Збiрник праць Iн-ту математики НАН України 2006, т.3, №3, 235-268

Volodymyr Lyubashenko

Institute of Mathematics, NAS of Ukraine, Kyiv E-mail: lub@imath.kiev.ua

Oleksandr Manzyuk

Institute of Mathematics, NAS of Ukraine, Kyiv E-mail: manzyuk@mathematik.uni-kl.de

Unital A_{∞} -categories

Ми доводимо, що три означення унiтальностi для A∞-категорiй запропонованi Любашенком, Концевичем i Сойбельманом, та Фукая є еквiвалентними.

We prove that three definitions of unitality for A_{∞} -categories suggested by Lyubashenko, by Kontsevich and Soibelman, and by Fukaya are equivalent.

Keywords: A_{∞} -category, unital A_{∞} -category, weak unit

1. INTRODUCTION

Over the past decade, A_{∞} -categories have experienced a resurgence of interest due to applications in symplectic geometry, deformation theory, non-commutative geometry, homological algebra, and physics.

The notion of A_{∞} -category is a generalization of Stasheff's notion of A_{∞} -algebra [11]. On the other hand, A_{∞} -categories generalize differential graded categories. In contrast to differential graded categories, composition in A_{∞} -categories is associative only up to homotopy that satisfies certain equation up to another homotopy, and so on. The notion of A_{∞} -category appeared in the work of Fukaya on Floer homology [1] and

c Volodymyr Lyubashenko, Oleksandr Manzyuk, 2006

was related to mirror symmetry by Kontsevich [5]. Basic concepts of the theory of A_{∞} -categories have been developed by Fukaya [2], Keller [4], Lef`evre-Hasegawa [7], Lyubashenko [8], Soibelman [10].

The definition of A_{∞} -category does not assume the existence of identity morphisms. The use of A_{∞} -categories without identities requires caution: for example, there is no a sensible notion of isomorphic objects, the notion of equivalence does not make sense, etc. In order to develop a comprehensive theory of A_{∞} -categories, a notion of unital A_{∞} -category, i.e., A_{∞} -category with identity morphisms (also called units), is necessary. The obvious notion of strictly unital A_{∞} -category, despite its technical advantages, is not quite satisfactory: it is not homotopy invariant, meaning that it does not translate along homotopy equivalences. Different definitions of (weakly) unital A_{∞} -category have been suggested by Lyubashenko [8, Definition 7.3], by Kontsevich and Soibelman $[6,$ Definition 4.2.3, and by Fukaya $[2,$ Definition 5.11. We prove that these definitions are equivalent. The main ingredient of the proofs is the Yoneda Lemma for unital (in the sense of Lyubashenko) A_{∞} -categories proven in [9, Appendix A].

2. Preliminaries

We follow the notation and conventions of [8], sometimes without explicit mentioning. Some of the conventions are recalled here.

Throughout, k is a commutative ground ring. A graded k-module always means a Z-graded k-module.

A *graded quiver* A consists of a set ObA of objects and a graded k-module $A(X, Y)$, for each $X, Y \in \text{Ob} A$. A *morphism of graded quivers* $f : A \rightarrow B$ of degree *n* consists of a function $\mathrm{Ob} f : \mathrm{Ob} \mathcal{A} \to \mathrm{Ob} \mathcal{B}, X \mapsto Xf$, and a k-linear map $f = f_{X,Y} : \mathcal{A}(X,Y) \to \mathcal{B}(X,f,Yf)$ of degree n, for each $X, Y \in \text{Ob} A$.

For a set S, there is a category \mathcal{Q}/S defined as follows. Its objects are graded quivers whose set of objects is S. A morphism $f : A \to B$ in \mathcal{Q}/S is a morphism of graded quivers of degree 0 such that $\mathrm{Ob} f = \mathrm{id}_S$. The category \mathcal{Q}/S is monoidal. The tensor product of graded quivers A and B is a graded quiver $A \otimes B$ such that

$$
(\mathcal{A}\otimes\mathcal{B})(X,Z)=\bigoplus_{Y\in S}\mathcal{A}(X,Y)\otimes\mathcal{B}(Y,Z),\quad X,Z\in S.
$$

The unit object is the *discrete quiver* $\&S$ with $Ob \&S = S$ and

$$
(\mathbb{k}S)(X,Y) = \begin{cases} \mathbb{k} & \text{if } X = Y, \\ 0 & \text{if } X \neq Y, \end{cases} \quad X, Y \in S.
$$

Note that a map of sets $f : S \to R$ gives rise to a morphism of graded quivers $kf : \&S \to \&R$ with $Ob \& f = f$ and $(\&f)_{X,Y} =$ id_k is $X = Y$ and $(kf)_{X,Y} = 0$ if $X \neq Y, X, Y \in S$.

An *augmented graded cocategory* is a graded quiver C equipped with the structure of on augmented counital coassociative coalgebra in the monoidal category $\mathcal{Q}/\mathrm{Ob} \mathcal{C}$. Thus, \mathcal{C} comes with a comultiplication $\Delta : \mathcal{C} \to \mathcal{C} \otimes \mathcal{C}$, a counit $\varepsilon : \mathcal{C} \to \mathbb{R}$ Ob \mathcal{C} , and an augmentation $\eta : \mathbb{k} \mathbb{O} \mathbb{b} \mathbb{C} \to \mathbb{C}$, which are morphisms in Q/ObC satisfying the usual axioms. A *morphism of augmented graded cocategories* $f : \mathcal{C} \to \mathcal{D}$ is a morphism of graded quivers of degree 0 that preserves the comultiplication, counit, and augmentation.

The main example of an augmented graded cocategory is the following. Let A be a graded quiver. Denote by $T\mathcal{A}$ the direct sum of graded quivers $T^n A$, where $T^n A = A^{\otimes n}$ is the *n*-fold tensor product of A in $\mathcal{Q}/Ob\mathcal{A}$; in particular,

 $T^0\mathcal{A} = \mathbb{k} \text{Ob}\mathcal{A}, T^1\mathcal{A} = \mathcal{A}, T^2\mathcal{A} = \mathcal{A} \otimes \mathcal{A}, \text{ etc. The graded }$ quiver TA is an augmented graded cocategory in which the comultiplication is the so called 'cut' comultiplication Δ_0 : $T\mathcal{A} \to T\mathcal{A} \otimes T\mathcal{A}$ given by

$$
f_1 \otimes \cdots \otimes f_n \mapsto \sum_{k=0}^n f_1 \otimes \cdots \otimes f_k \bigotimes f_{k+1} \otimes \cdots \otimes f_n,
$$

the counit is given by the projection $pr_0: T\mathcal{A} \to T^0\mathcal{A} =$ kObA, and the augmentation is given by the inclusion in₀: $\BbbkOb \mathcal{A} = T^0 \mathcal{A} \hookrightarrow T \mathcal{A}.$

The graded quiver $T\mathcal{A}$ admits also the structure of a graded category, i.e., the structure of a unital associative algebra in the monoidal category $\mathcal{Q}/\mathrm{Ob}\mathcal{A}$. The multiplication $\mu : T\mathcal{A} \otimes$ $T\mathcal{A} \to T\mathcal{A}$ removes brackets in tensors of the form $(f_1 \otimes \cdots \otimes f_n)$ $f_m\big)\bigotimes(g_1\otimes\cdots\otimes g_n)$. The unit $\eta:\mathbb{kOb}\mathcal{A}\to T\mathcal{A}$ is given by the inclusion in₀: $\mathbb{K}Ob\mathcal{A} = T^0\mathcal{A} \hookrightarrow T\mathcal{A}$.

For a graded quiver A, denote by sA its *suspension*, the graded quiver given by Obs $A = Ab$ and $(sA(X, Y))^n =$ $A(X,Y)^{n+1}$, for each $n \in \mathbb{Z}$ and $X,Y \in \text{Ob}A$. An A_{∞} -cat*egory* is a graded quiver A equipped with a differential b : $Ts\mathcal{A} \to Ts\mathcal{A}$ of degree 1 such that $(Ts\mathcal{A}, \Delta_0, pr_0, in_0, b)$ is an *augmented differential graded cocategory*. In other terms, the equations

$$
b^2 = 0
$$
, $b\Delta_0 = \Delta_0(b \otimes 1 + 1 \otimes b)$, $bpr_0 = 0$, $in_0b = 0$

hold true. Denote by

$$
b_{mn} \stackrel{\text{def}}{=} \left[T^m s \mathcal{A} \xrightarrow{\text{in}_{m}} T s \mathcal{A} \xrightarrow{b} T s \mathcal{A} \xrightarrow{\text{pr}_{n}} T^n s \mathcal{A} \right]
$$

matrix coefficients of b, for $m, n \geq 0$. Matrix coefficients b_{m1} are called *components* of b and abbreviated by b_m . The above equations imply that $b_0 = 0$ and that b is unambiguously

determined by its components via the formula

$$
b_{mn} = \sum_{\substack{p+k+q=m\\p+1+q=n}} 1^{\otimes p} \otimes b_k \otimes 1^{\otimes q} : T^m s \mathcal{A} \to T^n s \mathcal{A}, \quad m, n \geq 0.
$$

The equation $b^2 = 0$ is equivalent to the system of equations

$$
\sum_{p+k+q=m} (1^{\otimes p} \otimes b_k \otimes 1^{\otimes q}) b_{p+1+q} = 0 : T^m s \mathcal{A} \to s \mathcal{A}, \quad m \geq 1.
$$

For A_{∞} -categories A and B, an A_{∞} -functor $f : A \rightarrow B$ is a morphism of augmented differential graded cocategories f : $TsA \rightarrow TsB$. In other terms, f is a morphism of augmented graded cocategories and preserves the differential, meaning that $fb = bf$. Denote by

$$
f_{mn} \stackrel{\text{def}}{=} \left[T^m s \mathcal{A} \xrightarrow{\text{in}_{m}} T s \mathcal{A} \xrightarrow{f} T s \mathcal{B} \xrightarrow{\text{pr}_{n}} T^n s \mathcal{B} \right]
$$

matrix coefficients of f, for $m, n \geq 0$. Matrix coefficients f_{m1} are called *components* of f and abbreviated by f_m . The condition that f is a morphism of augmented graded cocategories implies that $f_0 = 0$ and that f is unambiguously determined by its components via the formula

$$
f_{mn} = \sum_{i_1 + \dots + i_n = m} f_{i_1} \otimes \dots \otimes f_{i_n} : T^m s \mathcal{A} \to T^n s \mathcal{B}, \quad m, n \geq 0.
$$

The equation $fb = bf$ is equivalent to the system of equations

$$
\sum_{i_1+\dots+i_n=m} (f_{i_1} \otimes \dots \otimes f_{i_n})b_n
$$

=
$$
\sum_{p+k+q=m} (1^{\otimes p} \otimes b_k \otimes 1^{\otimes q})f_{p+1+q} : T^m s \mathcal{A} \to s \mathcal{B},
$$

for $m \geq 1$. An A_{∞} -functor f is called *strict* if $f_n = 0$ for $n > 1$.

