УДК 548.3:539.2:533.951

А.В. Курдюмов, В.Ф. Бритун, В.В. Гарбуз, ⊺.В. Томила, В.В. Ярош, В.И. Ляшенко, В.Б. Зелявский

Институт проблем материаловедения им. И.Н. Францевича НАН Украины г. Киев, ул. Кржижановского, 3, Украина, 03680

О ПРИМЕСЯХ В НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКАХ ГРАФИТОПОДОБНОГО НИТРИДА БОРА И ИХ РОЛИ В ПРОЦЕССЕ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ УДАРНОМ СЖАТИИ

Ключевые слова: нитрид бора, нанопорошок, примесь, кислород, ударное сжатие, фазовое превращение

Методами химического анализа, ИК-спектроскопии, рентгеновской дифрактометрии и просвечивающей электронной микроскопии изучены взаимосвязь реальной структуры нанокристаллических порошков графитоподобного нитрида бора и содержания в них примесей кислорода, а также бора, избыточного по отношению к стехиометрическому составу. Исследовано влияние этих примесей на превращения BN₂ с различной степенью упорядоченности структуры в плотные модификации при высокотемпературном ударном сжатии.

Введение

В литературе неоднократно сообщалось о влиянии примесей кислорода, содержащегося в порошках графитоподобного нитрида бора (BN_r), на его фазовое превращение в сфалеритную модификацию ($BN_{c\phi}$) при высоких статических давлениях [1–4]. Было показано, что присутствие оксида бора в исходных порошках ускоряет фазовый переход и снижает *p*,*T*-параметры, необходимые для его развития. Роль кислорода в превращениях BN_r при ударном сжатии до настоящего времени не исследована.

Влияние примесей на превращения в BN может быть обусловлено двумя причинами, связанными с тем, в каком состоянии они находятся в исходной структуре. Если примеси образуют растворы замещения или внедрения, то линия равновесия BN_r-BN_{cb} на фазовой диаграмме должна сместиться, что приведет к изменению движущей силы превращения (разности термодинамических потенциалов исходной и образующейся фаз). Согласно работе [5], образование раствора внедрения более эффективно в этом смысле, хотя энергия образования растворов внедрения намного выше, чем растворов замещения. По данным работы [6], образование растворов замещения азота кислородом приводит к смещению линии равновесия на *р*, *Т*-диаграмме в сторону более низких температур, т. е. дестабилизирует сфалеритную фазу. Другой возможной причиной влияния примесей на фазовый переход является присутствие образуемых ими на поверхности частиц и зерен исходного BN, легкоплавких соединений, способствующих диффузионным процессам роста новой фазы.

© А.В. КУРДЮМОВ, В.Ф. БРИТУН, В.В. ГАРБУЗ, Т.В. ТОМИЛА, В.В. ЯРОШ, В.И. ЛЯШЕНКО, В.Б. ЗЕЛЯВСКИЙ, 2009 В настоящей работе исследованы состояние примесей в исходных нанокристаллических порошках турбостратного и слабоупорядоченного BNr и их роль в процессе фазовых превращений в плотные модификации — вюрцитную (BN_в) и сфалеритную (BN_{сф}). В дальнейшем смесь сфалеритной и вюрцитной модификаций нитрида бора будем обозначать как BN_{пп}.

Методика исследований

Исходные порошки BN_г получали методом карбамидного синтеза [7], подвергая азотированию в аммиаке смеси борной кислоты и карбамида при различном их мольном соотношении К и различных температурах (табл. 1). Химический состав исходных образцов приведен в табл. 2, где M₀ — содержание кислорода, M_в/M_N — отношение массовых процентов бора и азота, а $\Delta M_{\rm B}$ — содержание бора, избыточного по отношению к стехиометрическому составу BN, при котором $M_{\rm p}/M_{\rm N} = 0,77$. Все перечисленные в таблице образцы (кроме № 2а) содержали также 0,4÷0,5 масс.% углерода и ≈0,1 масс.% водорода. В образце № 2а, который был получен из образца № 2 кипячением порошка при 100 °С в дистиллированной воде и высушиванием на воздухе при 150 °C, наряду с повышенным содержанием кислорода (см. табл. 2) было обнаружено 0,9 масс.% водорода и 0,3 масс.% углерода.

