid velocity, the pressure and density of the
fluid are denoted by P (x, t) and ρ(x, t) respectively, ∇ is the gra-
dient operator and ν is the viscosity; in the inviscid case when
ν = 0 we have the Euler equations. The constraint imposed by
the incompressibility condition

(3) ∇ · u = 0,

is very severe. It means that the convective derivative of the den-
sity vanishes. In turn this means that an initially homogeneous
(constant density) fluid remains constant for all time;

ρ(x, 0) = ρ(x, t) = constant.

Hereafter this density is taken as unity. Moreover, when (3) is
applied across (1) it demands that velocity derivatives and the



Kähler Geometry and Burgers’ Vortices 305

pressure are related by a Poisson equation

(4) −∇2P = ui,juj,i ,

where ∇2 is the Laplace operator (and the summation convention
is used with i, j = 1, 2).

Burgers’ vortices are examples of a two-and-a-half-dimensional
flow, which can be defined by the class of velocity fields written
as (Gibbon et al. (1999))

(5) u(x, y, z, t) = {u1(x, y, t), u2(x, y, t), zγ(x, y, t)} .
This flow is linear in z in the k̂-direction; thus it is stretching
(or compressing) in that direction but is linked dynamically to
its cross-sectional part. The nomenclature refers to the fact that
it is neither fully two- nor three-dimensional but lies somewhere
in-between1 Its components must also satisfy the divergence-free
condition

(6) u1,x(x, y, t) + u2,y(x, y, t) + γ(x, y, t) = 0 .

The class of velocity fields in equation (5), first used in Ohkitani
& Gibbon (2000), is a more general classification of Burgers-type
solutions and contains the specific form of the Burgers vortex so-
lutions used in Moffatt et al. (1994). Included in (5) are the Euler
solutions of Stuart (1987, 1991), in which u1 and u2 are also linear
in x (say) leaving the dependent variables to be functions of y and
t. Then stretching can occur in two directions thereby producing
sheet-like vortical solutions.

1In the case of the three-dimensional Euler equations data can become
rough very quickly; our manipulations in this paper are therefore purely for-
mal. In fact it has been shown numerically in Ohkitani & Gibbon (2000) and
analytically in Constantin (2000) that solutions of the type in (5) can become
singular in a finite time, which is consistent with observations that vortex tubes
have finite life-times; the singularity is not real in the full three-dimensional
Euler sense as it has infinite energy but indicates that the flow will not sustain
the structure (5) for more than a finite time. For the possibility of a real Euler
singularity see Kerr (1983) and Kerr (2005).
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The differences between the three-dimensional and two-dimensi-
onal Navier-Stokes equations are fundamental because the vortex
stretching term ω · ∇u in the equation for vorticity is present in
the former but absent in the latter. Nevertheless, Lundgren (1982)
has shown that for two-and-a-half-dimensional flows of the type

(7) u1 = − 1
2
xγ(t) + ψy u2 = − 1

2
yγ(t) − ψx u3 = zγ(t)

can be mapped into solutions of the two-dimensional Navier-Stokes
equations with ψ(x, y, t) as a stream function.

To investigate the geometric structure behind these solutions re-
quires certain technical tools; these are outlined in §2 of this paper.
The constraint in equation (4) is the basis of our geometric argu-
ments, and because it is true for both the Navier-Stokes and Euler
equations, the conclusions reached in this paper are valid for both
cases. It is, of course, to be expected that any geometric structure
should be independent of viscosity. From now on when we refer
to the Navier-Stokes equations it should be implicitly understood
that the Euler equations are also included. The Kähler structure
for the two-dimensional Navier-Stokes equations is described in §3
and then formulated for two-and-a-half-dimensional Navier-Stokes
flows in §4. Our results show that the necessary condition on the
pressure for a Kähler structure to exist in two spatial dimensions
(with time entering only as a parameter) for the two-dimensional
Navier-Stokes equations is ∇2P > 0. This constraint is highly
restrictive: by no means all two-dimensional Navier-Stokes flows
would conform to it. More promising is the equivalent condition
for two-and-a-half dimensional solutions of type (7). Theorem 1
in §4 shows that these two-and-a-half-dimensional solutions have
an underlying Kähler structure if ∇2P has a very large negative
lower bound, thus associating a wide set of ‘thin’ solutions with
the Kähler property. While the existence of a negative finite lower
bound suggests some work still needs to be done, this result im-
plies that preferred vortical thin sets have a connection with a
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Kähler geometric structure that deserves further study. A differ-
ent line of enquiry by Gibbon (2002) has shown that the three-
dimensional Euler equations has a quaternionic structure in the
dependent variables.

