УДК 536.24:533.6.011

Письменный Е.Н., Терех А.М., Баранюк А.В., Бурлей В.Д.

Национальный технический университет Украины «КПИ»

ТЕПЛООБМЕН И АЭРОДИНАМИЧЕСКОЕ СОПРОТИВЛЕНИЕ МАЛОРЯДНЫХ ПУЧКОВ ПЛОСКО-ОВАЛЬНЫХ ТРУБ С НЕПОЛНЫМ ОРЕБРЕНИЕМ

Виконані дослідження конвективного теплообміну і аеродинамічного опору малорядних шахових і коридорних пучків плоско-овальних труб з неповним обребренням. Отримані узагальнюючі залежності для розрахунку поправок, що враховують вплив кількості поперечних рядів труб в пучку на його теплообмін та аеродинамічний опір.

Выполнены исследования конвективного теплообмена и аэродинамического сопротивления малорядных шахматных и коридорных пучков плоско-овальных труб с неполным оребрением. Получены обобщающие зависимости для расчета поправок, учитывающих влияние числа поперечных рядов труб в пучке на его теплообмен и аэродинамическое сопротивление. Researches of heat trasfer and aerodynamic resistance of few rows staggered and in-line banks of flat-oval tubes with incomplete fins are executed. Generalizing dependences are obtained for calculation of correction accounting for the effect of the number of transversal rows of tubes in a bank on its heat transfer and aerodynamic resistance.

S — шаг между трубами;

w – скорость потока;

 ${\rm z}_{2}$ – число поперечных рядов труб;

АВО – аппарат воздушного охлаждения;

Безразмерные комплексы:

Nu – число Нуссельта;

Введение

Малорядные пучки из ребристых труб применяют в калориферах для лесосушильных камер, подогрева дутьевого воздуха в котлах, в системах вентиляции, кондиционирования и воздушного отопления общественных зданий и промышленных предприятий, в теплообменных секциях аппаратов воздушного охлаждения (ABO). Число поперечных рядов труб z_2 по направлению движения воздуха в таких устройствах обычно составляет 1...3, в ABO z_2 = 3...6.

Отсутствие рекомендаций по определению влияния количества поперечных рядов труб z_2 на теплообмен и аэродинамическое сопротивление пучков способствует принятию противоречивых конструкторских решений при проектировании теплообменных устройств из ребристых труб.

В связи с этим актуальными являются вопросы создания надежных обобщенных за-

Re – число Рейнольдса;

Еи – Число Эйлера;

Нижние инлексы:

к – конвективный;

0 – на один поперечный ряд;

1 – поперечный;

2 – продольный.

висимостей для расчета поправок, учитывающих влияние входных рядов на теплообмен и аэродинамическое сопротивление пучков труб. Неучет влияния входных рядов может привести к неоправданному занижению или завышению площади теплообменной поверхности и сопротивления устройства.

В НТУУ "КПИ" проведены экспериментальные исследования влияния на теплообмен и аэродинамическое сопротивление числа поперечных рядов шахматных и коридорных компоновок плоско-овальных труб с неполным оребрением [1-4] (рис. 1, 2).

Влияние числа поперечных рядов труб на теплообмен и аэродинамическое сопротивление пучков обычно учитывается поправками C_z и C_z ' в обобщенных уравнениях (1), (2):