Химический анализ образцов проводили с использованием комплекса методик, изложенных в работах [8–13]. Общее содержание бора определяли с помощью щелочного разложения BN в расплавах при 700 °C [8,9,11], азота — титрометрически по Кьельдалю, причем в случае BN_г разложение проводили в кислой фторидной среде [11],

Таблица 1. Условия карбамидного синтеза исходных образцов ВN (К — отношение мольных концентраций борной кислоты и карбамида в исходной шихте)

№ образца	K	<i>T</i> , °C
1	1:3	1100
2	1:3	1100
3	1:3	1200
4	1:3	1200
5	1:1	1200
6	1:1	1200

а в случае BN_{пп} — в расплаве NaOH-CaO [8]. Содержание углерода измеряли с помощью экспресс-анализатора АН 7529М по методике [13], кислород и водород определяли с помощью метода восстановительной экстракции и газовой хроматографии [9, 11]. Дополнительно были проведены тесты на селективную растворимость бора и азота в воде и растворах HNO₃-H₂O₂ при 100 °С в течение одного часа с последующим определением указанных элементов в отфильтрованных растворах [8, 11]. Для характеристики примесей в образцах использовали также метод ИК-спектроскопии в области длин волн 4000-400 см⁻¹ (прибор «Specord-M80»). Исследуемые порошки BN тщательно смешивали с порошком КВг в соотношении 1:300.

Фазовый переход BN_г→BN_{пп} осуществляли в условиях высокотемпературного ударного сжатия (ВТУС), основанного на использовании добавок с большей сжимаемостью и меньшей удельной теплоемкостью, чем BN₂ (что обеспечивает дополнительный нагрев исследуемого вещества при сжатии и его быстрое охлаждение при разгрузке [14]). В качестве добавки использовали порошок KCl, который смешивали с порошком BN_r в соотношении BN:KCl = 1:4 (по массе). Смесь порошков размалывали с ацетоном в течение двух часов в планетарной мельнице и просушивали, после чего помещали в кольцевой зазор цилиндрической ампулы сохранения, конструкция которой описана в работе [15]. Во всех взрывных экспериментах давление ВТУС было приблизительно одинаковым (≈30 ГПа), а температура ограничена температурой плавления используемой добавки KCl при указанном давлении (≈3800 °C). Продукты ударного сжатия, отмытые от KCl, исследовали методом количественного рентгенофазового анализа по методике, описанной в работе [16], а затем подвергали обогащению для удаления остаточной графитоподобной фазы. Обогащение проводили с помощью обработки в 60-процентном водном растворе КОН при температуре 250 °C, после чего охлажденную смесь отмывали от продуктов реакции в дистиллированной воде. Реальная кристаллическая структура обогащенных образцов рассмотрена в работах [17, 18].

Рентгенограммы порошков до и после ударного сжатия получали в СиК, -излучении на дифрактометре HZG-4A, исследования методом просвечивающей электронной микроскопии (ПЭМ) проводили на приборах JEM-100CX и JEM-2100F.

Результаты и их обсуждение

Рентгеновские дифрактограммы всех исходных образцов содержали только линии BN₂ (рис. 1). Некоторые характеристики их реальной структуры приведены в табл. 2, где Р, — степень трехмерной упорядоченности графитоподобной структуры BN,, определенная по методике [19], B_{002} — ширина линии 002; d_{002} и d_{002}' соответственно экспериментальные и расчетные значения межслоевых расстояний. Значения d_{002} определяли по положению центра тяжести профиля линии 002 после деления ординат I(20) на произведение множителей

HAHO CTPYKTYPHOE

ນ]

<u>repnanobenen</u>

Рис. 1. Рентгеновские дифрактограммы исходных образцов BN_г с различными значениями P₃: 1 образец № 2 ($P_3 = 0$); 2 — образец № 2а ($P_3 \approx 0,1$); 3 — образец № 5 ($P_3 = 0,3$)

