Э.В.Приходько, В.Ф.Мороз

ВЗАИМОДЕЙСТВИЕ ВОДОРОДА С НЕМЕТАЛЛИЧЕСКИМИ ВКЛЮЧЕНИЯМИ

С использованием физико-химической модели металлических расплавов с ОЦК-подобной структурой проанализировано влияние неметаллических включений (НВ) на растворимость водорода в сталях. Установлена в виде полуэмпирической модели связь растворимости водорода с интегральными параметрами НВ (d, Z^Y , tga).

Введение. Введение в процессе получения сталей легирующих, раскисляющих и других добавок приводит к образованию различных соединений – карбидов и нитридов, неметаллических включений (НВ) в виде оксидов, силикатов, сульфидов и др. Одной из особенностей поведения водорода в металлах и сталях является его склонность к локализации [1]. Одним из эффектов локализации водорода является его сегрегация в дефектах кристаллического строения, в том числе на границах матрица -НВ. Установлено, что НВ влияют на окклюзию водорода [2] и играют особую роль в развитии водородных трещин [3], т.е. вредное влияние водорода на свойства сталей определяется не только его взаимодействием с кристаллической решеткой железа, но и со структурными составляющими и неметаллическими включениями [4]. Установлено, что при снижении пластичности сталей, вызванном водородом, разрушения зарождаются около неметаллических включений, при этом около крупных включений определенного вида образуются хрупкие трещины, расположенные нормально к действующему главному напряжению [5].

Изложение основных материалов исследования. Адсорбционный эффект HB относительно водорода зависит от многих причин: величины поверхности раздела «HB – металл», количество HB, их величины, формы и состава. В работе [2] изучено влияние вида HB на окклюзию водорода сталью 20, выплавленной по специальной технологии, которая обеспечивала в составе стали преобладающее содержание одного из видов включений – сульфидов железа и марганца, нитридов титана, глинозема, кремнезема, при этом количество включений во всех образцах было одинаковым 1,75·10⁻⁴ об.%. Следует отметить, что эти виды HB составляют более 90% от общего содержания включений в конструкционных сталях. Наводороживание образцов осуществлялось методом катодной поляризации в 10% растворе H_2SO_4 .

Анализ растворимости водорода в стали 20 с различными видами HB (табл. 1) показал, что она связана с параметрами межатомного взаимодействия HB (d, Z^Y , tg α) и степенью деформации образцов регрессионными уравнениями с высоким коэффициентом корреляции.

Таблица 1. Растворимость водорода в образцах стали 20 в зависимости от приложенного напряжения и интегральных параметров межатомного взаимодействия НВ

HB	lg	lg	e, %	Z^Y	d	tgα	lg	lg
	VH2 _{поп.}	<i>VH</i> 2пр				U	VH2поп.	<i>VH</i> 2пр.р
Al_2O_3	1,43	1,26	0	1,0276	2,1616	0,144	1,437	1,270
SiO ₂	1,36	1,24	0	1,263	1,8181	0,121	1,289	1,198
TiN	1,32	1,21	0	1,4566	2,2769	0,1075	1,208	1,175
FeO·5MnO·%S	1,53	1,34	0	1,7798	2,7565	0,0925	1,597	1,368
Al ₂ O ₃	2,71	2,25	0,5	1,0276	2,1616	0,144	2,636	2,223
SiO ₂	2,46	2,15	0,5	1,263	1,8181	0,121	2,489	2,151
TiN	2,34	2,11	0,5	1,4566	2,2769	0,1075	2,408	2,129
FeO·5MnO·%S	2,94	2,36	0,5	1,7798	2,7565	0,0925	2,787	2,322
Al ₂ O ₃	1,97	1,72	0,25	1,0276	2,1616	0,144	2,037	1,747
SiO ₂	1,85	1,63	0,25	1,263	1,8181	0,121	1,889	1,675
TiN	1,77	1,63	0,25	1,4566	2,2769	0,1075	1,808	1,652
FeO·5MnO·%S	2,09	1,83	0,25	1,7798	2,7565	0,0925	2,187	1,845

Так, для образцов стали 20, вырезанных поперек линии прокатки растворимости водорода (см³/100 г) описывается уравнением:

 $\lg V_{H_2,non} = 10,11 + 2,40\varepsilon - 0,35d + 4,25Z^Y + 55,08tga \qquad (r=0,989)$ (1)

а для образцов, вырезанных вдоль направления прокатки уравнением:

 $\lg V_{H_2 n p} = 4,13 + 1,91\varepsilon - 0,14d + 1,98Z^Y + 25,42tga \qquad (r=0,998)$ (2)

Сопоставительное сравнение рассчитанных по уравнению (1)-(2) и экспериментальных значений растворимости водорода приведено на рис.1.

Таким образом, при одном и том же составе матрицы растворимость водорода определяется составом неметаллических включений, сверткой которого являются интегральные параметры межатомного взаимодействия d, Z^{Y} и tg α .

В работе [6] изучены растворимость водорода в стали 20 при превалирующем количестве одного из НВ (пластичные силикаты, глинозем, кремнезем и нитрид титана) при временах наводороживания 30, 60 и 180 мин. Учитывая, что состав металлической матрицы практически был постоянным, была проанализирована связь растворимости водорода с интегральными параметрами межатомного взаимодействия НВ (табл. 2).

Анализ показал, что существует их тесная связь в виде уравнения:

 $[H] = -6,687 - 0,312d + 2,47Z^{Y} + 37,176tg\alpha + 0,0058t \qquad (r=0,983) \qquad (3)$

где *t* – время наводороживания. Связь экспериментальных и рассчитанных значений [H] приведены на рис.2.

пых параметров межатомпого взаимоденетых в тир											
HB	$d \cdot 10^{-}$	Z^{Y} , e	tgα	Τ,	[H] _{эксп.}	[H] _{pac.,} ,	$\delta H_{2 \Im \kappa c n}$	δH_{2pa}			
	¹ , HM			МИН.	2	см ³ /10		c.,			
					см ³ /10	0г	%	%			
					0г						
Al ₂ O ₃	2,1616	1,0276	0,144	180	1,6	1,57	7,45	6,99			
SiO ₂	1,8181	1,263	0,121	180	1,35	1,40	4,95	4,85			
TiN	2,2769	1,4566	0,1075	180	1,15	1,24	2,51	2,70			
FeMnSiO ₄	2,1345	1,5147	0,115	180	1,75	1,70	8,35	8,71			
Al_2O_3	2,1616	1,0276	0,144	60	0,95	0,88					
SiO ₂	1,8181	1,263	0,122	60	0,80	0,71					
TiN	2,2769	1,4566	0,1075	60	0,60	0,54					
FeMnSiO ₄	2,1345	1,5147	0,115	60	1,10	1,01					
Al ₂ O ₃	2,1616	1,0276	0,144	30	0,60	0,70					
SiO ₂	1,8181	1,263	0,121	30	0,50	0,54					
TiN	2,2769	1,4566	0,1075	30	0,40	0,37					
FeMnSiO ₄	2 1345	1 5147	0.115	30	0.70	0.84					

Таблица 2. Зависимость растворимости водорода в стали 20 от интегральных параметров межатомного взаимодействия в НВ

Рис.1. Сопоставление рассчитанных по уравнениям (1) и (2) и экспериментальных значений растворимости водорода в образцах стали 20, вырезанных поперек (а) и вдоль направления прокатки (б)

В этой же работе установлена корреляция коэффициентов влияния

водорода на предел прочности стали 20 $\left(\beta_{H_2} = \frac{\sigma_e - \sigma_H}{\sigma_e} \cdot 100, \%\right)$ (табл. 2)

с содержанием водорода в стали с разными HB – время наводороживания (80 мин.).

Учитывая связь интегральных параметров HB с растворимостью водорода, была установлена связь этих параметров с $\beta_{H_{\gamma}}$ в виде уравнения:

$$\beta_{H_2} = 82,62 - 9,97d + 29,77Z^Y + 472,67tg\alpha \tag{4}$$

Сравнение рассчитанных по уравнению (4) и экспериментальных значений β_{H_2} приведено на рис.3.