The work of Roubtsov & Roulstone (1997, 2001) showed how
Kähler structures arise in atmosphere and ocean dynamics. The
dynamics of cyclones and anti-cyclones, and ocean eddies, is strong-
ly constrained by the rotation of the Earth, and this feature is key
to the ubiquity of almost-complex structures on the phase space
of so-called balanced models (see McIntyre & Roulstone (2002)).
Central to this work is the fact that equations of Monge-Ampère
type govern the balance between the wind and pressure distribu-
tions. In the context of balanced models, almost-complex struc-
tures are the signature of the slowly-evolving, large-scale weather
systems in our atmosphere (and in the large-scale eddies in the
oceans). The solutions considered in this paper represent the ideal
cases of straight tubes or flat sheets; in reality, as indicated in the
first paragraph of this section, these vortical objects constantly
undergo processes of bending and tangling. Speculatively, it is
possible that once this process is underway, solutions move from
living on a Kähler manifold in two complex dimensions to other
complex manifolds of a higher dimension, although this is a much
more difficult mathematical problem to address and further results
are presented by Roulstone et al. (2008).

This present work emerged from the observation that (4), when
used in the context of atmospheric dynamics and modified by a
term representing the rotation of the Earth, is often studied as
part of a system of balance conditions for the fluid velocity u

when the pressure field is given (and thus it is often considered a
generalization of the notion of geostrophic balance). In the case of
incompressible flows, this leads to a Monge-Ampère equation for a
stream function (Charney 1955), and this was the trigger for our
current investigation.
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2. Differential Forms and Monge–Ampère Equations

In this section we prepare some tools that enable us to study cer-
tain partial differential equations arising in incompressible Navier-
Stokes flows from the point-of-view of differential geometry. An
introduction to the application of some basic elements of exterior
calculus to the study of partial differential equations, with appli-
cation to fluid dynamics, can be found in McIntyre & Roulstone
(2002). Here, we shall draw largely on Lychagin et al. (1993) and
Banos (2002).

A Monge–Ampère equation is a second order partial differential
equation, which, for instance in two variables, can be written as
follows:

(8) Aφxx + 2Bφxy + Cφyy +D(φxxφyy − φ2
xy) + E = 0,

where A,B,C and D are smooth functions of (x, y, φ, φx, φy). This
equation is elliptic if

(9) AC − 4B2 −DE > 0.

In dimension n, a Monge–Ampère equation is a linear combination
of the minors of the hessian matrix1 of φ. We shall refer to such
equations as symplectic Monge–Ampère equations when the coeffi-
cients A,B,C andD are smooth functions of (x, y, φx, φy) ∈ T ∗R2;
i.e. they are smooth functions on the quotient bundle J1R2/J0R2,
where J1R2 denotes the manifold of 1-jets on R2.

2.1. Monge–Ampère operators. Lychagin (1979) has proposed
a geometric approach to these equations, using differential forms
on the cotangent space (i.e. the phase space). The idea is to
associate with a form2 ω ∈ ∧n(T ∗Rn), where

∧n denotes the

1We denote by hess(φ) the determinant of the hessian matrix of φ. For
example, in two variables, hess(φ) = φxxφyy − φ2

xy.
2The use of the Greek letters ω and Ω is common in differential geometry;

these symbols should not be confused with the fluid vorticity vector ω.
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space of differential n-forms on T ∗Rn, the Monge–Ampère equa-
tion △ω = 0, where △ω : C∞(Rn) → Ωn(Rn) ∼= C∞(Rn) is the
differential operator defined by

△ω(φ) = (dφ)∗ω ,

and (dφ)∗ω denotes the restriction of ω to the graph of the differ-
ential dφ : Rn → T ∗Rn of φ. A form ω ∈ ∧n(T ∗Rn) is said to be
effective if ω∧Ω = 0, where Ω is the canonical symplectic form on
T ∗Rn. Then the so called Hodge-Lepage-Lychagin theorem tells us
that this correspondence between Monge–Ampère equations and
effective forms is one to one. For instance, the Monge–Ampère
equation (8) is associated with the effective form

ω = Adp∧dy+B(dx∧dp−dy∧dq)+Cdx∧dq+Ddp∧dq+Edx∧dy,

where (x, y, p, q) is the symplectic system of coordinates of T ∗R2,
and on the graph of dφ, p = φx and q = φy. So, for example, if
we pull-back the one-form dp to the base space, we have

dp = φxxdx+ φxydy,

and then
dp ∧ dq = hess(φ)dx ∧ dy,

where we have also used the skew symmetry of the wedge product.