Таблииа 2	. Х	Кимический	состав и	струк	турные	характе	ристики	исходных	образнов	BN
,					J I -		I	/1	- I I .	Г

	Химический состав, масс.%			Структурные характеристики					
№ образца	M_{0}	$\frac{M_B}{M_N}$	ΔM_B	P ₃	B_{002}^0	d ₀₀₂ , нм	d ₀₀₂ , нм		
1	4,5	0,86	4,6	0	8,0	0,363	0,343		
2	7,1	0,81	2,1	0	7,0	0,358	0,343		
2a	19,4	0,93	6,5	0,1	3,3	0,342	0,342		
3	6,5	0,80	1,5	0	5,0	0,347	0,343		
4	3,4	0,77	0	0	6,4	0,350	0,343		
5	5,9	0,81	1,9	0,3	2,0	0,340	0,340		
6	7,5	0,81	2,0	0,3	2,0	0,340	0,340		

Таблица 3. Степень фазовых превращений $BN_r \rightarrow BN_{nn}$ (m_{nn}) при ВТУС и относительное содержание $BN_{c\phi}$ ($m_{c\phi}$) и BN_b (m_c) в обогащенных образцах

Исходный образец BN _r			Фазовый состав образцов после ВТУС и обогащения, масс.%				
№ образца	<i>М</i> ₀ , масс.%	P ₃	N образца	т _{пл}	т _{сф}	m _e	
1	4,5	0	1-1	45	95	5	
2	7,1	0	2-2	40	>95	<5	
2a	19,4	≈0,1	2a–3	35	90	10	
26	5,7+20%B ₂ O ₃	0	2б—4	5	не определено		
3	6,5	0	3-5	45	95	5	
5	5,9	0,3	5-6	20	75	25	
6	7,5	0,3	6-7	25	80	20	

интенсивности; при этом учитывали смещение линии в сторону малых углов из-за слабого поглощения рентгеновских лучей в образце [20]. Погрешности измерения d_{002} составили ±0,002 и ±0,001 нм для широких и более узких линий соответственно. Значения d'_{002} определяли по зависимости величины d_{002} от P_3 , установленной в работах [21, 22] по аналогии с соответствующей зависимостью для графитных структур углерода [23]:

$$d'_{002}(\text{HM}) = 0.3328 + 0.0102(1 - P_3) - 0.091(1 - P_3)P_3$$
 (1)

Первый член в уравнении 1 представляет собой межслоевое расстояние в полностью упорядоченной структуре $BN_{_{\Gamma}}(P_{_3}=1)$, второй член определяет прирост значения d_{002} из-за присутствия фракции BN_г с турбостратной структурой, для которой «равновесное» значение межслоевого расстояния составляет 0,343 нм [22]; третий член учитывает взаимное влияние на величину d_{002} упорядоченных и неупорядоченных пар слоев в гомогенно упорядоченной структуре. Если структура гетерогенна, т. е. представлена областями с различными значениями P_3 вплоть до $P_3 = 0$, эффективное значение d_{002} определяется первыми двумя членами. Поскольку исходные порошки BN_г обладали скорее гетерогенной, чем гомогенной структурой, значения d'_{002} определяли по первым двум членам уравнения 1.

Параметр *а* турбостратных структур определяли по положению максимума интенсивности (θ_m) асимметричных линий 10 с учетом смещения θ_m в сторону больших углов, вызванного эффектом двумерной дифракции. Согласно [15]:

$$\Delta \sin \theta_m = 0.16\lambda / \bar{L_a}; \quad \bar{L_a} = \frac{1.84\lambda}{B_{10} \cos \theta_m} \quad (2),$$

где λ — длина волны, L_a — средний диаметр графитоподобных слоев в области когерентного рассеяния, B_{10} — ширина линии на полувысоте максимума интенсивности. Для всех исследованных турбостратных структур BN получено значение $a = 0,2503\pm0,002$ нм, что соответствует табличному значению для упорядоченных структур BN_r; величина L_a оказалась равной 4÷5 нм.