3. Definitions

3.1. **Definition** (cf. [2,4]). An A_{∞} -category A is *strictly unital* if, for each $X \text{ }\in \text{Ob}\mathcal{A}$, there is a k-linear map $X_i^{\mathcal{A}}$ $\begin{matrix} A & A \ 0 & \cdot \end{matrix}$ $\Bbbk \to (sA)^{-1}(X,X)$, called a *strict unit*, such that the following conditions are satisfied: $X_i^{\mathcal{A}}$ $\alpha_0^{\mathcal{A}}b_1 = 0$, the chain maps $(1 \otimes Y)_{0}^{\mathbf{Z}}$ \mathcal{A}_0^{A} b_2 , $-(\chi \mathbf{i}_0^A \otimes 1)b_2 : s\mathcal{A}(X,Y) \to s\mathcal{A}(X,Y)$ are equal to the identity map, for each $X, Y \in \text{Ob} \mathcal{A}$, and $(\cdots \otimes \mathbf{i}_{0}^{\overline{\mathcal{A}}} \otimes$ \cdots) $b_n = 0$ if $n \geqslant 3$.

For example, differential graded categories are strictly unital.

3.2. **Definition** (Lyubashenko [8, Definition 7.3]). An A_{∞} -category A is *unital* if, for each $X \in \text{Ob}\mathcal{A}$, there is a k-linear map $\mathbf{x} \mathbf{i}_0^{\mathcal{A}}$ $\frac{A}{0}$: $\mathbb{R} \to (sA)^{-1}(X,X)$, called a *unit*, such that the following conditions hold: $_{X}i_{0}^{\mathcal{A}}$ $\alpha_0^{\mathcal{A}}b_1 = 0$ and the chain maps $(1 \otimes Y {\bf i}^{\widetilde{{\cal A}}}_0$ $\mathcal{A}_0(\mathcal{A})$ b_2 , $-(X\mathbf{i}_0^{\mathcal{A}}\otimes 1)b_2$: $s\mathcal{A}(X,Y) \to s\mathcal{A}(X,Y)$ are homotopic to the identity map, for each $X, Y \in \text{Ob}A$. An arbitrary homotopy between $(1 \otimes Y)^A_0$ $\binom{A}{0}$ *b*₂ and the identity map is called a *right unit homotopy*. Similarly, an arbitrary homotopy between $-(x\mathbf{i}_0^{\mathcal{A}}\otimes 1)b_2$ and the identity map is called a *left unit homotopy*. An A_{∞} -functor $f : \mathcal{A} \to \mathcal{B}$ between unital A_{∞} -categories is *unital* if the cycles $_{X}i_{0}^{A}$ ${}_{0}^{\mathcal{A}}f_1$ and ${}_{Xf}$ **i**^B₀ $^{\textrm{\tiny{\it B}}}_{0}$ are cohomologous, i.e., differ by a boundary, for each $X \in \text{Ob} \mathcal{A}$.

Clearly, a strictly unital A_{∞} -category is unital.

With an arbitrary A_{∞} -category A a strictly unital A_{∞} -category A^{su} with the same set of objects is associated. For each $X, Y \in \text{Ob}A$, the graded k-module $sA^{\text{su}}(X, Y)$ is given by

$$
s\mathcal{A}^{\mathsf{su}}(X,Y) = \begin{cases} s\mathcal{A}(X,Y) & \text{if } X \neq Y, \\ s\mathcal{A}(X,X) \oplus \Bbbk_X \mathbf{i}_0^{\mathcal{A}^{\mathsf{su}}} & \text{if } X = Y, \end{cases}
$$

where $Xi_0^{\mathcal{A}^{\text{su}}}$ $_0^{\mathcal{A}^{\text{su}}}$ is a new generator of degree -1 . The element $X\mathbf{i}_{0}^{\mathcal{A}^{\mathsf{su}}}$ δ_0^{A} is a strict unit by definition, and the natural embedding $e: \mathcal{A} \hookrightarrow \mathcal{A}^{su}$ is a strict A_{∞} -functor.

3.3. Definition (Kontsevich–Soibelman [6, Definition 4.2.3]). A *weak unit* of an A_{∞} -category A is an A_{∞} -functor $U : A^{\mathsf{su}} \to$ A such that

$$
\left[\mathcal{A}\overset{e}{\hookrightarrow}\mathcal{A}^{\text{su}}\overset{U}{\longrightarrow}\mathcal{A}\right]=\text{id}_{\mathcal{A}}.
$$

3.4. **Proposition.** Suppose that an A_∞ -category A admits a *weak unit. Then the* A_{∞} -category A *is unital.*

Proof. Let $U : \mathcal{A}^{su} \to \mathcal{A}$ be a weak unit of \mathcal{A} . For each $X \in \mathrm{Ob} \mathcal{A}$, denote by X **i**^{\mathcal{A}} $\mathcal{A}_0^{\mathcal{A}}$ the element $Xi_0^{\mathcal{A}^{su}}U_1 \in s\mathcal{A}(X,X)$ of degree −1. It follows from the equation $U_1b_1 = b_1U_1$ that $X\mathbf{i}_{0}^{\mathcal{A}}$ \mathcal{A}_0^A $\mathcal{A}_1 = 0$. Let us prove that X **i** $_0^A$ are unit elements of A.

For each $X, Y \in \text{Ob}A$, there is a k-linear map

$$
h = (1 \otimes_Y \mathbf{i}_0) U_2 : s\mathcal{A}(X, Y) \to s\mathcal{A}(X, Y)
$$

of degree -1 . The equation

$$
(3.1) \qquad (1 \otimes b_1 + b_1 \otimes 1)U_2 + b_2U_1 = U_2b_1 + (U_1 \otimes U_1)b_2
$$

implies that

$$
-b_1h+1 = hb_1 + (1 \otimes Y\mathbf{i}_0^{\mathcal{A}})b_2 : s\mathcal{A}(X,Y) \to s\mathcal{A}(X,Y),
$$

thus h is a right unit homotopy for A. For each $X, Y \in \text{Ob}A$, there is a k-linear map

$$
h' = -(X\mathbf{i}_0 \otimes 1)U_2 : s\mathcal{A}(X,Y) \to s\mathcal{A}(X,Y)
$$

of degree -1 . Equation (3.1) implies that

$$
b_1h'-1=-h'b_1+(x\mathbf{i}_0^{\mathcal{A}}\otimes 1)b_2:s\mathcal{A}(X,Y)\to s\mathcal{A}(X,Y),
$$

thus h' is a left unit homotopy for A . Therefore, A is unital. \Box 3.5. Definition (Fukaya [2, Definition 5.11]). An A_{∞} -category C is called *homotopy unital* if the graded quiver

 $\mathcal{C}^+ = \mathcal{C} \oplus \Bbbk \mathcal{C} \oplus s\Bbbk \mathcal{C}$

(with $Ob\mathcal{C}^+ = Ob\mathcal{C}$) admits an A_∞ -structure b^+ of the following kind. Denote the generators of the second and the third direct summands of the graded quiver $s\mathcal{C}^+ = s\mathcal{C} \oplus s\mathbb{k}\mathcal{C} \oplus s^2\mathbb{k}\mathcal{C}$ by $x\mathbf{i}_0^{\mathcal{C}^{su}} = 1s$ and $\mathbf{j}_X^{\mathcal{C}} = 1s^2$ of degree respectively -1 and -2 , for each $X \in \text{Ob} \mathcal{C}$. The conditions on b^+ are:

- (1) for each $X \in \text{Ob} \mathcal{C}$, the element $_X \mathbf{i}_0^{\mathcal{C}}$ $\frac{e}{0}$ def χ **i** $\frac{e^{su}}{0}$ - **j** $\frac{e}{X}$ *b*⁺ is contained in $s\mathcal{C}(X,X);$
- (2) \mathbb{C}^+ is a strictly unital A_{∞} -category with strict units $_Xi_0^{\mathcal{C}^{\text{su}}}, X \in \text{Ob} \check{\mathcal{C}};$
- (3) the embedding $\mathcal{C} \hookrightarrow \mathcal{C}^+$ is a strict A_∞ -functor;
- (4) $(s\mathcal{C} \oplus s^2 \mathbb{k}\mathcal{C})^{\otimes n} b_n^+ \subset s\mathcal{C}$, for each $n > 1$.

In particular, \mathcal{C}^+ contains the strictly unital A_{∞} -category $\mathbb{C}^{\mathsf{su}} = \mathbb{C} \oplus \mathbb{k} \mathbb{C}$. A version of this definition suitable for filtered A_{∞} -algebras (and filtered A_{∞} -categories) is given by Fukaya, Oh, Ohta and Ono in their book [3, Definition 8.2].

Let D be a strictly unital A_{∞} -category with strict units $i_0^{\mathcal{D}}$ $\frac{D}{0}$. Then it has a canonical homotopy unital structure (\mathcal{D}^+, b^+) . Namely, $\mathbf{j}_{X}^{\mathcal{D}}b_{1}^{+} = x\mathbf{i}_{0}^{\mathcal{D}^{\mathsf{su}}} - x\mathbf{i}_{0}^{\mathcal{D}}$ $_{0}^{\mathcal{D}},$ and b_{n}^{+} vanishes for each $n > 1$ on each summand of $(s\mathcal{D} \oplus s^2 \mathbb{k} \mathcal{D})^{\otimes n}$ except on $s\mathcal{D}^{\otimes n}$, where it coincides with $b_n^{\mathcal{D}}$ ². Verification of the equation $(b^+)^2 = 0$ is a straightforward computation.

3.6. Proposition. An arbitrary homotopy unital A_{∞} -cate*gory is unital.*

Proof. Let $C \subset C^+$ be a homotopy unital category. We claim that the distinguished cycles $Xi_0^{\mathcal{C}} \in \mathcal{C}(X,X)[1]^{-1}$, $X \in \text{Ob}\mathcal{C}$, turn $\mathfrak C$ into a unital A_∞ -category. Indeed, the identity

$$
(1 \otimes b_1^+ + b_1^+ \otimes 1)b_2^+ + b_2^+b_1^+ = 0
$$

applied to $s\mathcal{C} \otimes j^{\mathcal{C}}$ or to $j^{\mathcal{C}} \otimes s\mathcal{C}$ implies

$$
(1 \otimes \mathbf{i}_0^c)b_2^c = 1 + (1 \otimes \mathbf{j}^c)b_2^+b_1^c + b_1^c(1 \otimes \mathbf{j}^c)b_2^+ \ : s\mathcal{C} \to s\mathcal{C},
$$

$$
(\mathbf{i}_0^c \otimes 1)b_2^c = -1 + (\mathbf{j}^c \otimes 1)b_2^+b_1^c + b_1^c(\mathbf{j}^c \otimes 1)b_2^+ : s\mathcal{C} \to s\mathcal{C}.
$$

Thus, $(1 \otimes j^c) b_2^+ : s\mathcal{C} \to s\mathcal{C}$ and $(j^c \otimes 1) b_2^+ : s\mathcal{C} \to s\mathcal{C}$ are unit homotopies. Therefore, the A_{∞} -category C is unital. \Box

The converse of Proposition 3.6 holds true as well.