$$Nu = C_z C_q Re^m, (1)$$

$$\mathrm{Eu}_0 = C_z' C_s \mathrm{Re}^{-n}. \tag{2}$$

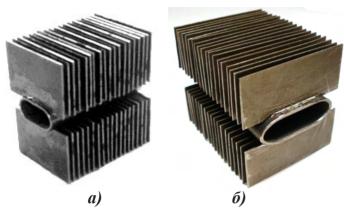
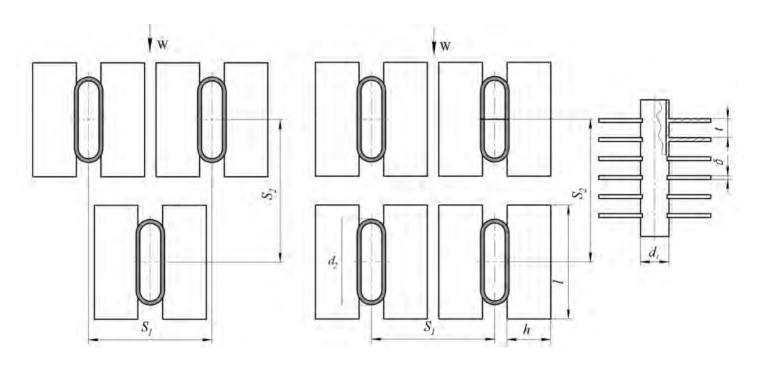



Рис. 1. Плоско-овальная труба с неполным оребрением: $a - mun \ 1$; $6 - mun \ 4$.

1. Теплообмен малорядных пучков плоско-овальных труб с неполным оребрением

Экспериментальные исследования теплообмена во входных рядах пучков проведены путем последовательного удаления поперечных рядов многорядного пучка ($z_2 = 6$ - 7). Таким образом определялись значения чисел Нуссельта для 1-го, 2-х, 3-х, 4-х, 5-и, 6-и рядных компоновок пучка. В таблицах 1 - 3 приведены геометрические характеристики плоско-овальных труб и пучков для которых проведены исследования влияния на теплообмен числа поперечных рядов труб. Значения поправки C_z вычислялись относительно средних коэффициентов теплоотдачи десятирядных пучков.

а) б) в) Рис. 2. Пучки труб: а – шахматный пучок; б – коридорный пучок; в – плоско-овальная труба.

Обработка экспериментальных данных для шахматных и коридорных компоновок показала увеличение интенсивности теплообмена при переходе от первого ко второму- третьему рядам пучка, что можно объяснить ростом степени турбулентности потока по мере его продвижения вглубь пучка (рис. 3).

Для коридорных пучков рост интенсивности теплоотдачи при переходе от ряда к ряду проявляется слабее нежели для шахматного (рис. 4, 5), что объясняется различным механизмом обтекания труб пучков этих компоновок [5, 6].

T 7 1 F		_
Таблина I Теоме	трические характеристи	си опеопенных тпуо
Tuominga T. Toomi	This icontile Aupuntopherin	an opcopeniining ipyo

Наименования величин	Обозн.	Труба тип 1	Труба тип 2	Труба тип 3	Труба тип 4	Труба тип 5
Поперечный размер несущей трубы	d_1 , mm	15,0	16,0	15,0	15,0	15,0
Продольный размер несущей трубы	d_2 , mm	30,0	40,0	30,0	42,0	42,0
Высота ребер	h, MM	27,5	28,5	22,0	23,0	23,0
Шаг ребер	t, mm	3,65	3,40	3,65	3,75	3,50
Длина ребер	l, mm	48,5	48,5	48,5	55,5	55,5
Коэф. оребрения	Ψ	21,50	18,47	17,68	15,16	16,2

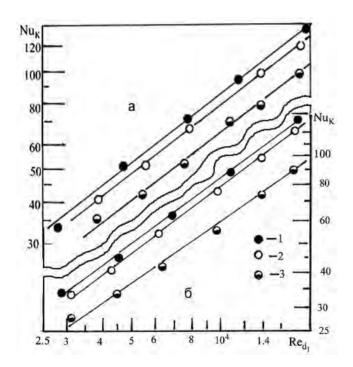


Рис. 3. Теплообмен входных рядов шахматных пучков труб: а – пучок Ш1; б – пучок Ш5; 1 – пятый ряд, 2 – третий, 3 – первый.