По данным ПЭМ, наиболее однородную структуру имели порошки турбостратного ВN, синтезированные при 1200 °С (№ 3 и № 4). Порошки состояли из высокопористых частиц с размерами пор до 50 нм и размерами зерен до 6 нм (рис. 2). Другие порошки турбостратного ВN, полученные при более низкой температуре (1100 °С), имели гетерогенную структуру, характеризуемую как высокопористыми, так и

Рис. 2. Электронно-микроскопические изображения турбостратного BN (образец № 3): а — светлопольное изображение нанопористой структуры частиц BN; б — темнопольное изображение кристаллитов

беспористыми частицами с размерами зерен от 5 и менее до 30 нм (порошки № 1 и № 2). Гетерогенной структурой характеризовались и порошки с частично упорядоченной структурой ВN. На рис. 3 приведено ПЭМ-изображение порошка № 5 ($P_3 = 0,3$). Порошок содержал три фракции частиц, отличающихся своей структурой. Первая фракция представлена пористыми частицами с размерами зерен менее 6 нм, вторая также пористыми частицами, но с размерами зерен до 40 нм (занимают более 50% объема), третья — беспористыми частицами, зеренная структура которых не выявляется. Аналогичную структуру имел порошок № 6.

Из табл. 2 видно, что измеренные межслоевые расстояния в образцах турбостратного BN_г намного превышают расчетное значение $d'_{002} = 0,343$, тогда как в образцах с частично упорядоченной структурой величины d_{002} отвечают структуре BN_г с соответствующим значением P_3 . Из таблицы также видно, что линия 002 от турбостратных структур значительно шире, чем от частично упорядоченных, причем в случае турбостратных структур величина B_{002} практически линейно возрастает с увеличением d_{002} Резкое увеличение значений d_{002} и B_{002} при переходе от слабо упорядоченных структур к турбостратным может быть обусловлено как наличием примесей в турбостратных структурах между слоями BN_г, так и нарушениями плоскостности этих слоев без участия примесей. В обоих случаях возникшие искажения решетки явятся препятствиями для упорядочения турбостратной структуры.

Вместе с тем корреляция между значениями d₀₀₂ в образцах турбостратного BN и содержанием в них примесей отсутствует (см. табл. 2). В образцах с частично упорядоченной структурой практически все примеси находятся на поверхности порошковых частиц, поскольку измеренные значения d_{002} полностью соответствуют расчетным. Все это позволяет считать, что и в турбостратных структурах примеси находятся на поверхности частиц, а более вероятной причиной увеличения межслоевых расстояний являются собственные искажения графитоподобных слоев. В связи с этим заметим, что искривления слоев (001) в турбостратном BN наблюдались нами непосредственно методом ПЭМ высокого разрешения (рис. 4).

Дополнительная информация о состоянии примесей в исходных образцах BN была получена при их исследовании методом ИКС. Полученные спектры (рис. 5) содержат полосы поглощения, характерные для следующих интервалов частот: $\upsilon = 3400 \div 3100$ и 1650÷1550 см⁻¹, относящиеся соответственно к валентным и деформа-

Рис. 3. Гетерогенная структура порошка № 5. 1, 2 и 3 — различные зеренные фракции порошковых частиц

Рис. 4. Изображение ПЭМ высокого разрешения турбостратного BN (образец № 3). Стрелками показаны кристаллиты, в которых плоскости (001) ориентированы перпендикулярно поверхности образца

ционным колебаниям О-Н и N-H-связей [24]; $v = 1200 \div 900$ и 700 ÷ 450 см⁻¹, которые интерпретируют как валентные антисимметричные и деформационные колебания О-В-О [25]. Полосы при v = 800 и 1380 см⁻¹ характеризуют соответственно вне- и внутрислоевые колебания В-N-связей [26]. Указанный интервал частот для О-В-О-связей относится к эталонному образцу В₂О₂. В спектрах исследованных образцов эта полоса смещена в сторону более низких частот, что можно связать с колебаниями В-О в цепочке с B-N; образование цепочки B-O-N возможно, например, при образовании на поверхности включений аморфной фазы в системе BN-B₂O₃ [27]. Отсутствие этой полосы в спектрах образцов № 3 и № 4 связано, по-видимому, с тем, что содержание избыточного бора в них было минимальным (см. табл. 2), а также с тем, что они, согласно ПЭМ (см. рис. 2 и 3), имели наименее рыхлую однородную структуру. По этой же причине полосы В-N в спектрах образцов № 3 и № 4 были наиболее интенсивными. Присутствие