2.2. Monge–Ampère structures. The geometry of Monge-Am-
père equations in n variables can be described by a pair

(Ω, ω) ∈
2∧

(T ∗Rn) ×
n∧

(T ∗Rn)

such that

(1) Ω is symplectic; that is, nondegenerate (Ω ∧ Ω 6= 0) and
closed (dΩ = 0)

(2) ω is effective; that is, ω ∧ Ω = 0.

Such a pair is called a Monge–Ampère structure. In four dimen-
sions (that is n = 2), this geometry can be either complex or real
and this distinction coincides with the usual distinction between
elliptic and hyperbolic, respectively, for differential equations in
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two variables. Indeed, when ω ∈ ∧2(T ∗R2) is a non-degenerate
2-form (ω ∧ ω 6= 0), one can associate with the Monge–Ampère

structure (Ω, ω) ∈ ∧2(T ∗R2)×∧2(T ∗R2) the tensor Iω defined by

1√
|pf(ω)|

ω(·, ·) = Ω(Iω·, ·)

where pf(ω) is the pfaffian of ω: ω ∧ ω = pf(ω)(Ω ∧ Ω). Thus, for
the effective form ω associated with the Monge–Ampère equation
(8), the pf(ω) coincides with (9). This tensor is either an almost
complex structure or an almost product structure:

(1) △ω is elliptic ⇔ pf(ω) > 0 ⇔ I2
ω = −Id

(2) △ω is hyperbolic ⇔ pf(ω) < 0 ⇔ I2
ω = Id

and it is integrable if and only if

(10) d

(
1√

|pf(ω)|
ω

)
= 0.

Given a pair of two-forms (Ω, ω) on T ∗Rn, such that ω ∧ Ω = 0,
then by fixing the volume form in terms of Ω, we can define a
pseudo-riemannian metric gω in terms of the quadratic form
(11)

gω(X,Y ) =
ιXΩ ∧ ιY ω + ιY Ω ∧ ιXω

Ω ∧ Ω
∧ π∗(vol), X, Y ∈ TRn,

where vol is the volume form on Rn and π : T ∗Rn 7→ Rn. We
can now identify our Monge–Ampère equation given by ω with an
almost Kähler structure given by the triple (Rn, gω, Iω) via

(12) ω(X,Y ) ≡ gω(IωX,Y ).

One can go further and in particular, in R4, one can show how a
natural hyper-Kähler structure emerges by identifying points in R4

with quaternions ℓ ∈ H. This structure was utilized by Roubtsov
& Roulstone (1997, 2001) in their description of nearly geostrophic
models of meteorological flows.



Kähler Geometry and Burgers’ Vortices 311

3. Two-dimensional Navier-Stokes flows

If the flow described by (1) is two-dimensional, and if the fluid
is incompressible, then we can represent the velocity by

(13) u = k ×∇ψ,
where ψ(x, y, t) is a stream function and k is the local unit vector
in the vertical. If we substitute this for the velocity in (4), we get

(14) ∇2P = −2(ψ2
xy − ψxxψyy) .

This is an equation of Monge–Ampère type (cf. (8)) for ψ, given
∇2P , and it is an elliptic equation if

(15) ∇2P > 0

(cf. (8) and (9) with E = ∇2P,D = −2, A = B = C = 0; see also
Larchevêque 1990, 1993). We use, once again, the usual notation
for coordinates on T ∗R2, p = ψx, q = ψy, and then we can express
(14) geometrically on the graph of dψ via

(16) ω2d ≡ ∇2P dx ∧ dy − 2dp ∧ dq; △ω2d
= 0.

In these coordinates Ω ≡ dx ∧ dp + dy ∧ dq, and on the graph of
dψ

(17) △Ω = 0,

which says simply that ψxy = ψyx. Equations (16) and (17) define
an almost complex structure, Iω2d

, on T ∗R2, given in coordinates
by

Iik =
1√

2∇2P
Ωijωjk.

That is

Iω2d
=




0 0 0 − 1
α

0 0 1
α 0

0 −α 0 0
α 0 0 0



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with ∇2P = 2α2. This almost complex structure is integrable (cf.
(10)) in the special case

(18) ∇2P = constant .