3.7. Theorem. *An arbitrary unital* A∞*-category* C *with unit* elements $\mathbf{i}_0^{\mathcal{C}}$ $\int_{0}^{\mathcal{C}}$ admits a homotopy unital structure (\mathcal{C}^+, b^+) with ${\bf j}^{\mathfrak C}b_1^+ = {\bf i}_0^{{\mathfrak C}^{\rm su}}\!-{\bf i}_0^{\mathfrak C}$ 0 *.*

Proof. By [9, Corollary A.12], there exists a differential graded category D and an A_{∞} -equivalence $\phi : \mathcal{C} \to \mathcal{D}$. By [9, Remark A.13, we may choose $\mathcal D$ and ϕ such that $\mathrm{Ob}\mathcal D = \mathrm{Ob}\mathcal C$ and $\mathrm{Ob}\phi = \mathrm{id}_{\mathrm{Ob}\mathcal{C}}$. Being strictly unital $\mathcal D$ admits a canonical homotopy unital structure (\mathcal{D}^+, b^+) . In the sequel, we may assume that D is a strictly unital A_{∞} -category equivalent to C via ϕ with the mentioned properties. Let us construct simultaneously an A_{∞} -structure b^+ on \mathcal{C}^+ and an A_{∞} -functor $\phi^+:\mathcal{C}^+\to \mathcal{D}^+$ that will turn out to be an equivalence.

Let us extend the homotopy isomorphism $\phi_1 : s\mathcal{C} \to s\mathcal{D}$ to a chain quiver map ϕ_1^+ : $s\mathcal{C}^+ \to s\mathcal{D}^+$. The A_{∞} -equivalence $\phi : \mathfrak{C} \to \mathfrak{D}$ is a unital A_{∞} -functor, i.e., for each $X \in Ob\mathfrak{C}$, there exists $v_X \in \mathcal{D}(X,X)[1]^{-2}$ such that $_X \mathbf{i}_0^{\mathcal{D}} - _{X}\mathbf{i}_0^{\mathcal{C}}\phi_1 = v_X b_1.$ In order that ϕ^+ be strictly unital, we define $\chi \mathbf{i}_0^{\cos \theta} \phi_1^+ = \chi \mathbf{i}_0^{\cos \theta}$ $\frac{D^{s^u}}{0}$. We should have

$$
\mathbf{j}_{X}^{\mathcal{C}} \phi_{1}^{+} b_{1}^{+} = \mathbf{j}_{X}^{\mathcal{C}} b_{1}^{+} \phi_{1}^{+} = x \mathbf{i}_{0}^{\mathcal{C}^{\text{ss}}} \phi_{1}^{+} - x \mathbf{i}_{0}^{\mathcal{C}} \phi_{1}
$$
\n
$$
= x \mathbf{i}_{0}^{\mathcal{D}^{\text{ss}}} - x \mathbf{i}_{0}^{\mathcal{D}} + x \mathbf{i}_{0}^{\mathcal{D}} - x \mathbf{i}_{0}^{\mathcal{C}} \phi_{1} = (\mathbf{j}_{X}^{\mathcal{C}} + v_{X}) b_{1}^{+},
$$

so we define $\mathbf{j}_{X}^{\mathcal{C}} \phi_{1}^{+} = \mathbf{j}_{X}^{\mathcal{D}} + v_{X}$.

We claim that there is a homotopy unital structure (\mathcal{C}^+, b^+) of C satisfying the four conditions of Definition 3.5 and an A_{∞} -functor $\phi^+ : \mathfrak{C}^+ \to \mathfrak{D}^+$ satisfying four parallel conditions:

- (1) the first component of ϕ^+ is the quiver morphism ϕ_1^+ constructed above;
- (2) the A_{∞} -functor ϕ^+ is strictly unital;
- (3) the restriction of ϕ^+ to C gives ϕ ;
- (4) $(s\mathfrak{C} \oplus s^2 \mathbb{k} \mathfrak{C})^{\otimes n} \phi_n^+ \subset s\mathfrak{D}$, for each $n > 1$.

Notice that in the presence of conditions (2) and (3) the first condition reduces to $\mathbf{j}_{X}^{\mathcal{C}}(\phi^{+})_1 = \mathbf{j}_{X}^{\mathcal{D}} + v_X$, for each $X \in \text{Ob} \mathcal{C}$.

Components of the (1,1)-coderivation $b^+ : Ts\mathcal{C}^+ \to Ts\mathcal{C}^+$ of degree 1 and of the augmented graded cocategory morphism $\phi^+ : Ts\mathbb{C}^+ \to Ts\mathbb{D}^+$ are constructed by induction. We already know components b_1^+ and ϕ_1^+ . Given an integer $n \geq 2$, assume that we have already found components b_m^+ , ϕ_m^+ of the sought b^+ and ϕ^+ for $m < n$ such that the equations

$$
(3.2) \quad ((b^+)^2)_m = 0 \qquad :T^m s\mathcal{C}^+(X,Y) \to s\mathcal{C}^+(X,Y),
$$

$$
(3.3) \quad (\phi^+b^+)_m = (b^+\phi^+)_m \colon T^m s\mathcal{C}^+(X,Y) \to s\mathcal{D}^+(Xf,Yf)
$$

are satisfied for all $m < n$. Define b_n^+, ϕ_n^+ on direct summands of $T^n s\mathcal{C}^+$ which contain a factor $\mathbf{i}_0^{\mathcal{C}^{\mathsf{su}}_0}$ by the requirement of strict unitality of C^+ and ϕ^+ . Then equations (3.2), (3.3) hold true for $m = n$ on such summands. Define b_n^+ , ϕ_n^+ on the direct summand $T^n s\mathcal{C} \subset T^n s\mathcal{C}^+$ as $b_n^{\mathcal{C}}$ $n \atop n$ and ϕ_n . Then equations $(3.2), (3.3)$ hold true for $m = n$ on the summand $T^n s$ C. It remains to construct those components of b^+ and ϕ^+ which have j^c as one of their arguments.

Extend $b_1 : s\mathcal{C} \to s\mathcal{C}$ to b'_1 S_1 : $s\mathcal{C}^+\rightarrow s\mathcal{C}^+$ by $\mathbf{i}_0^{\mathcal{C}^{\text{su}}}$ $\int_0^{\cos u} b'_1 = 0$ and $\mathbf{j}^{\mathcal{C}}b'_1 = 0.$ Define $b_1^- = b_1^+ - b'_1$ s_1 : $sC^+ \rightarrow sC^+$. Thus, $b_1^ \frac{1}{1}\Big|_{s\mathfrak{S}^{\mathsf{su}}}=0,$ $\mathbf{j}^{\mathcal{C}}b_1^- = \mathbf{i}_0^{\mathcal{C}^{\text{su}}} - \mathbf{i}_0^{\mathcal{C}}$ and $b_1^+ = b_1' + b_1^ \overline{1}$. Introduce for $0 \leq k \leq n$ the graded subquiver $\mathcal{N}_k \subset T^n(s\mathcal{C} \oplus s^2 \mathbb{k}\mathcal{C})$ by

$$
\mathcal{N}_k = \bigoplus_{p_0+p_1+\cdots+p_k+k=n} T^{p_0} s\mathcal{C} \otimes \mathbf{j}^{\mathcal{C}} \otimes T^{p_1} s\mathcal{C} \otimes \cdots \otimes \mathbf{j}^{\mathcal{C}} \otimes T^{p_k} s\mathcal{C}
$$

stable under the differential $d^{\mathcal{N}_k} = \sum_{p+1+q=n} 1^{\otimes p} \otimes b'_1 \otimes 1^{\otimes q}$, and the graded subquiver $\mathcal{P}_l \subset T^n s \mathcal{C}^+$ by

$$
\mathfrak{P}_l=\bigoplus_{p_0+p_1+\cdots+p_l+l=n}T^{p_0}s\mathcal{C}^{\mathsf{su}}\otimes {\mathbf{j}}^{\mathcal{C}}\otimes T^{p_1}s\mathcal{C}^{\mathsf{su}}\otimes\cdots\otimes {\mathbf{j}}^{\mathcal{C}}\otimes T^{p_l}s\mathcal{C}^{\mathsf{su}}.
$$

There is also the subquiver

$$
\mathcal{Q}_k = \bigoplus_{l=0}^k \mathcal{P}_l \subset T^n s \mathcal{C}^+
$$

and its complement

$$
\mathfrak{Q}_k^{\perp} = \bigoplus_{l=k+1}^n \mathfrak{P}_l \subset T^n s \mathfrak{C}^+.
$$

Notice that the subquiver \mathcal{Q}_k is stable under the differential $d^{\mathcal{Q}_k} = \sum_{p+1+q=n} 1^{\otimes p} \otimes b_1^+ \otimes 1^{\otimes q}$, and \mathcal{Q}_k^{\perp} $\frac{1}{k}$ is stable under the differential $d^{Q_k^{\perp}} = \sum_{p+1+q=n} 1^{\otimes p} \otimes b'_1 \otimes 1^{\otimes q}$. Furthermore, the image of $1^{\otimes a} \otimes b_1^- \otimes 1^{\otimes c}$: $\mathcal{N}_k \to T^n s \mathcal{C}^+$ is contained in \mathcal{Q}_{k-1} for all $a, c \ge 0$ such that $a + 1 + c = n$.

Firstly, the components b_n^+ , ϕ_n^+ are defined on the graded subquivers $\mathcal{N}_0 = T^n s\mathcal{C}$ and $\mathcal{Q}_0 = T^n s\mathcal{C}^{su}$. Assume for an integer $0 < k \leq n$ that restrictions of b_n^+, ϕ_n^+ to \mathcal{N}_l are already found for all $l < k$. In other terms, we are given $b_n^+ : \mathcal{Q}_{k-1} \to$ $s\mathcal{C}^+$, ϕ_n^+ : $\mathcal{Q}_{k-1} \to s\mathcal{D}$ such that equations (3.2) , (3.3) hold on \mathcal{Q}_{k-1} . Let us construct the restrictions $b_n^+ : \mathcal{N}_k \to s\mathcal{C}$, $\phi_n^+ : \mathcal{N}_k \to s\mathcal{D}$, performing the induction step.