Рис. 5. ИК-спектры поглощения исходных образцов BN (номера кривых соответствуют номерам образцов в табл. 2)

в спектрах всех исходных образцов полос в области 3400÷3100 см⁻¹, интенсивность которых возрастает с увеличением содержания кислорода, свидетельствует о его нахождении главным образом в составе групп ОН. Сравнение спектров от образцов № 2 и № 2а показывает, что после растворения части образца № 2 в кипящей воде резко возросла интенсивность полос поглощения, характерных для В–N, О–H и N–H-колебаний.

Как следует из приведенных в табл. 3 результатов, изменение содержания кислорода в исходных образцах турбостратного BN (от 4,4 до 19,4 масс.%), а также в образцах BN_r с частично упорядоченной структурой (от 5,9 до 7,5 масс.%) практически не повлияло на суммарный выход плотных фаз. В первом случае он составил 35÷45, а во втором — 20÷25 масс.%. Исключение составил образец № 2б (опыт ВТУС 2б-4), в который было введено 20 масс. % В₂О₃, что привело к снижению *m*_{пп} до 5%. Полученные результаты могут быть объяснены тем, что различия в содержании кислорода в исходных образцах BN нивелировались при последующей обработке порошков перед ВТУС, которая необходима для получения гомогенной смеси BN и KCl. Установлено, что после гомогенизации смеси с помощью ее размола в мельнице содержание кислорода во всех исходных порошках составляло 10±2 масс.%. В опыте № 2б-4 малая степень превращения объясняется тем, что В₂О₂ плавится при более низкой температуре, чем добавка KCl, вследствие чего снижалась температура ударного сжатия и вместе с этим уменьшалась скорость фазовых превращений в ВN.

Значительное влияние на фазовые превращения оказывает структурное совершенство исходного BN_r: при переходе от турбостратных структур к частично упорядоченным снижается суммарный выход плотных фаз и повышается доля вюрцитной фазы. Эти закономерности обусловлены как действием различных механизмов превращения (в турбостратных структурах осуществляется диффузионный переход с образованием BN_{cф}, а в упорядоченных фракциях частично упорядоченных структур — мартенситный переход с образованием BN_в [15]), так и тем, что турбостратные структуры, обладающие большей дефектностью и, следовательно, большей внутренней энергией, превращаются в плотные фазы с большей скоростью.

Химический анализ обогащенных порошков BN_{пп} показал, что содержание в них примесей возросло по сравнению с исходными порошками BN_г и составило в среднем: кислорода — 10 масс.%, углерода — 5,5 масс.%. Согласно работе [17], эти примеси, так же как и в порошках исходного BN_г, находятся преимущественно по границам зерен в поликристаллических частицах. Увеличение параметра решетки BN_{сф}, полученного методом ВТУС, превышает параметр высокочистого крупнокристаллического $BN_{c\phi}$ на 0,12%, однако однозначно связывать этот эффект с растворением примесей нельзя, так как он может быть связан также с наноразмерностью зерен BN_{сф}, как это наблюдалось в других нанокристаллических материалах (в алмазе и кремнии [28], селене [29], оксиде церия [30], многих металлах [31]).

Выводы

Порошки графитоподобного нитрида бора, получаемые методом карбамидного синтеза, характеризуются нанокристаллической структурой и высоким содержанием примеси кислорода, который находится в основном на поверхности порошковых частиц в составе группы ОН и аморфных соединений с бором. В зависимости от условий синтеза образцы могут обладать как турбостратной, так и упорядоченной структурой, причем в турбостратных структурах измеренные расстояния между графитоподобными слоями намного превышают значения, рассчитанные для идеализированных структур, состоящих из параллельных плоских слоев. Искажения, существующие в турбостратных структурах, являются препятствием на пути их упорядочения.