Recall that time is merely a parameter here. When P satisfies
(18), we can introduce the coordinates X ,Y , and a two-form ωXY

(19) X = x− iα−1q, Y = y + iα−1p, ωXY = dX ∧ dY,
then (14) together with (17) are equivalent to

(20) △ωXY
= 0.

To summarize, the graph of ψ is a complex curve in (T ∗R2, Iω2d
).

This is the basis for a Kähler description of the incompressible two-
dimensional Navier-Stokes equations. The condition (15) will cer-
tainly not be satisfied by all two-dimensional Navier-Stokes flows.
However, with the aid of Lundgren’s transformation (Lundgren
1982), we find that the Kähler structure can be extended to a
class of two-and-a-half-dimensional flows, as designated in §1, for
which this condition is less restrictive.

4. A result for two-and-a-half dimensional flows

At this point it is appropriate to work with the two-and-a-half-
dimensional Burgers solutions introduced in §1 in equations (5),
(6) and (7). Based on the results of the last section, we shall
prove a more realistic result for two-and-a-half-dimensional flows
in Theorem 1.

Lundgren (1982) made a significant advance when he showed
that the class of three-dimensional Navier-Stokes solutions
(21)
u1(x, y, t) = − 1

2
γ(t)x+ ψy ; u2(x, y, t) = − 1

2
γ(t)y − ψx

(22) u3(x, y, t) = zγ(t) + φ(x, y, t)

under the limited conditions of a constant strain γ(t) = γ0, can be
mapped back to the two-dimensional Navier-Stokes equations un-
der a stretched co-ordinate transformation; see also Majda (1986),
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Majda & Bertozzi (2002), Saffman (1993), and Pullin & Saffman
(1998). In (21), ψ = ψ(x, y, t) is a two-dimensional stream func-
tion. This idea was extended by Gibbon et al. (1999) to a time-
dependent strain field γ = γ(t) with the inclusion of a scalar
φ(x, y, t) in (22). The class of solutions in (21), which are said to
be of Burgers-type, is generally thought to represent the observed
tube-sheet class of solutions in Navier-Stokes turbulent flows (Mof-
fatt et al. (1994) and Vincent & Meneguzzi (1994)).

Depending upon the sign of γ(t) the vortex represented by (21)
either stretches in the z-direction and contracts in the horizon-
tal plane, which is the classic Burgers vortex tube, or vice-versa,
which produces a Burgers’ vortex shear layer or sheet. Thus γ,
which can be interpreted as the aggregate effect of other vortices
in the flow, acts an externally imposed strain function or ‘pup-
pet master’, and can switch a vortex between the two extremes of
these two topologies as we discussed in §1.

This class of solutions is connected to the results of §§2 and 3
through the following theorem, which is the main result of this
section, and of the paper1:

Theorem 1. If a two-and-a-half-dimensional Burgers-type class
of solutions has a Laplacian of the pressure that is bounded by
∇2

3P > − 3
2
γ2 then any associated underlying two-dimensional Na-

vier-Stokes flow is of Kähler type.

Proof. To prove this theorem we first need two Lemmas. Firstly
let u = (u1, u2, u3) be a candidate velocity field solution of the
three-dimensional Navier-Stokes equations taken in the form
(23)
u1 = u1(x, y, t), u2 = u2(x, y, t), u3 = zγ(x, y, t) + φ(x, y, t).

1The notation used in this section is: ∇ is the two-dimensional gradient
and ∇3 is the three-dimensional gradient. ∇2 and ∇2

3 are the two- and three-
dimensional Laplacians respectively (to avoid confusion with the symbol △ in
§2).
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with z appearing only in u3. With this velocity field the total
derivative is now

(24)
D

Dt
=
∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y
+ (zγ + φ)

∂

∂z

and the vorticity vector ω must satisfy

(25)
Dω
Dt = Sω + ν∇2ω ,

where S is the strain matrix whose elements are

Sij = 1
2
(ui,j + uj,i) .

In the following Lemma v(x, y, t) = (u1, u2), and P(x, y, t) is a
two-dimensional pressure variable which is related to the full pres-
sure P in (31). The material derivative is now

(26)
D
Dt =

∂

∂t
+ v · ∇

Lemma 1. (see Gibbon et al. 1999) Consider the velocity field
u = (v, zγ + φ); then v, ω3, φ and γ satisfy

(27)
Dv

Dt + ∇P = ν∇2v
Dω3

Dt = γω3 + ν∇2ω3 ,

(28)
Dφ
Dt = −γφ+ ν∇2φ ,

(29)
Dγ
Dt + γ2 + Pzz(t) = ν∇2γ .