На рис. 6 нанесены осредненные по экспериментальным данным расчетные кривые зависимости поправки C_z от числа рядов пучка плоско-овальных труб: кривая 1 для шахматных пучков, кривая 2 для коридорных. Кривая для шахматных пучков более крутая и распола-

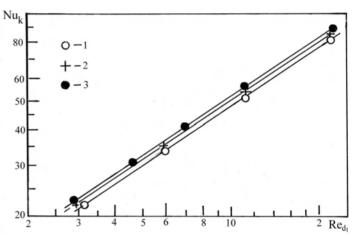


Рис. 4. Теплообмен входных рядов коридорного пучка К1: 1 – первый ряд; 2 – третий; 3 – пятый.

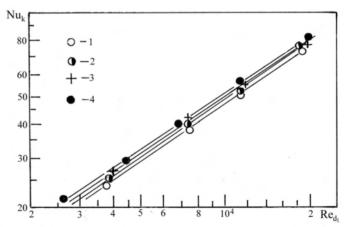


Рис. 5. Теплообмен входных рядов коридорного пучка К3: 1 – первый ряд; 2 – второй; 3 – третий; 4 – шестой.

Номер размещения	S_1 , MM.	S_2 , mm	S_1/d_1	S_2/d_1	S_1/S_2
Плоскоовальная труба с неполным оребрением типа 1					
Ш1	79	53	5,27	3,53	1,490
III2	79	80	5,27	5,33	0,988
III3	101	53	6,75	3,53	1,910
III4	135	53	9,00	3,53	2,547
Плоскоовальная труба с неполным оребрением типа 2					
Ш5	79	53	4,94	3,31	1,490

80

53

53

80

60

Плоскоовальная труба с неполным оребрением типа 4

Плоскоовальная труба с неполным оребрением типа 5

101

135

79

86

Таблица 2. Геометрические характеристики шахматных пучков оребренных труб

Таблица 3. Геометрические характеристики коридорных пучков оребренных труб

6,33

8.44

5,27

5.73

Номер размещения	S_1 , MM.	S_2 , mm	S_1/d_1	S_2/d_1	S_{1}/S_{2}
Плоскоовальная труба с неполным оребрением типа 3					
K1	66	60	4,40	4,0	1,100
К2	86	60	5,73	4,0	1,433
Плоскоовальная труба с неполным оребрением типа 4					
К3	86	60	5,73	4,0	1,433

гается ниже кривой для коридорной компоновки. Это свидетельствует о том, что: во-первых стабилизация течения и теплообмена для шахматных пучков происходит быстрее нежели для коридорных, и во-вторых входные ряды коридорной компоновки в меньшей степени влияют на интенсивность теплообмена, чем шахматные.

Ш6

Ш7

Ш8

1119

III10

Математическое описание опытного массива данных (кривые 1 и 2 рис. 6) с точностью $\pm 4\%$ дает следующие зависимости для расчета поправки на малорядность пучка в формуле (1):

шахматные пучки плоско-овальных труб с неполным оребрением

$$C_z = 3,23z_2^{0,021} - 2,38,$$
 (3)

0,988

1.910

2.547

0.988

1.433

5,00

3,31

3.31

5,33

4.00

коридорные пучки плоско-овальных труб с неполным оребрением

$$C_z = 3,67z_2^{0,01} - 2,77. (4)$$

На рис. 6 для сравнения полученных результатов нанесены и кривые поправки $C_z = f(z_2)$ для шахматных (кривая 3 с $S_1/S_2 > 2$, кривая 4 с $S_1/S_2 < 2$) и коридорных (кривая 5) пучков круглых труб с шайбовым и спирально-ленточным оребрением [5, 6]. Кривые 3, 4 по мере увеличения z_2 возрастают как и для пучков плоско-

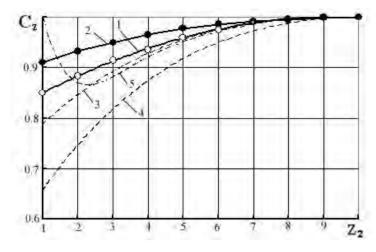


Рис. 6. Зависимость поправки Cz от числа рядов для пучков поперечнооребренных труб: 1 — шахматные пучки плоско-овальных труб с неполным оребрением; 2 — коридорные пучки плоскоовальных труб с неполным оребрением; 3 — шахматные пучки кругло-ребристых труб при $S_1/S_2 > 2$ [5, 6]; 4 — шахматные пучки кругло-ребристых труб при $S_1/S_2 < 2$ [5, 6]; 5 — коридорные пучки кругло-ребристых труб [5, 6].