Introduce a $(1,1)$ -coderivation \tilde{b} : $Ts\mathcal{C}^+ \rightarrow Ts\mathcal{C}^+$ of degree 1 by its components $(0, b_1^+, \ldots, b_{n-1}^+, \mathrm{pr}_{\mathcal{Q}_{k-1}} \cdot b_n^+|_{\mathcal{Q}_{k-1}}, 0, \ldots).$ Introduce also a morphism of augmented graded cocategories

 $\tilde{\phi}$: TsC⁺ \rightarrow TsD⁺ with Ob $\tilde{\phi}$ = Ob ϕ by its components $(\phi_1^+, \ldots, \phi_{n-1}^+, \mathrm{pr}_{\mathcal{Q}_{k-1}} \cdot \phi_n^+|_{\mathcal{Q}_{k-1}}, 0, \ldots).$ Here $\mathrm{pr}_{\mathcal{Q}_{k-1}} : T^n s \mathbb{C}^+ \to$ \mathcal{Q}_{k-1} is the natural projection, vanishing on $\mathcal{Q}_{k-1}^{\perp}$. Then $\lambda \stackrel{\text{def}}{=}$ \tilde{b}^2 : $Ts\mathcal{C}^+$ $\rightarrow Ts\mathcal{C}^+$ is a (1,1)-coderivation of degree 2 and $\nu \stackrel{\text{def}}{=} -\tilde{\phi}b^+ + \tilde{b}\tilde{\phi}$: $Ts\mathcal{C}^+ \rightarrow Ts\mathcal{D}^+$ is a $(\tilde{\phi}, \tilde{\phi})$ -coderivation of degree 1. Equations (3.2), (3.3) imply that $\lambda_m = 0$, $\nu_m = 0$ for $m < n$. Moreover, λ_n , ν_n vanish on \mathcal{Q}_{k-1} . On the complement the n -th components equal

$$
\lambda_n = \sum_{a+r+c=n}^{1 < r < n} (1^{\otimes a} \otimes b_r^+ \otimes 1^{\otimes c}) b_{a+1+c}^+
$$
\n
$$
+ \sum_{a+1+c=n} (1^{\otimes a} \otimes b_1^- \otimes 1^{\otimes c}) \tilde{b}_n : \Omega_{k-1}^\perp \to s\mathcal{C}^+,
$$
\n
$$
\nu_n = - \sum_{\substack{i_1 + \dots + i_r = n}}^{1 < r \le n} (\phi_{i_1}^+ \otimes \dots \otimes \phi_{i_r}^+) b_r^+
$$
\n
$$
+ \sum_{a+r+c=n}^{1 < r < n} (1^{\otimes a} \otimes b_r^+ \otimes 1^{\otimes c}) \phi_{a+1+c}^+
$$
\n
$$
+ \sum_{a+1+c=n} (1^{\otimes a} \otimes b_1^- \otimes 1^{\otimes c}) \tilde{\phi}_n : \Omega_{k-1}^\perp \to s\mathcal{D}.
$$

The restriction $\lambda_n|_{\mathcal{N}_k}$ takes values in sC. Indeed, for the first sum in the expression for λ_n this follows by the induction assumption since $r > 1$ and $a+1+c > 1$. For the second sum this follows by the induction assumption and strict unitality if $n > 2$. In the case of $n = 2$, $k = 1$ this is also straightforward. The only case which requires computation is $n = 2$, $k = 2$:

$$
(\mathbf{j}^{\mathcal{C}}\otimes \mathbf{j}^{\mathcal{C}})(1\otimes b_1^- + b_1^- \otimes 1)\tilde{b}_2 = \mathbf{j}^{\mathcal{C}} - (\mathbf{j}^{\mathcal{C}}\otimes \mathbf{i}_0^{\mathcal{C}})b_2^+ - \mathbf{j}^{\mathcal{C}} - (\mathbf{i}_0^{\mathcal{C}}\otimes \mathbf{j}^{\mathcal{C}})b_2^+,
$$

which belongs to sC by the induction assumption.

Equations (3.2), (3.3) for $m = n$ take the form

$$
(3.4) \quad -b_n^+b_1 - \sum_{a+1+c=n} (1^{\otimes a} \otimes b'_1 \otimes 1^{\otimes c})b_n^+ = \lambda_n : \mathcal{N}_k \to s\mathcal{C},
$$

(3.5)
\n
$$
\phi_n^+ b_1 - \sum_{a+1+c=n} (1^{\otimes a} \otimes b_1' \otimes 1^{\otimes c}) \phi_n^+ - b_n^+ \phi_1 = \nu_n : \mathcal{N}_k \to s\mathcal{D}.
$$

For arbitrary objects X, Y of C , equip the graded k-module $\mathcal{N}_k(X, Y)$ with the differential $d^{\mathcal{N}_k} = \sum_{p+1+q=n}^{\infty} 1^{\otimes p} \otimes b'_1 \otimes 1^{\otimes q}$ and denote by u the chain map

$$
\underline{\mathsf{C}}_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y),s\mathfrak{C}(X,Y))\to \underline{\mathsf{C}}_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y),s\mathfrak{D}(X\phi,Y\phi)),\lambda\mapsto \lambda\phi_1.
$$

Since ϕ_1 is homotopy invertible, the map u is homotopy invertible as well. Therefore, the complex $Cone(u)$ is contractible, e.g. by [8, Lemma B.1], in particular, acyclic. Equations (3.4) and (3.5) have the form $-b_n^+d = \lambda_n$, $\phi_n^+d + b_n^+u = \nu_n$, that is, the element (λ_n, ν_n) of

$$
\underline{\mathsf{C}}^2_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y), s\mathcal{C}(X,Y)) \oplus \underline{\mathsf{C}}^1_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y), s\mathcal{D}(X\phi, Y\phi)) = \mathrm{Cone}^1(u)
$$

has to be the boundary of the sought element (b_n^+, ϕ_n^+) of

$$
\underline{\mathsf{C}}^1_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y),s\mathfrak{C}(X,Y))\oplus \underline{\mathsf{C}}^0_{\Bbbk}(\mathcal{N}_{\Bbbk}(X,Y),s\mathfrak{D}(X\phi,Y\phi))
$$

= Cone⁰(u).

These equations are solvable because (λ_n, ν_n) is a cycle in Cone¹(*u*). Indeed, the equations to verify $-\lambda_n d = 0$, $\nu_n d +$

 $\lambda_n u = 0$ take the form

$$
-\lambda_n b_1 + \sum_{p+1+q=n} (1^{\otimes p} \otimes b'_1 \otimes 1^{\otimes q}) \lambda_n = 0 : \mathcal{N}_k \to s\mathcal{C},
$$

$$
\nu_n b_1 + \sum_{p+1+q=n} (1^{\otimes p} \otimes b'_1 \otimes 1^{\otimes q}) \nu_n - \lambda_n \phi_1 = 0 : \mathcal{N}_k \to s\mathcal{D}.
$$

Composing the identity $-\lambda \tilde{b} + \tilde{b}\lambda = 0$: $T^n s\mathcal{C}^+ \to Ts\mathcal{C}^+$ with the projection $pr_1: Ts\mathcal{C}^+ \rightarrow s\mathcal{C}^+$ yields the first equation. The second equation follows by composing the identity νb^+ + $\tilde{b}\nu - \lambda \tilde{\phi} = 0 : T^n s \mathcal{C}^+ \to T s \mathcal{D}^+$ with $\text{pr}_1 : T s \mathcal{D}^+ \to s \mathcal{D}^+$.

Thus, the required restrictions of \vec{b}_n^+ , ϕ_n^+ to \mathcal{N}_k (and to \mathcal{Q}_k) exist and satisfy the required equations. We proceed by induction increasing k from 0 to n and determining b_n^+ , ϕ_n^+ on the whole $\mathcal{Q}_n = T^n s \mathcal{C}^+$. Then we replace n with $n+1$ and start again from $T^{n+1}sC$. Thus the induction on n goes through. \square

3.8. **Remark.** Let (\mathcal{C}^+, b^+) be a homotopy unital structure of an A_{∞} -category C. Then the embedding A_{∞} -functor ι : $C \to C^+$ is an equivalence. Indeed, it is bijective on objects. By [8, Theorem 8.8] it suffices to prove that $\iota_1 : s\mathcal{C} \to s\mathcal{C}^+$ is homotopy invertible. And indeed, the chain quiver map π_1 : $s\mathcal{C}^+ \to s\mathcal{C}, \pi_1|_{s\mathcal{C}} = \text{id}, \chi_1^{\mathcal{C}^{\text{su}}}\pi_1 = \chi_1^{\mathcal{C}}$ $_{0}^{\mathcal{C}}, \mathbf{j}_{X}^{\mathcal{C}} \pi_{1} = 0, \text{ is}$ homotopy inverse to i_1 . Namely, the homotopy $h : s\mathbb{C}^+ \to$ $s\mathcal{C}^+$, $h|_{s\mathcal{C}} = 0$, $\chi \mathbf{i}_{0}^{\mathcal{C}^{\text{su}}} h = \mathbf{j}_{X}^{\mathcal{C}}, \mathbf{j}_{X}^{\mathcal{C}} h = 0$, satisfies the equation $\mathrm{id}_{s\mathfrak{C}^+} - \pi_1 \cdot \iota_1 = h\check{b}_1^+ + b_1^+ h.$

The equation between A_{∞} -functors

$$
\left[\mathcal{C}\xrightarrow{\iota^{\mathcal{C}}}\mathcal{C}^{+}\xrightarrow{\phi^{+}}\mathcal{D}^{+}\right]=\left[\mathcal{C}\xrightarrow{\phi}\mathcal{D}\xrightarrow{\iota^{\mathcal{D}}}\mathcal{D}^{+}\right]
$$

obtained in the proof of Theorem 3.7 implies that ϕ^+ is an A_{∞} -equivalence as well. In particular, ϕ_1^+ is homotopy invertible.

The converse of Proposition 3.4 holds true as well, however its proof requires more preliminaries. It is deferred until Section 5.

4. Double coderivations

4.1. **Definition.** For A_{∞} -functors $f, g : A \rightarrow \mathcal{B}$, a *double* (f, g) -coderivation of degree d is a system of k-linear maps

$$
r: (Ts\mathcal{A}\otimes Ts\mathcal{A})(X,Y)\to Ts\mathcal{B}(Xf,Yg), \quad X,Y\in \mathrm{Ob}\mathcal{A},
$$

of degree d such that the equation

$$
(4.1) \t\t\t r\Delta_0 = (\Delta_0 \otimes 1)(f \otimes r) + (1 \otimes \Delta_0)(r \otimes g)
$$

holds true.

Equation (4.1) implies that r is determined by a system of k-linear maps $rpr_1 : TsA \otimes TsA \rightarrow sB$ with components of degree d

$$
r_{n,m}: s\mathcal{A}(X_0,X_1) \otimes \cdots \otimes s\mathcal{A}(X_{n+m-1},X_{n+m}) \longrightarrow s\mathcal{B}(X_0f,X_{n+m}g),
$$

for $n, m \geqslant 0$, via the formula

$$
r_{n,m;k} = (r|_{T^{n}s\mathcal{A}\otimes T^{m}s\mathcal{A}})pr_{k} : T^{n}s\mathcal{A}\otimes T^{m}s\mathcal{A} \to T^{k}s\mathcal{B},
$$

(4.2)

$$
r_{n,m;k} = \sum_{\substack{i_1+\cdots+i_p+i=n,\\j_1+\cdots+j_q+j=m}}^{p+1+q=k} f_{i_1} \otimes \cdots \otimes f_{i_p} \otimes r_{i,j} \otimes g_{j_1} \otimes \cdots \otimes g_{j_q}.
$$

This follows from the equation

(4.3)
$$
r\Delta_0^{(l)} = \sum_{p+1+q=l} (\Delta_0^{(p+1)} \otimes \Delta_0^{(q+1)}) (f^{\otimes p} \otimes r \otimes g^{\otimes q}) :
$$

$$
Ts\mathcal{A} \otimes Ts\mathcal{A} \to (Ts\mathcal{B})^{\otimes l},
$$

which holds true for each $l \geq 0$. Here $\Delta_0^{(0)} = \varepsilon$, $\Delta_0^{(1)} = id$, $\Delta_0^{(2)} = \Delta_0$ and $\Delta_0^{(l)}$ means the cut comultiplication iterated $l - 1$ times.