The velocity field v satisfies the continuity condition ÷v = −γ and
the second partial z-derivative of the pressure Pzz is constrained
to be spatially uniform.

Remark 1. While (27) looks like a two-dimensional Navier-
Stokes flow, the continuity condition implies that the two-dimensi-
onal divergence divv 6= 0; thus an element of three-dimensionality
remains.
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Proof. The evolution of the third velocity component u3 = γz+φ
is given by

(30) − Pz =
Du3

Dt
− ν∇2u3 =

= z

(Dγ
Dt + γ2 − ν∇2γ

)
+

(Dφ
Dt + γφ− ν∇2φ

)

which, on integration with respect to z, gives

(31) − P (x, y, z, t) = 1
2
z2

(Dγ
Dt + γ2 − ν∇2γ

)
+

+ z

(Dφ
Dt + γφ− ν∇2φ

)
− P(x, y, t).

It is in this way that P(x, y, t) is related to P (x, y, z, t). However,
from the first two components of the Navier-Stokes equations, we
know that ∇P must be independent of z. For this to be true the
coefficients of z and z2 in (31) must necessarily satisfy

(32)
Dφ
Dt + γφ− ν∇2φ = c1(t),

Dγ
Dt + γ2 − ν∇2γ = c2(t).

c1(t) is an acceleration of the co-ordinate frame which can be taken
as zero without loss of generality. Equation (31) shows that c2(t) =
−Pzz(t) which restricts Pzz to being spatially uniform. To find the
evolution of ω3 we consider the strain matrix S = {Sij}

(33) S =




u1,x
1
2 (u1,y + u2,x) 1

2
(zγx + φx)

1
2
(u1,y + u2,x) u2,y

1
2
(zγy + φy)

1
2
(zγx + φx) 1

2
(zγy + φy) γ


 .

Working out the vorticity field ω from (23) it is easily seen that
(Sω)3 = γω3. Thus (25) shows that ω3 decouples from φ to give
the equation for ω3 in (27). �

Now let us consider the class of Burgers’ velocity fields given
in (21) with a stream function ψ(x, y, t). The strain rate variable
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γ is taken as a function of time only. The continuity condition is
now automatically satisfied. The material derivative is given by

(34)
D
Dt =

∂

∂t
− 1

2
γ(t)

(
x
∂

∂x
+ y

∂

∂y

)
+ Jx,y(ψ, ·).

New co-ordinates can be taken (Lundgren’s transformation (Lund-
gren (1982)))

(35) s(t) = exp

(∫ t

0
γ(t′) dt′

)

(36) x̃ = s1/2x, ỹ = s1/2y, t̃ =

∫ t

0
s(t′) dt′,

which re-scale ω3 and φ into new variables

(37) ω̃3(x̃, ỹ, t̃) = s−1ω3(x, y, t), φ̃(x̃, ỹ, t̃) = s φ(x, y, t).

The material derivative is

(38)
D
Dt̃ =

∂

∂t̃
+ ṽ · ∇̃

where ψ(x, y, t) = ψ̃(x̃, ỹ, t̃), ṽ =
(
ψ̃ỹ ,−ψ̃x̃

)
and ∇̃ = î ∂x̃ + ĵ ∂ỹ.

The relation between v = (u1, u2) and ṽ is given by

(39) u1 = − 1
2
γ(t)x+ s1/2ṽ1, u2 = − 1

2
γ(t)y + s1/2ṽ2

and the relation between the two material derivatives in combina-
tion with the respective Laplacians is

(40)
D
Dt − ν∇2 = s

(D
Dt̃ − ν∇̃2

)
.

Introducing a new pressure variable P̃ as

(41) P̃ = s−1
[
P − 1

4
(x2 + y2)

(
γ̇ − 1

2
γ2
)]

our results can be summarized in our second Lemma:
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Lemma 2. The re-scaled velocity field ṽ satisfies the two-dimensi-
onal re-scaled Navier-Stokes equations (÷ ṽ = 0)

(42)
Dṽ

Dt̃ + ∇̃P̃ = ν∇̃2ṽ .

The vorticity ω̃3(x̃, ỹ, t̃) = −∇̃2 ψ̃ and the passive scalar φ̃(x̃, ỹ, t̃)
satisfy

(43)
Dω̃3

Dt̃ = ν∇̃2ω3,
Dφ̃
Dt̃ = ν∇̃2φ .