В условиях высокотемпературного ударного сжатия степень превращения графитоподобного ВN практически не зависела от содержания кислорода в исходных образцах, поскольку различия в его содержании нивелировались при обработке порошков перед ВТУС. Специально введенная примесь В₂O₃ не способствовала фазовым превращениям BN_г в плотные модификации (как при статическом сжатии), а наоборот, препятствовала их развитию, что обусловлено снижением температуры ударного сжатия из-за плавления B₂O₃.

HAHO CTPYKTYPHOE

Методами хімічного аналізу, ІЧ-спектроскопії, рентгенівської дифрактометрії та просвічувальної електронної мікроскопії досліджено взаємозв'язок реальної структури нанокристалічних порошків графітоподібного нітриду бору та вмісту в них домішок кисню, а також бору, який є надлишковим стосовно стехіометричного складу. Досліджено вплив цих домішок на перетворення BN_r із різним ступенем упорядкованості структури на щільні модифікації при високотемпературному ударному стисканні.

Ключові слова: нітрид бору, нанопорошок, домішка, кисень, ударне стискання, фазове перетворення

The correlation between the real structure and contents of oxygen and super-stoichiometric boron in nanocrystalline powders of graphite-like boron nitride has been studied by chemical analysis, IR spectroscopy, X-ray diffraction and transmission electron microscopy. The effect of those elements on transformations of hBN with various extent of structure ordering into dense modifications upon high-temperature shock compression has been examined.

Key words: nitride, nanopowder, impurities, oxygen, shock compression, phase transformation

- Corrigan F.R., Bundy F.P. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures // J. Chem. Phys. — 1975. — 63, № 9. — P. 3812–3820.
- Полиморфные превращения графитоподобного нитрида бора различной степени кристаллического совершенства при высоких давлениях / Курдюмов А.В., Гладкая И.С., Голубев А.С. и др. // Известия АН СССР. Серия «Неорганические материалы». — 1982. — 18, № 11. — С. 1835–1838.
- 3. Исследование образования β-ВN в присутствии добавок борного ангидрида / Мазуренко А.М., Леусенко А.А., Шиманович П.П. и др. // Сверхтвердые материалы. — 1982. — № 2. — С. 11–12.
- Singhal S.K., Park J.K. Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg-Al alloy catalyst solvent // J. Cryst. Growth. — 2004. — V. 260. — P. 217–222.
- Mosuang T.E., Lowther J.E. Influence of defects on the h-BN to c-BN transformation // Phys. Rev. B. — 2002. — 66. — P. 014112-1–014112-5.
- 6. *Turkevich V.Z.* The parameters of equilibrium between oxygen solid solution in cubic and graphite-like hexagonal

boron nitride // Diamond and Relat. Mater. — 1999. — V. 8. — P. 2032–2035.