Double (f, g) -coderivations form a chain complex, which we are going to denote by $(\mathscr{D}(A, B)(f, g), B_1)$. For each $d \in \mathbb{Z}$, the component $\mathscr{D}(A, \mathcal{B})(f, g)^d$ consists of double (f, g) -coderivations of degree d . The differential B_1 of degree 1 is given by

$$
rB_1 \stackrel{\text{def}}{=} rb - (-)^d (1 \otimes b + b \otimes 1)r,
$$

for each $r \in \mathscr{D}(\mathcal{A}, \mathcal{B})(f, g)^d$. The component $[rB_1]_{n,m}$ of rB_1 is given by

$$
(4.4)
$$
\n
$$
\sum_{\substack{i_1+\cdots+i_p+i=n,\\j_1+\cdots+j_q+j=m}} (f_{i_1} \otimes \cdots \otimes f_{i_p} \otimes r_{ij} \otimes g_{j_1} \otimes \cdots \otimes g_{j_q}) b_{p+1+q}
$$
\n
$$
-(-)^r \sum_{a+k+c=n} (1^{\otimes a} \otimes b_k \otimes 1^{\otimes c+m}) r_{a+1+c,m}
$$
\n
$$
-(-)^r \sum_{u+t+v=m} (1^{\otimes n+u} \otimes b_t \otimes 1^{\otimes v}) r_{n,u+1+v},
$$

for each $n, m \geq 0$. An A_{∞} -functor $h : \mathcal{B} \to \mathcal{C}$ gives rise to a chain map

$$
\mathscr{D}(\mathcal{A},\mathfrak{B})(f,g)\rightarrow \mathscr{D}(\mathcal{A},\mathfrak{C})(fh,gh),\quad r\mapsto rh.
$$

The component $[rh]_{n,m}$ of rh is given by

(4.5)
$$
\sum_{\substack{i_1+\cdots+i_p+i=n,\\j_1+\cdots+j_q+j=m}} (f_{i_1} \otimes \cdots \otimes f_{i_p} \otimes r_{i,j} \otimes g_{j_1} \otimes \cdots \otimes g_{j_q}) h_{p+1+q},
$$

for each $n, m \geq 0$. Similarly, an A_{∞} -functor $k : \mathcal{D} \to \mathcal{A}$ gives rise to a chain map

$$
\mathscr{D}(\mathcal{A},\mathcal{B})(f,g)\to \mathscr{D}(\mathcal{D},\mathcal{B})(kf,kg),\quad r\mapsto (k\otimes k)r.
$$

The component $[(k \otimes k)r]_{n,m}$ of $(k \otimes k)r$ is given by

(4.6)
$$
\sum_{\substack{i_1+\cdots+i_p=n\\j_1+\cdots+j_q=m}} (k_{i_1} \otimes \cdots \otimes k_{i_p} \otimes k_{j_1} \otimes \cdots \otimes k_{j_q}) r_{p,q},
$$

for each $n, m \geq 0$. Proofs of these facts are elementary and are left to the reader.

Let C be an A_{∞} -category. For each $n \geq 0$, introduce a morphism

$$
\nu_n = \sum_{i=0}^n (-)^{n-i} (1^{\otimes i} \otimes \varepsilon \otimes 1^{\otimes n-i}) : (Ts\mathcal{C})^{\otimes n+1} \to (Ts\mathcal{C})^{\otimes n},
$$

in $\mathscr{Q}/\mathrm{Ob} \mathscr{C}$. In particular, $\nu_0 = \varepsilon : Ts\mathscr{C} \to \mathbb{k} \mathrm{Ob} \mathscr{C}$. Denote $\nu = \nu_1 = (1 \otimes \varepsilon) - (\varepsilon \otimes 1) : Ts\mathcal{C} \otimes Ts\mathcal{C} \to Ts\mathcal{C}$ for the sake of brevity.

4.2. **Lemma.** The map $v : TsC \otimes TsC \rightarrow TsC$ is a double $(1, 1)$ -coderivation of degree 0 and $\nu B_1 = 0$.

Proof. We have:

$$
(\Delta_0 \otimes 1)(1 \otimes \nu) + (1 \otimes \Delta_0)(\nu \otimes 1)
$$

= $(\Delta_0 \otimes 1)(1 \otimes 1 \otimes \varepsilon) - (\Delta_0 \otimes 1)(1 \otimes \varepsilon \otimes 1)$
+ $(1 \otimes \Delta_0)(1 \otimes \varepsilon \otimes 1) - (1 \otimes \Delta_0)(\varepsilon \otimes 1 \otimes 1)$
= $(\Delta_0 \otimes \varepsilon) - (\varepsilon \otimes \Delta_0) = ((1 \otimes \varepsilon) - (\varepsilon \otimes 1))\Delta_0 = \nu \Delta_0,$

due to the identities

$$
(\Delta_0 \otimes 1)(1 \otimes \varepsilon \otimes 1) = 1 \otimes 1 = (1 \otimes \Delta_0)(1 \otimes \varepsilon \otimes 1):
$$

$$
Ts\mathcal{C} \otimes Ts\mathcal{C} \to Ts\mathcal{C} \otimes Ts\mathcal{C}.
$$

This computation shows that ν : TsC \otimes TsC \rightarrow TsC is a double (1, 1)-coderivation. Its only non-vanishing components are $_{X,Y}\nu_{1,0} = 1$: $s\mathcal{C}(X,Y) \to s\mathcal{C}(X,Y)$ and $_{X,Y}\nu_{0,1} = 1$: $s\mathcal{C}(X,Y) \to s\mathcal{C}(X,Y), X,Y \in \text{Ob}\mathcal{C}.$

Since νB_1 is a double $(1, 1)$ -coderivation of degree 1, the equation $\nu B_1 = 0$ is equivalent to its particular case νB_1 pr₁ = 0, i.e., for each $n, m \geqslant 0$

$$
\sum_{\substack{0 \le i \le n, \\ 0 \le j \le m}} (1^{\otimes n-i} \otimes \nu_{i,j} \otimes 1^{\otimes m-j}) b_{n-i+1+m-j}
$$

$$
- \sum_{a+k+c=n} (1^{\otimes a} \otimes b_k \otimes 1^{\otimes c+m}) \nu_{a+1+c,m}
$$

$$
- \sum_{u+t+v=m} (1^{\otimes n+u} \otimes b_t \otimes 1^{\otimes v}) \nu_{n,u+1+v} = 0:
$$

$$
T^n s \mathbb{C} \otimes T^m s \mathbb{C} \to s \mathbb{C}.
$$

It reduces to the identity

$$
\chi(n > 0)b_{n+m} - \chi(m > 0)b_{n+m} - \chi(m = 0)b_n + \chi(n = 0)b_m = 0,
$$

where $\chi(P) = 1$ if a condition P holds and $\chi(P) = 0$ if P does not hold. $\hfill \square$

Let C be a strictly unital A_{∞} -category. The strict unit $\mathbf{i}_{0}^{\mathcal{C}}$ 0 is viewed as a morphism of graded quivers $\mathbf{i}_{0}^{\mathcal{C}}$ $_0^{\mathcal{C}} : \mathbb{k} \text{Ob} \mathcal{C} \to s\mathcal{C}$ of degree -1 , identity on objects. For each $n \geq 0$, introduce a morphism of graded quivers

$$
\xi_n = \left[(Ts\mathcal{C})^{\otimes n+1} \xrightarrow{1 \otimes i_0^e \otimes 1 \otimes \cdots \otimes i_0^e \otimes 1} \nS \otimes s\mathcal{C} \otimes Ts\mathcal{C} \xrightarrow{a^{(2n+1)}} TS\mathcal{C} \right],
$$

of degree $-n$, identity on objects. Here $\mu^{(2n+1)}$ denotes composition of $2n + 1$ composable arrows in the graded category TsC. In particular, $\xi_0 = 1$: TsC \rightarrow TsC. Denote $\xi = \xi_1 = (1 \otimes \mathbf{i}_0^{\mathcal{C}} \otimes 1)\mu^{(3)} : Ts\mathcal{C} \otimes Ts\mathcal{C} \to Ts\mathcal{C}$ for the sake of brevity.

4.3. **Lemma.** *The map* $\xi : TsC \otimes TsC \rightarrow TsC$ *is a double* $(1, 1)$ -coderivation of degree -1 and $\xi B_1 = \nu$.

Proof. The following identity follows directly from the definitions of μ and Δ_0 :

$$
\mu\Delta_0 = (\Delta_0 \otimes 1)(1 \otimes \mu) + (1 \otimes \Delta_0)(\mu \otimes 1) - 1:
$$

$$
Ts\mathcal{C} \otimes Ts\mathcal{C} \to Ts\mathcal{C} \otimes Ts\mathcal{C}.
$$

It implies

$$
(4.7)
$$
\n
$$
\mu^{(3)}\Delta_0 = (\Delta_0 \otimes 1 \otimes 1)(1 \otimes \mu^{(3)}) + (1 \otimes 1 \otimes \Delta_0)(\mu^{(3)} \otimes 1)
$$
\n
$$
+ (1 \otimes \Delta_0 \otimes 1)(\mu \otimes \mu) - (1 \otimes \mu) - (\mu \otimes 1):
$$
\n
$$
Ts\mathbb{C} \otimes Ts\mathbb{C} \to Ts\mathbb{C} \otimes Ts\mathbb{C}.
$$

Since $\mathbf{i}_0^{\mathcal{C}} \Delta_0 = \mathbf{i}_0^{\mathcal{C}} \otimes \eta + \eta \otimes \mathbf{i}_0^{\mathcal{C}}$ $_0^{\mathcal{C}}: \mathbb{R}$ Ob $\mathcal{C} \to Ts\mathcal{C} \otimes Ts\mathcal{C}$, it follows that

$$
(1 \otimes \mathbf{i}_0^c \Delta_0 \otimes 1)(\mu \otimes \mu) - (1 \otimes (\mathbf{i}_0^c \otimes 1)\mu) - ((1 \otimes \mathbf{i}_0^c)\mu \otimes 1) = 0:
$$

$$
Ts\mathcal{C} \otimes Ts\mathcal{C} \to Ts\mathcal{C} \otimes Ts\mathcal{C}.
$$

Equation (4.7) yields

$$
(1 \otimes \mathbf{i}_0^{\mathcal{C}} \otimes 1)\mu^{(3)}\Delta_0
$$

= $(\Delta_0 \otimes 1)(1 \otimes (1 \otimes \mathbf{i}_0^{\mathcal{C}} \otimes 1)\mu^{(3)}) + (1 \otimes \Delta_0)((1 \otimes \mathbf{i}_0^{\mathcal{C}} \otimes 1)\mu^{(3)} \otimes 1),$

i.e., $\xi = (1 \otimes \mathbf{i}_0^e \otimes 1)\mu^{(3)} : Ts\mathcal{C} \otimes Ts\mathcal{C} \rightarrow Ts\mathcal{C}$ is a double $(1, 1)$ -coderivation. Its the only non-vanishing components are $x\xi_{0,0} = x\mathbf{i}_0^{\mathcal{C}} \in s\mathcal{C}(X,X), X \in \text{Ob}\mathcal{C}.$

Since both ξB_1 and ν are double (1, 1)-coderivations of degree 0, the equation $\xi B_1 = \nu$ is equivalent to its particular case $\xi B_1 \text{pr}_1 = \nu \text{pr}_1$, i.e., for each $n, m \geq 0$

$$
\sum_{\substack{0 \le p \le n \\ 0 \le q \le m}} (1^{\otimes n-p} \otimes \xi_{p,q} \otimes 1^{\otimes m-q}) b_{n-p+1+m-q}
$$

+
$$
\sum_{a+k+c=n} (1^{\otimes a} \otimes b_k \otimes 1^{\otimes c+m}) \xi_{a+1+c,m}
$$

+
$$
\sum_{u+t+v=m} (1^{\otimes n+u} \otimes b_t \otimes 1^{\otimes v}) \xi_{n,u+1+v} = \nu_{n,m}:
$$

$$
T^n s \mathbb{C} \otimes T^m s \mathbb{C} \to s \mathbb{C}.
$$

It reduces to the the equation

$$
(1^{\otimes n} \otimes \mathbf{i}_0^{\mathcal{C}} \otimes 1^{\otimes m})b_{n+1+m} = \nu_{n,m} : T^n s\mathcal{C} \otimes T^m s\mathcal{C} \to s\mathcal{C},
$$

which holds true, since $\mathbf{i}_0^{\mathcal{C}}$ $\int_{0}^{\mathcal{C}}$ is a strict unit.