Рис.3. Зависимость экспериментальных значений β_{H_2} от рассчитанных по уравнению (4)

Анализ экспериментальных данных на многих сталях [5, 7–9] показал, что их загрязненность НВ оказывает влияние как на окклюзионную способность к водороду, так и на прочностные характеристики сталей в наводороживающей среде. НВ способствует увеличению содержания водорода, который в свою очередь снижает кратковременную и длительную статическую прочность и выносливость сталей в наводороживающей среде.

Так, приведенные в [7] данные по изменению коэффициентов влияния водорода (В) на кратковременную статическую прочность и малоцикловую долговечность стали 20 (табл.3) связанны с интегральными параметрами НВ соотношениями:

$$\beta \sigma_b = -52,57 + 5,10d + 16,01Z^Y + 226,85tg\alpha + 0,0058t \qquad (r=0,86) \qquad (5)$$

$$\beta_{MUB} = -23,18 + 2,d + 5,92Z^{Y} + 101,32tg\alpha \qquad (r=0,91) \tag{6}$$

где $\beta \sigma_b = \frac{\sigma_{bebo.} - \sigma_{eH}}{\sigma_{bebo.}} \cdot 100,\%; \quad \beta_{MUB} = \frac{N_{603.} - N_H}{N_{603.}} \cdot 100,\%, N - количество$

циклов до разрушения образца.

Сопоставление рассчитанных по этим уравнениям и экспериментальных значений этих прочностных параметров приведено на рис. 4.

б)

Рис.4. Сопоставление рассчитанных по уравнениям (5)–(6) и экспериментальных значений $\beta \sigma_b$ и $\beta_{{}_{MHG}}$

Выводы. Установлена корреляция содержания водорода в стали с параметрами взаимодействия НВ. НВ являются одним из факторов, способствующих водородной деградации металлов, являясь коллекторами водорода и концентраторами напряжений. Уменьшить влияние НВ можно за счет снижения их количества и изменение формы, вводя в их состав различные добавки – P3M, Se, Te и др. в сульфидные включения, т.е.оптимальное сочетание состава и формы НВ будет способствовать повышению водородостойкости стали.

Полученные результаты в виде полуэмпирических моделей могут быть использованы для оценки влияния НВ на поведение водорода в сталях.

- 1. *Ткачев В.И., Холодный В.И., Левина И.Н.* Работоспособность сталей и сплавов в среде водорода. –Львов. –Вертикаль. –1999. –252 с.
- 2. Ткачев В.И. Некоторые аспекты водородной хрупкости сталей //Физикохимическая механика материалов. –1979. –№3. –С.31–35.
- 3. Влияние неметаллических включений на окклюзию водорода сталью в напряженном состоянии / С.К. Чумарев, В.Г. Старчак, Л.Г. Барг и др. // Известия АН СССР. –Металлы. –1972. –№1. –С.42–44.
- Касаткин Г.Н. Влияние неметаллических включений на механические свойств наводороженных сталей // Физико–химическая механика материалов. -2004. –№6. –С.115–119.
- Крылов В.П., Воробьева Н.И. Водородное охрупчивание стали с неметаллическими включениями //Металловедение и термическая обработка металлов. – 1973. –№5. –С.40–42.
- Влияние состава неметаллических включений на склонность стали 20 и водородному охрупчиванию / Б.А.Куслицкий, И.И.Курило, С.А.Злотников и др. // Физико–химическая механика материалов. –1970. –№5. –С.98–99.
- Куслицкий А.Б. Неметаллические включения и усталость стали. –К.: Техніка. 1976. –128 с.
- Родионова И.Г., Бакланова И.Г., Зайцев А.И. О роли неметаллических включений в ускорении локальной коррозии нефтепромысловых трубопроводов из углеродистых и низколегированных сталей //Металлы. –2004. №5. –С.13–18.
- Природа включений и водородостойкость углеродистой стали, модифицированной селеном и теллуром / М.И.Гасик, Ч.Д.Исмаилов, В.В.Трофименко и др. // Известия ВУЗов. Черная металлургия. –1988. №9. –С.52–56.

Статья рекомендована к печати докт.техн.наук, проф. Д.Н.Тогобицкой