- Структурно-химические закономерности карбамидного синтеза нанокристаллического графитоподобного нитрида бора / Курдюмов А.В., Бартницкая Т.С., Ляшенко В.И. и др. // Порошковая металлургия. — 2005. — № 11–12. — С. 88–97.
- Методики химического анализа борсодержащих тугоплавких соединений / Под ред. Т.Н. Назарчук. — К., 1984. — 60 с. (Препринт № 12 / ИПМ АН УССР).
- Анализ тугоплавких соединений / Под ред. Г.В. Самсонова. М.: ГНТИЛЧЦМ, 1962. 256 с.
- Вассерман А.М., Кунин Л.Л., Суровой Ю.Н. Определение газов в металлах. Метод восстановительного плавления в атмосфере газа-носителя. — М.: Наука, 1976. — 344 с.
- Усовершенствование методов химического анализа тугоплавких соединений и металлических сплавов / Дубок В.А., Корнилова В.И., Печентковская Л.Е. и др. — К.: Наукова думка, 1988. — 40 с.
- ГОСТ 27417-87. Порошки металлические. Методы определения кислорода. — М.: Изд-во стандартов, 1988. — 9 с.
- Определение содержания углерода в тугоплавких нитридах с помощью экспресс-анализаторов типа АН 7529 и АН 7560 / Корнилова В.И., Гарбуз В.В., Манжелей Г.П. и др. // Порошковая металлургия. — 1993. — № 9–10. — С. 119–121.
- Мартенситные и диффузионные превращения в углероде и нитриде бора при ударном сжатии / А.В. Курдюмов, В.Ф. Бритун, Н.И. Боримчук, В.В. Ярош. К.: Изд-во Куприяновой, 2005. 191 с.
- Warren B.E. Diffraction in random layer lattices // Phys. Rev. — 1941. — 59, № 9. — P. 693–698.
- Особенности количественного рентгенофазового анализа порошковых слабопоглощающих объектов с дефектной структурой / Курдюмов А.В., Зелявский В.Б., Островская Н.Ф. и др. // Порошковая металлургия. 1998. № 11–12. С. 103–109.
- 17. Структурные особенности нанокристаллических порошков сфалеритного нитрида бора, образующегося при ударном сжатии турбостратного BN/Курдюмов А.В., Бритун В.Ф., Даниленко А.И. и др. // Наноструктурное материаловедение. — 2007. — № 1. — С. 9–16.
- Курдюмов А.В., Даниленко А.И., Бритун В.Ф. Структурные характеристики сфалеритной модификации

нитрида бора ударно-волнового синтеза // Кристаллография. — 2009. — **54**, № 1. — С. 144–147.

- Курдюмов А.В. О дефектах упаковки в графитоподобном нитриде бора // Кристаллография. 1975. 20, вып. 5. С. 969–973.
- 20. *Курдномов А.В.* Особенности рентгеновских дифрактограмм слабопоглощающих объектов при съемках «на отражение» // Кристаллография. 2000. **45**, № 2. С. 199–201.
- 21. Особенности реальной структуры графитоподобного ВN и его превращения в вюрцитную модификацию при ударном сжатии / Курдюмов А.В., Зелявский В.Б., Островская Н.Ф. и др // Порошковая металлургия. — 1994. — № 9–10. — С. 62–66.
- Kurdyumov A.V., Solozhenko V.L., Zelyavski W.B. Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection // J. Appl. Cryst. — 1995. — 28. — P. 540–545.
- 23. *Franklin R.E.* The structure of graphitic carbons // Acta Crystallogr. -1951. V. 4. -P. 253-261.
- Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds. — J. Willey & Sons, INC, New York, London, 1966. — 411 p.
- Galenner F., Lugovsky G., Mikkelsen J. Vibrational spectra of pure vitreous B₂O₃// Phys. Rev. — 1980. — 22B, № 8. — P. 3983–3990.
- Структурные особенности и ИК-спектры поглощения ультрадисперсного нитрида бора / Чукалин В.И., Чуканов Н.В., Гуров С.В. и др. // Порошковая металлургия. — 1988. — № 1. — С. 85–90.
- Hubacek M., Sato T., Ishii T. A Coexistence of Boron Nitride and Boric Oxide // J. Sol. Stat. Chem. — 1994. — 109. — P. 384–390.
- 28. *Gamarnik M.* Size changes of lattice parameters in ultradisperse diamond and silicon // Phys. Stat. Sol. B. 1990. **161**, № 2. P. 457–462.
- Zhao Y.H., Zhang K., Lu K. Structure characteristics of nanocrystalline element selenium with different grain sizes // Phys. Rev. B. — 1997. — 56, № 22. –P. 14322–14329.
- Leoni M., Scardi P. Nanocrystalline domain size distributions from powder diffraction data // J. Appl. Cryst. — 2004. — 37. — P. 629–634.
- Qin W., Szpunar J.A. Origin of lattice strain in nanocrystalline materials // Phil. Mag. Lett. — 2005. — 85, № 12. — P. 649–656.