Note that the maps ν_n , ξ_n obey the following relations: (4.8)
 $\xi_n = (\xi_{n-1} \otimes 1)\xi,$ $\nu_n = (1^{\otimes n} \otimes \varepsilon) - (\nu_{n-1} \otimes 1), \quad n \geqslant 1.$ In particular, $\xi_n \varepsilon = 0$: $(Ts\mathfrak{C})^{\otimes n+1} \to \mathbb{k}$ Ob \mathfrak{C} , for each $n \geq 1$, as $\xi \varepsilon = 0$ by equation (4.3).

4.4. Lemma. *The following equations hold true:*

(4.9)
$$
\xi_n \Delta_0 = \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i})(\xi_i \otimes \xi_{n-i}), \quad n \geq 0,
$$

$$
(4.10) \ \xi_n b - (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \xi_n = \nu_n \xi_{n-1}, \quad n \geq 1.
$$

Proof. Let us prove (4.9). The proof is by induction on n. The case $n = 0$ is trivial. Let $n \ge 1$. By (4.8) and Lemma 4.3,

$$
\xi_n \Delta_0 = (\xi_{n-1} \otimes 1) \xi \Delta_0 = (\xi_{n-1} \Delta_0 \otimes 1)(1 \otimes \xi) + (\xi_{n-1} \otimes \Delta_0)(\xi \otimes 1).
$$

By induction hypothesis,

$$
\xi_{n-1}\Delta_0=\sum_{i=0}^{n-1}(1^{\otimes i}\otimes\Delta_0\otimes 1^{\otimes n-1-i})(\xi_i\otimes\xi_{n-1-i}),
$$

therefore

$$
\xi_n \Delta_0 = \sum_{i=0}^{n-1} (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (\xi_i \otimes \xi_{n-1-i} \otimes 1) (1 \otimes \xi)
$$

$$
+ (1^{\otimes n} \otimes \Delta_0) ((\xi_{n-1} \otimes 1) \xi \otimes 1)
$$

$$
= \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (\xi_i \otimes \xi_{n-i}),
$$

since $(\xi_{n-1-i} \otimes 1)\xi = \xi_{n-i}$ if $0 \leq i \leq n-1$.

Let us prove (4.10) . The proof is by induction on *n*. The case $n = 1$ follows from Lemma 4.3. Let $n \ge 2$. By (4.8) and Lemma 4.3,

$$
\xi_n b - (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \xi_n
$$

= $(\xi_{n-1} \otimes 1) \xi b - (-)^n \sum_{i=0}^{n-1} ((1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \xi_{n-1} \otimes 1) \xi$
 $- (-)^n (1^{\otimes n} \otimes b) (\xi_{n-1} \otimes 1) \xi$
= $-(\xi_{n-1} b \otimes 1) \xi - (\xi_{n-1} \otimes b) \xi + (\xi_{n-1} \otimes 1) \nu$
 $+ (-)^{n-1} \sum_{i=0}^{n-1} ((1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \xi_{n-1} \otimes 1) \xi + (\xi_{n-1} \otimes b) \xi$
= $(\xi_{n-1} \otimes 1) \nu$
 $- \left(\left[\xi_{n-1} b - (-)^{n-1} \sum_{i=0}^{n-1} (1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \xi_{n-1} \right] \otimes 1 \right) \xi.$

By induction hypothesis

$$
\xi_{n-1}b - (-)^{n-1} \sum_{i=0}^{n-1} (1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \xi_{n-1} = \nu_{n-1} \xi_{n-2},
$$

therefore

$$
\xi_n b - (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \xi_n = (\xi_{n-1} \otimes 1) \nu - (\nu_{n-1} \xi_{n-2} \otimes 1) \xi.
$$

Since by (4.8) ,

$$
\begin{aligned} (\xi_{n-1} \otimes 1)\nu - (\nu_{n-1}\xi_{n-2} \otimes 1)\xi \\ &= (\xi_{n-1} \otimes \varepsilon) - (\xi_{n-1}\varepsilon \otimes 1) - (\nu_{n-1} \otimes 1)\xi_{n-1} \\ &= (1^{\otimes n} \otimes \varepsilon)\xi_{n-1} - (\nu_{n-1} \otimes 1)\xi_{n-1} = \nu_n\xi_{n-1}, \end{aligned}
$$

equation (4.10) is proven.

5. An augmented differential graded cocategory

Let now $\mathcal{C} = \mathcal{A}^{su}$, where $\mathcal A$ is an A_{∞} -category. There is an isomorphism of graded k-quivers, identity on objects:

$$
\zeta: \bigoplus_{n\geqslant 0} (Ts\mathcal{A})^{\otimes n+1}[n] \to Ts\mathcal{A}^{\mathsf{su}}.
$$

The morphism ζ is the sum of morphisms

(5.1)
$$
\zeta_n = \left[(Ts\mathcal{A})^{\otimes n+1}[n] \xrightarrow{s^{-n}} (Ts\mathcal{A})^{\otimes n+1} \xrightarrow{e^{\otimes n+1}} (Ts\mathcal{A}^{\mathsf{su}})^{\otimes n+1} \xrightarrow{\xi_n} Ts\mathcal{A}^{\mathsf{su}} \right],
$$

where $e : A \hookrightarrow A^{su}$ is the natural embedding. The graded quiver

$$
\mathcal{E} \stackrel{\text{def}}{=} \bigoplus_{n \geqslant 0} (Ts\mathcal{A})^{\otimes n+1}[n]
$$

admits a unique structure of an augmented differential graded cocategory such that ζ becomes an isomorphism of augmented differential graded cocategories. The comultiplication $\widetilde{\Delta}$: $\mathcal{E} \to \mathcal{E} \otimes \mathcal{E}$ is found from the equation

$$
\begin{aligned} \left[\mathcal{E} \xrightarrow{\zeta} Ts\mathcal{A}^{\mathsf{su}} &\xrightarrow{\Delta_0} Ts\mathcal{A}^{\mathsf{su}} \otimes Ts\mathcal{A}^{\mathsf{su}} \right] \\ &= \left[\mathcal{E} \xrightarrow{\tilde{\Delta}} \mathcal{E} \otimes \mathcal{E} \xrightarrow{\zeta \otimes \zeta} Ts\mathcal{A}^{\mathsf{su}} \otimes Ts\mathcal{A}^{\mathsf{su}} \right]. \end{aligned}
$$

Restricting the left hand side of the equation to the summand $(TsA)^{\otimes n+1}[n]$ of \mathcal{E} , we obtain

$$
\zeta_n \Delta_0 = s^{-n} e^{\otimes n+1} \xi_n \Delta_0
$$

= $s^{-n} \sum_{i=0}^n (e^{\otimes i} \otimes e \Delta_0 \otimes e^{\otimes n-i}) (\xi_i \otimes \xi_{n-i}) :$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \rightarrow Ts\mathcal{A}^{\mathsf{su}} \otimes Ts\mathcal{A}^{\mathsf{su}},
$$

by equation (4.9) . Since e is a morphism of augmented graded cocategories, it follows that

$$
\zeta_n \Delta_0 = s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (e^{\otimes i+1} \xi_i \otimes e^{\otimes n-i+1} \xi_{n-i})
$$

= $s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (s^i \otimes s^{n-i}) (\zeta_i \otimes \zeta_{n-i}) :$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \rightarrow Ts\mathcal{A}^{su} \otimes Ts\mathcal{A}^{su}.
$$

This implies the following formula for $\tilde{\Delta}$:

$$
(5.2) \quad \widetilde{\Delta}|_{(Ts\mathcal{A})^{\otimes n+1}[n]} = s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i})(s^i \otimes s^{n-i}) :
$$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \to \bigoplus_{i=0}^n (Ts\mathcal{A})^{\otimes i+1}[i] \bigotimes (Ts\mathcal{A})^{\otimes n-i+1}[n-i].
$$

The counit of \mathcal{E} is $\widetilde{\varepsilon} = [\mathcal{E} \xrightarrow{\text{pr}_0} T s \mathcal{A} \xrightarrow{\varepsilon} \text{kOb} \mathcal{A} = \text{kOb} \mathcal{E}].$ The augmentation of \mathcal{E} is $\widetilde{\eta} = [\& \text{Ob}\mathcal{E} = \& \text{Ob}\mathcal{A} \xrightarrow{\eta} Ts\mathcal{A} \xrightarrow{\text{in}_0} \mathcal{E}].$ The differential $\tilde{b} : \mathcal{E} \to \mathcal{E}$ is found from the following equation:

$$
\left[\mathcal{E}\xrightarrow{\zeta}Ts\mathcal{A}^{\text{su}}\xrightarrow{b}Ts\mathcal{A}^{\text{su}}\right]=\left[\mathcal{E}\xrightarrow{\tilde{b}}\mathcal{E}\xrightarrow{\zeta}Ts\mathcal{A}^{\text{su}}\right].
$$

Let $\widetilde{b}_{n,m}$: $(TsA)^{\otimes n+1}[n] \to (TsA)^{\otimes m+1}[m], n,m \geqslant 0$, denote the matrix coefficients of \tilde{b} . Restricting the left hand side of the above equation to the summand $(TsA)^{\otimes n+1}[n]$ of \mathcal{E} , we obtain

$$
\zeta_n b = s^{-n} e^{\otimes n+1} \xi_n b
$$

= $s^{-n} e^{\otimes n+1} \nu_n \xi_{n-1} + (-)^n s^{-n} \sum_{i=0}^n (e^{\otimes i} \otimes e^{\otimes n-i}) \xi_n : (TsA)^{\otimes n+1}[n] \to TsA^{\text{su}},$

by equation (4.10) . Since e preserves the counit, it follows that

$$
e^{\otimes n+1}\nu_n=\nu_ne^{\otimes n}:(Ts\mathcal{A})^{\otimes n+1}\to (Ts\mathcal{A}^{\mathsf{su}})^{\otimes n}.
$$

Furthermore, e commutes with the differential b , therefore

$$
\zeta_n b = s^{-n} \nu_n s^{n-1} (s^{-(n-1)} e^{\otimes n} \xi_{n-1})
$$

+
$$
(-)^n s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) s^n (s^{-n} e^{\otimes n+1} \xi_n)
$$

=
$$
s^{-n} \nu_n s^{n-1} \zeta_{n-1} + (-)^n s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) s^n \zeta_n :
$$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \rightarrow Ts\mathcal{A}^{su}.
$$

We conclude that

(5.3)
$$
\widetilde{b}_{n,n} = (-)^n s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) s^n :
$$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \to (Ts\mathcal{A})^{\otimes n+1}[n],
$$

for $n \geqslant 0$, and

$$
(5.4)\ \widetilde{b}_{n,n-1} = s^{-n} \nu_n s^{n-1} : (Ts\mathcal{A})^{\otimes n+1}[n] \to (Ts\mathcal{A})^{\otimes n}[n-1],
$$

for $n \geq 1$, are the only non-vanishing matrix coefficients of \tilde{b} .