овальных труб с неполным оребрением, однако входные ряды труб в этом случае оказывают более сильное влияние на интенсивность теплообмена, а сама поправка для шахматных пучков круглоребристых труб изменяется от 0,8 до 1 при изменении z_2 от 1 до 8 для $S_1/S_2 > 2$ и от 0,67 до 1 для $S_1/S_2 < 2$. Такую довольно большую разницу в кривизне кривых 3 и 4 по мере увеличения z_2 можно объяснить тем, что для шахматных пучков с $S_1/S_2 < 2$ стабилизация течения и теплообмена в пучке происходит быстрее чем для $S_1/S_2 > 2$.

Для коридорных пучков круглоребристых труб поправка C_z имеет клюшкообразный вид (кривая 5 рис. 6) с минимумом величины поправки при z_2 =2-3. В то же время значения C_z в области $z_2 \ge 2$ достаточно хорошо аппроксимируются зависимостью, полученной для малорядных шахматных круглоребристых пучков с отношением шагов труб $S_1/S_2 > 2$. Это обстоя-

тельство не является случайным, так как шахматная компоновка с $S_1/S_2 > 2$ по характеру обтекания труб приближается к коридорной [5].

Расчетные зависимости для поправки C_z пучков из круглых труб с шайбовым и спирально-ленточным оребрением имеют вид [5, 6]:

шахматные пучки при $z_2 < 8$ и коридорные при $2 \le z_2 < 8$ с $S_1/S_2 > 2$

$$C_z = 3.5z_2^{0.03} - 2.72$$
, (5)

шахматные пучки при $z_2 < 8$ с $S_1/S_2 < 2$

$$C_z = 3,15z_2^{0,05} - 2,5. (6)$$

Для всех рассмотренных компоновок пучков из различных видов труб при $z_2 \ge 8$ поправка C_z =1.

2. Аэродинамическое сопротивление малорядных пучков плоско-овальных труб с неполным оребрением

Влияние на аэродинамическое сопротивление входных рядов пучков плоско-овальных труб экспериментально исследовано для шахматных и коридорных компоновок. Поправка на малорядность C_z' представлена как функция отношения чисел Эйлера, приходящихся на один ряд малорядного пучка $\mathrm{Eu}_{0\mathrm{i}}$, к числам Эйлера Eu_0 , приходящихся также на один ряд, но многорядного пучка $(z_2 \geq 6)$ для которого при дальнейшем увеличении количества поперечных рядов труб z_2 числа Eu_0 достигают своего предельного значения:

$$C'_{z} = \frac{\operatorname{Eu}_{0i}/z_{2i}}{\operatorname{Eu}_{0}/z_{2}} = f(z_{2}).$$
 (7)

На рис. 7 представлены в логарифмических координатах зависимости чисел Эйлера Eu_0 от чисел Рейнольдса при изменении числа поперечных рядов для шахматных пучков плоско-овальных труб (пучки Ш 2, Ш 10). С уменьшением z_2 , как свидетельствует рис. 7, для исследованных шахматных пучков не наблюдается увеличения сопротивления

пучка, т.е. можно сказать, что поправка $C_z'=1$ не зависит от количества поперечных рядов z_2 . Такой же результат исследования влияния входных рядов шахматных пучков на аэродинамическое сопротивление для круглых труб с завальцованным спирально-ленточным оребрением получили авторы [7].

Для коридорных пучков плоско-овальных труб (рис. 8, рис. 9) с ростом числа поперечных рядов в пучке числа Эйлера, отнесенные к одному поперечному ряду уменьшаются и при $z_2 = 5-6$ достигают своего предельного значения.