Proof. From (35) we note the useful result that Ds/Dt = γs. Using
(39) we write

(44)
Du1

Dt
− ν∇2u1 = − 1

2
x
(
γ̇ − 1

2
γ2
)

+ s3/2
(Dṽ1

Dt̃ − ν∇2ṽ1

)
,

(45)
Du2

Dt
− ν∇2u2 = − 1

2
y
(
γ̇ − 1

2
γ2
)
− s3/2

(Dṽ2
Dt̃ − ν∇2ṽ2

)
.

Next we appeal to the definition of the pressure P̃ in (41) to

give the velocity pressure relation in (42). The results for φ̃ and
ω̃3 follow immediately. �

The proof of Theorem 1 is now ready to be completed. To
obtain the full three-dimensional Laplacian of the pressure ∇2

3P
we use (41) and (29) and write

−∇2
3P = 3

2
γ2 + s2

[
∂

∂x̃

(Dṽ1
Dt̃ − ν∇2ṽ1

)
+
∂

∂ỹ

(Dṽ2
Dt̃ − ν∇2ṽ2

)]

= 3

2
γ2 − s2∇̃2P̃ .(46)

Thus if ∇2
3P satisfies the condition in Theorem 1 then the cor-

responding Kähler positivity condition (15) on the Laplacian for
two-dimensional flow is satisfied. �

Lundgren’s mapping breaks down under one condition: while
the strain γ(t) can take either sign, if it is forever negative or for
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long intervals, the domain t ∈ [0, ∞] maps on to a finite section
of the t̃-axis. For example, if

γ = −γ0 = const < 0

then s = exp(−γ0t) and t̃ = γ−1
0 [1 − exp(−γ0t)]. Hence t ∈ [0, ∞]

maps onto t̃ ∈ [0, γ−1
0 ].

5. Summary

We have shown how Kähler geometry arises in the Navier-Stokes
equations of incompressible hydrodynamics, via a Monge–Ampère
equation associated with (4). Although it is certainly not the case
that all two-dimensional flows will satisfy the condition for the
Kähler structure to exist, the situation looks much more promising
for two-and-a-half-dimensional flows, of which Burgers vortex is
one example.

Issues relating to the existence and interpretation of Kähler
structures, the integrability conditions, and related matters involv-
ing contact and symplectic structures, were discussed by McIntyre
& Roulstone (2002) in connection with various Monge–Ampère
equations arising in geophysical fluid dynamics. The semi-geo-
strophic equations of meteorology, which are a particularly useful
model for studying the formation of fronts, were the starting point
in McIntyre & Roulstone op. cit. for an investigation into the role
of novel coordinate systems, similar to those we have found here
in (19) and (49). In semi-geostrophic theories, such coordinates
facilitate significant simplifications of difficult nonlinear problems,
and they are associated with canonical Hamiltonian formulations
of these systems. Issues relating to contact and symplectic geom-
etry may also be relevant to the results presented in this paper,
and this suggests one direction for further study.

A further variation on this theme revolves around the addition
of rotation to the system, which, as we pointed out in the Introduc-
tion, has important meteorological applications. Euler’s equations
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of motion are

(47)
∂v

∂t
+ v · ∇v + f(k × v) + ∇P = 0 ,

where 1
2
f is the angular frequency of the rotation. If we examine

these equations in two dimensions, with constant rotation, then
taking the divergence of (47) gives

(48) ∇2P = −2(ψ2
xy − ψxxψyy) + f∇2ψ.

This equation, which is commonly referred to as the Charney bal-
ance condition in the geophysical fluid dynamics literature, is an
elliptic Monge–Ampère equation for ψ if ∇2P + f2/2 > 0 . The
associated complex structure is integrable when ∇2P is a constant
(cf. (10)), and in this case we can introduce new complex coordi-
nates

(49) X̃ = ax+ i(fy + 2q), Ỹ = ay − i(fx+ 2p),

with a = (2∇2P + f2)1/2. Once again, (48) together with (17) are
equivalent to

ωX̃Ỹ ≡ dX̃ ∧ dỸ , △ωX̃Ỹ
= 0.

If the pressure is zero, or harmonic, then (48) is suggestive of
a special Lagrangian structure. A special Lagrangian structure
has also been noted in the work of Roubtsov & Roulstone (2001),
but its role in that context is obscure (see McIntyre & Roulstone
(2002) equation (13.27) et seq.).
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