Let $g : \mathcal{E} \to T_s \mathcal{B}$ be a morphism of augmented differential graded cocategories, and let $g_n : (Ts\mathcal{A})^{\otimes n+1}[n] \to Ts\mathcal{B}$ be its components. By formula (5.2), the equation $g\Delta_0 = \tilde{\Delta}(g \otimes g)$ is equivalent to the system of equations

$$
g_n \Delta_0 = s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i})(s^i g_i \otimes s^{n-i} g_{n-i}) :(Ts\mathcal{A})^{\otimes n+1}[n] \to Ts\mathcal{B} \otimes Ts\mathcal{B}, \quad n \ge 0.
$$

The equation $q\varepsilon = \tilde{\varepsilon}(\kappa \Omega)$ is equivalent to the equations $g_0 \varepsilon = \varepsilon(\kappa O b g_0), g_n \varepsilon = 0, n \geq 1.$ The equation $\widetilde{\eta}g = (\kappa O b g) \eta$ is equivalent to the equation $\eta g_0 = (\mathbb{k} \text{Ob} g_0) \eta$. By formulas (5.3) and (5.4), the equation $gb = bg$ is equivalent to $g_0b = bg_0 : TsA \rightarrow TsB$ and

$$
g_n b = (-)^n s^{-n} \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) s^n g_n + s^{-n} \nu_n s^{n-1} g_{n-1} :
$$

$$
(Ts\mathcal{A})^{\otimes n+1}[n] \to Ts\mathcal{B}, \quad n \geq 1.
$$

Introduce k-linear maps $\phi_n = s^n g_n : (Ts\mathcal{A})^{\otimes n+1}(X,Y) \rightarrow$ $Ts\mathcal{B}(Xg,Yg)$ of degree $-n, X, Y \in \text{Ob}\mathcal{A}, n \geqslant 0$. The above equations take the following form:

(5.5)
$$
\phi_n \Delta_0 = \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i})(\phi_i \otimes \phi_{n-i}) :
$$

$$
(Ts\mathcal{A})^{\otimes n+1} \to Ts\mathcal{B} \otimes Ts\mathcal{B},
$$

for $n \geqslant 1$;

(5.6)
$$
\phi_n b = (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \phi_n + \nu_n \phi_{n-1} :
$$

$$
(Ts\mathcal{A})^{\otimes n+1} \to Ts\mathcal{B},
$$

for $n \geqslant 1$;

(5.7)
$$
\phi_0 \Delta_0 = \Delta_0 (\phi_0 \otimes \phi_0), \quad \phi_0 \varepsilon = \varepsilon, \quad \phi_0 b = b \phi_0,
$$

(5.8)
$$
\phi_n \varepsilon = 0, \quad n \geq 1.
$$

Summing up, we conclude that morphisms of augmented differential graded cocategories $\mathcal{E} \to T_s \mathcal{B}$ are in bijection with collections consisting of a morphism of augmented differential graded cocategories ϕ_0 : TsA \rightarrow TsB and of k-linear maps ϕ_n : $(TsA)^{\otimes n+1}(X,Y) \rightarrow Ts\mathcal{B}(X\phi_0, Y\phi_0)$ of degree $-n, X, Y \in ObA, n \geq 1$, such that equations (5.5), (5.6), and (5.8) hold true.

In particular, A_{∞} -functors $f : \mathcal{A}^{su} \to \mathcal{B}$, which are augmented differential graded cocategory morphisms $TsA^{su} \rightarrow$

TsB, are in bijection with morphisms $g = \zeta f : \mathcal{E} \to Ts\mathcal{B}$ of augmented differential graded cocategories. With the above notation, we may say that to give an A_{∞} -functor $f : \mathcal{A}^{su} \to \mathcal{B}$ is the same as to give an A_{∞} -functor $\phi_0 : A \to B$ and a system of k-linear maps $\phi_n: (Ts\mathcal{A})^{\otimes n+1}(X,Y) \to Ts\mathcal{B}(X\phi_0, Y\phi_0)$ of degree $-n$, $X, Y \in ObA$, $n \geq 1$, such that equations (5.5), (5.6) and (5.8) hold true.

5.1. Proposition. *The following conditions are equivalent.*

(a) There exists an A_{∞} -functor $U : \mathcal{A}^{su} \to \mathcal{A}$ such that

$$
\left[\mathcal{A}\overset{e}{\hookrightarrow}\mathcal{A}^{\text{su}}\overset{U}{\longrightarrow}\mathcal{A}\right]=\text{id}_{\mathcal{A}}.
$$

(b) There exists a double $(1, 1)$ -coderivation ϕ : TsA \otimes $TsA \rightarrow TsA$ of degree -1 such that $\phi B_1 = \nu$.

Proof. (a) \Rightarrow (b) Let $U : \mathcal{A}^{su} \to \mathcal{A}$ be an A_{∞} -functor such that $eU = id_A$, in particular $ObU = id : ObA^{su} = ObA \rightarrow ObA$. It gives rise to the family of k-linear maps $\phi_n = s^n \zeta_n U$: $(TsA)^{\otimes n+1}(X,Y) \to TsB(X,Y)$ of degree $-n, X, Y \in \text{Ob}A$, $n \geq 0$, that satisfy equations (5.5), (5.6) and (5.8). In particular, $\phi_0 = eU = \text{id}_{\mathcal{A}}$. Equations (5.5) and (5.6) for $n = 1$ read as follows:

$$
\phi_1 \Delta_0 = (\Delta_0 \otimes 1)(\phi_0 \otimes \phi_1) + (1 \otimes \Delta_0)(\phi_1 \otimes \phi_0)
$$

= $(\Delta_0 \otimes 1)(1 \otimes \phi_1) + (1 \otimes \Delta_0)(\phi_1 \otimes 1),$

$$
\phi_1 b = (1 \otimes b + b \otimes 1)\phi_1 + \nu_1 \phi_0 = (1 \otimes b + b \otimes 1)\phi_1 + \nu.
$$

In other words, ϕ_1 is a double $(1, 1)$ -coderivation of degree -1 and $\phi_1B_1=\nu$.

(b)⇒(a) Let $\phi : TsA \otimes TsA \rightarrow TsA$ be a double (1, 1)coderivation of degree -1 such that $\phi B_1 = \nu$. Define k-linear maps

$$
\phi_n : (Ts\mathcal{A})^{\otimes n+1}(X,Y) \to Ts\mathcal{A}(X,Y), \quad X, Y \in \text{Ob}\mathcal{A},
$$

of degree $-n$, $n \ge 0$, recursively via $\phi_0 = id_{\mathcal{A}}$ and $\phi_n =$ $(\phi_{n-1}\otimes 1)\phi, n\geq 1$. Let us show that ϕ_n satisfy equations (5.5), (5.6) and (5.8). Equation (5.8) is obvious: $\phi_n \varepsilon = (\phi_{n-1} \otimes$ $1)\phi\varepsilon = 0$ as $\phi\varepsilon = 0$ by (4.3). Let us prove equation (5.5) by induction. It holds for $n = 1$ by assumption, since $\phi_1 = \phi$ is a double $(1, 1)$ -coderivation. Let $n \ge 2$. We have:

$$
\phi_n \Delta_0 = (\phi_{n-1} \otimes 1)\phi_1 \Delta_0
$$

= $(\phi_{n-1} \otimes 1)((\Delta_0 \otimes 1)(1 \otimes \phi_1) + (1 \otimes \Delta_0)(\phi_1 \otimes 1))$
= $(\phi_{n-1} \Delta_0 \otimes 1)(1 \otimes \phi_1)$
+ $(1^{\otimes n} \otimes \Delta_0)((\phi_{n-1} \otimes 1)\phi_1 \otimes 1).$

By induction hypothesis,

$$
\phi_{n-1}\Delta_0 = \sum_{i=0}^{n-1} (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-1-i})(\phi_i \otimes \phi_{n-1-i}),
$$

so that

$$
\phi_n \Delta_0 = \sum_{i=0}^{n-1} (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (\phi_i \otimes \phi_{n-1-i} \otimes 1) (1 \otimes \phi_1)
$$

$$
+ (1^{\otimes n} \otimes \Delta_0) ((\phi_{n-1} \otimes 1) \phi_1 \otimes 1)
$$

$$
= \sum_{i=0}^n (1^{\otimes i} \otimes \Delta_0 \otimes 1^{\otimes n-i}) (\phi_i \otimes \phi_{n-i}),
$$

since $(\phi_{n-1-i} \otimes 1)\phi_1 = \phi_{n-i}, 0 \leq i \leq n-1.$

Let us prove equation (5.6) by induction. For $n = 1$ it is equivalent to the equation $\phi B_1 = \nu$, which holds by assumption. Let $n \geqslant 2$. We have:

$$
\phi_n b - (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \phi_n
$$

\n
$$
= (\phi_{n-1} \otimes 1) \phi b - (-)^n \sum_{i=0}^{n-1} ((1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \phi_{n-1} \otimes 1) \phi
$$

\n
$$
- (-)^n (1^{\otimes n} \otimes b) (\phi_{n-1} \otimes 1) \phi
$$

\n
$$
= -(\phi_{n-1} b \otimes 1) \phi - (\phi_{n-1} \otimes b) \phi + (\phi_{n-1} \otimes 1) \psi
$$

\n
$$
+ (-)^{n-1} \sum_{i=0}^{n-1} ((1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \phi_{n-1} \otimes 1) \phi + (\phi_{n-1} \otimes b) \phi
$$

\n
$$
= (\phi_{n-1} \otimes 1) \psi
$$

\n
$$
- \left(\left[\phi_{n-1} b - (-)^{n-1} \sum_{i=0}^{n-1} (1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \phi_{n-1} \right] \otimes 1 \right) \phi.
$$

By induction hypothesis,

$$
\phi_{n-1}b - (-)^{n-1} \sum_{i=0}^{n-1} (1^{\otimes i} \otimes b \otimes 1^{\otimes n-1-i}) \phi_{n-1} = \nu_{n-1} \phi_{n-2},
$$

therefore

$$
\phi_n b - (-)^n \sum_{i=0}^n (1^{\otimes i} \otimes b \otimes 1^{\otimes n-i}) \phi_n
$$

= $(\phi_{n-1} \otimes 1) \nu - (\nu_{n-1} \phi_{n-2} \otimes 1) \phi.$

Since by (4.8)

$$
(\phi_{n-1} \otimes 1)\nu - (\nu_{n-1}\phi_{n-2} \otimes 1)\phi
$$

= $(\phi_{n-1} \otimes \varepsilon) - (\phi_{n-1}\varepsilon \otimes 1) - (\nu_{n-1} \otimes 1)\phi_{n-1}$
= $(1^{\otimes n} \otimes \varepsilon)\phi_{n-1} - (\nu_{n-1} \otimes 1)\phi_{n-1} = \nu_n \phi_{n-1},$

and equation (5.6) is proven.

The system of maps ϕ_n , $n \geq 0$, corresponds to an A_{∞} -functor $U: \mathcal{A}^{su} \to \mathcal{A}$ such that $\phi_n = s^n \zeta_n U, n \geq 0$. In particular, $eU = \phi_0 = \text{id}_{\mathcal{A}}.$

5.2. **Proposition.** Let A be a unital A_{∞} -category. There ex*ists a double* (1, 1)-*coderivation* $h : TsA \otimes TsA \rightarrow TsA$ of *degree* -1 *such that* $h_{1} = \nu$ *.*

Proof. Let A be a unital A_{∞} -category. By [9, Corollary A.12], there exist a differential graded category $\mathcal D$ and an A_{∞} -equivalence $f : \mathcal{A} \to \mathcal{D}$. The functor f is unital by [8, Corollary 8.9. This means that, for every object X of A , there exists a k-linear map $_Xv_0 : \mathbb{k} \to (s\mathcal{D})^{-2}(Xf, Xf)$ such that $x\mathbf{i}_0^{\mathcal{A}}$ $\partial_0^{\mathcal{A}} f_1 = X_f \mathbf{i}_0^{\mathcal{D}} + Xv_0b_1$. Here $X_f \mathbf{i}_0^{\mathcal{D}}$ denotes the strict unit of the differential graded category \mathcal{D} .

By Lemma 4.3, $\xi = (1 \otimes \mathbf{i}_0^{\mathcal{D}} \otimes 1) \mu^{(3)} : Ts\mathcal{D} \otimes Ts\mathcal{D} \to Ts\mathcal{D}$ is a (1, 1)-coderivation of degree -1 . Let ι denote the double (f, f) -coderivation $(f \otimes f)\xi$ of degree -1. By Lemma 4.3,

$$
\iota B_1 = (f \otimes f)(\xi B_1) = (f \otimes f)\nu = \nu f.
$$

By Lemma 4.2, the equation $\nu B_1 = 0$ holds true. We conclude that the double coderivations $\nu \in \mathscr{D}(\mathcal{A}, \mathcal{A})(\mathrm{id}_{\mathcal{A}}, \mathrm{id}_{\mathcal{A}})^0$ and $\iota \in$ $\mathscr{D}(\mathcal{A}, \mathcal{D})(f, f)^{-1}$ satisfy the following equations:

$$
(5.9) \t\t \nu B_1 = 0,
$$

(5.10)
$$
iB_1 - \nu f = 0.
$$

We are going to prove that there exist double coderivations $h \in \mathscr{D}(\mathcal{A}, \mathcal{A}) (\mathrm{id}_{\mathcal{A}}, \mathrm{id}_{\mathcal{A}})^{-1}$ and $k \in \mathscr{D}(\mathcal{A}, \mathcal{D})(f, f)^{-2}$ such that the following equations hold true:

$$
hB_1 = \nu,
$$

$$
hf = \iota + kB_1.
$$

Let us put $_Xh_{0,0} = Xi_0^{\mathcal{A}}$ $_{0}^{\mathcal{A}}, xk_{0,0} = xv_0$, and construct the other components of h and k by induction. Given an integer $t \geq 0$, assume that we have already found components $h_{p,q}$, $k_{p,q}$ of the sought h, k, for all pairs (p, q) with $p + q < t$, such that the equations

$$
(5.11) (hB1 - \nu)_{p,q} = 0:
$$

$$
s\mathcal{A}(X_0, X_1) \otimes \cdots \otimes s\mathcal{A}(X_{p+q-1}, X_{p+q}) \to s\mathcal{A}(X_0, X_{p+q}),
$$

$$
(5.12) \quad (kB_1 + \iota - hf)_{p,q} = 0:
$$

$$
s\mathcal{A}(X_0, X_1) \otimes \cdots \otimes s\mathcal{A}(X_{p+q-1}, X_{p+q}) \to s\mathcal{D}(X_0 f, X_{p+q} f)
$$

are satisfied for all pairs (p, q) with $p+q < t$. Introduce double coderivations $\widetilde{h} \in \mathscr{D}(\mathcal{A},\mathcal{A})(\mathrm{id}_{\mathcal{A}},\mathrm{id}_{\mathcal{A}})$ and $\widetilde{k} \in \mathscr{D}(\mathcal{A},\mathcal{D})(f,f)$ of degree −1 resp. −2 by their components: $\widetilde{h}_{p,q} = h_{p,q}$, $k_{p,q} = k_{p,q}$ for $p + q < t$, all the other components vanish. Define a double (1, 1)-coderivation $\lambda = \tilde{h}B_1 - \nu$ of degree 0 and a double (f, f) -coderivation $\kappa = \tilde{k}B_1 + i - \tilde{h}f$ of degree −1. Then $\lambda_{p,q} = 0$, $\kappa_{p,q} = 0$ for all $p+q < t$. Let non-negative integers n, m satisfy $n+m=t$. The identity $\lambda B_1=0$ implies that

$$
\lambda_{n,m}b_1 - \sum_{l=1}^{n+m} (1^{\otimes l-1} \otimes b_1 \otimes 1^{\otimes n+m-l})\lambda_{n,m} = 0.
$$

The (n, m) -component of the identity $\kappa B_1 + \lambda f = 0$ gives

$$
\kappa_{n,m}b_1+\sum_{l=1}^{n+m}(1^{\otimes l-1}\otimes b_1\otimes 1^{\otimes n+m-l})\kappa_{n,m}+\lambda_{n,m}f_1=0.
$$

The chain map $f_1 : \mathcal{A}(X_0, X_{n+m}) \to s\mathcal{D}(X_0, X_{n+m}, f)$ is homotopy invertible as f is an A_{∞} -equivalence. Hence, the chain map Φ given by

$$
\underline{C^{\bullet}_{\Bbbk}}(N, s\mathcal{A}(X_0, X_{n+m})) \to \underline{C^{\bullet}_{\Bbbk}}(N, s\mathcal{D}(X_0 f, X_{n+m} f)),
$$

$$
\lambda \mapsto \lambda f_1,
$$

is homotopy invertible for each complex of \mathbbk -modules N , in particular, for $N = s\mathcal{A}(X_0, X_1) \otimes \cdots \otimes s\mathcal{A}(X_{n+m-1}, X_{n+m}).$ Therefore, the complex $Cone(\Phi)$ is contractible, e.g. by [8, Lemma B.1. Consider the element $(\lambda_{n,m}, \kappa_{n,m})$ of

$$
\underline{\mathsf{C}}^0_\Bbbk(N, s\mathcal{A}(X_0, X_{n+m})) \oplus \underline{\mathsf{C}}^{\{-1}{\hskip -1mm}(N, \mathcal{D}(X_0f, X_{n+m}f)).
$$

The above direct sum coincides with $Cone^{-1}(\Phi)$. The equations $-\lambda_{n,m}d = 0$, $\kappa_{n,m}d + \lambda_{n,m}\Phi = 0$ imply that $(\lambda_{n,m}, \kappa_{n,m})$ is a cycle in the complex $Cone(\Phi)$. Due to acyclicity of $Cone(\Phi)$, $(\lambda_{n,m}, \kappa_{n,m})$ is a boundary of some element $(h_{n,m}, -k_{n,m})$ of Cone⁻² (Φ) , i.e., of

$$
\underline{\mathsf{C}}_{\Bbbk}^{-1}(N, s\mathcal{A}(X_0, X_{n+m})) \oplus \underline{\mathsf{C}}_{\Bbbk}^{-2}(N, \mathcal{D}(X_0 f, X_{n+m} f)).
$$

Thus, $-k_{n,m}d + h_{n,m}f_1 = \kappa_{n,m}$, $-h_{n,m}d = \lambda_{n,m}$. These equations can be written as follows:

$$
- h_{n,m}b_1 - \sum_{u+1+v=n+m} (1^{\otimes u} \otimes b_1 \otimes 1^{\otimes v})h_{n,m}
$$

$$
= (\widetilde{h}B_1 - \nu)_{n,m},
$$

$$
- k_{n,m}b_1 + \sum_{u+1+v=n+m} (1^{\otimes u} \otimes b_1 \otimes 1^{\otimes v})k_{n,m} + h_{n,m}f_1
$$

$$
= (\widetilde{k}B_1 + \iota - \widetilde{h}f)_{n,m}.
$$

Thus, if we introduce double coderivations \overline{h} and \overline{k} by their components: $\overline{h}_{p,q} = h_{p,q}, \overline{k}_{p,q} = k_{p,q}$ for $p + q \leq t$ (using just found maps if $p + q = t$ and 0 otherwise, then these coderivations satisfy equations (5.11) and (5.12) for each p, q such that $p+q \leq t$. Induction on t proves the proposition. \Box

5.3. **Theorem.** *Every unital* A_{∞} -category admits a weak unit.

Proof. The proof follows from Propositions 5.1 and 5.2. \Box

6. Summary

We have proved that the definitions of unital A_{∞} -category given by Lyubashenko, by Kontsevich and Soibelman, and by Fukaya are equivalent.

REFERENCES

- [1] Fukaya K. Morse homotopy, A_{∞} -category, and Floer homologies // Proc. of GARC Workshop on Geometry and Topology '93 (H. J. Kim, ed.), Lecture Notes, no. 18, Seoul Nat. Univ., Seoul, 1993, P. 1–102.
- [2] Fukaya K. Floer homology and mirror symmetry. II // Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999), Adv. Stud. Pure Math., vol. 34, Math. Soc. Japan, Tokyo, 2002, P. 31–127.
- [3] Fukaya K., Oh Y.-G., Ohta H., Ono K. Lagrangian intersection Floer theory - anomaly and obstruction -, book in preparation, March 23, 2006.
- [4] Keller B. Introduction to A-infinity algebras and modules // Homology, Homotopy and Applications 3 (2001), no. 1, P. 1–35.
- [5] Kontsevich M. Homological algebra of mirror symmetry // Proc. Internat. Cong. Math., Zürich, Switzerland 1994 (Basel), vol. 1, P. 120-139.
- [6] Kontsevich M., Soibelman Y. S. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I // 2006, math.RA/0606241.
- [7] Lefèvre-Hasegawa K. Sur les A_{∞} -catégories // Ph.D. thesis, Université Paris 7, U.F.R. de Mathématiques, 2003, math.CT/0310337.
- [8] Lyubashenko V. V. Category of A_{∞} -categories // Homology, Homotopy Appl. 5 (2003), no. 1, 1–48.
- [9] Lyubashenko V. V., Manzyuk O. Quotients of unital A_{∞} -categories, Max-Planck-Institut fur Mathematik preprint, MPI 04-19, 2004, math.CT/ 0306018.
- [10] Soibelman Y. S. Mirror symmetry and noncommutative geometry of A_{∞} categories // J. Math. Phys. 45 (2004), no. 10, 3742–3757.
- [11] Stasheff J. D. Homotopy associativity of H-spaces I & II // Trans. Amer. Math. Soc. 108 (1963), 275–292, 293–312.

268