На рис. 10 нанесены расчетные кривые зависимости поправки C_z ' от числа рядов для шахматных (кривая 1) и коридорных (кривая 2) пучков плоско-овальных труб. Кривая 1, как указывалось выше, описывается прямой, параллельной оси z_2 : C_z ' =1. На рис. 10 нанесена также кривая 3 для шахматных пучков круглых труб с приварным спирально-ленточным оребрением [8, 9].

Кривая 2 на рис. 10 показывает влияние входных рядов труб для коридорной ком-

Рис. 7. Аэродинамическое сопротивление входных рядов шахматных пучков плоскоовальных труб: a – пучок Ш 2: $1-z_2=1;\ 2-z_2=2;\ 3-z_2=3;\ 4-z_2=4;\ 6-z_2=6.$ 6 – пучок Ш 10: $1-z_2=1;\ 2-z_2=2;\ 3-z_2=3;\ 4-z_2=4;\ 5-z_2=5;\ 6-z_2=6.$

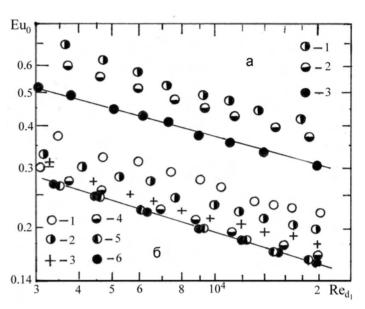


Рис. 8. Аэродинамическое сопротивление входных рядов коридорных пучков плоско-овальных труб:

$$a-$$
 пучок K 1: $1-z_2=2$; $2-z_2=4$; $3-z_2=6$. $6-$ пучок K 3: $1-z_2=1$; $2-z_2=2$; $3-z_2=3$; $4-z_2=4$; $5-z_2=5$; $6-z_2=7$.

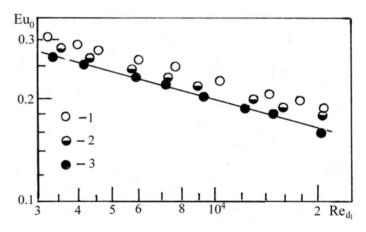


Рис. 9. Аэродинамическое сопротивление входных рядов коридорного пучка K 2: $1-z_2=1; 2-z_2=4; 3-z_2=6.$

поновки из плоско-овальных труб с неполным оребрением и описывается следующим соотношением:

$$C'_z = 1, 4z_2^{-0,192}$$
, (8) при $z_2 \ge 6 C'_z = 1$.

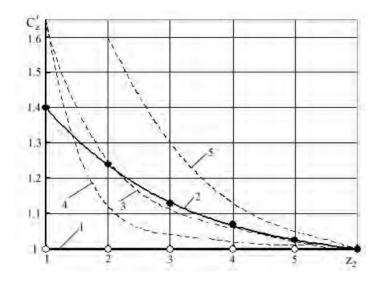


Рис. 10. Зависимость поправки С_z' от числа рядов для пучков поперечно-оребренных труб: 1 — шахматные пучки плоско-овальных труб с неполным оребрением; 2 — коридорные пучки плоско-овальных труб с неполным оребрением; 3 — шахматные пучки кругло-ребристых труб [8, 9]; 4 — коридорные пучки кругло-ребристых труб [5]; 5 — коридорные пучки кругло-ребристых труб [8, 9].

На рис. 10 для сравнения нанесены кривые поправки на малорядность $C_z' = f(z_2)$ для коридорных пучков круглых труб с шайбовым и спирально-ленточным оребрением из [5] (кривая 4) и [8, 9] (кривая 5). Как видно из рисунка при сохранении общей тенденции роста величины C_z с уменьшением z_2 наблюдается заметное отклонение обобщающей кривой 4 от нормативной зависимости (кривая 5), которая получена в работе [10] только в графическом виде. Нормативная кривая 5 располагается значительно выше нормативной кривой 3, что не соответствует характеру изменения величины Еи по глубине трубных пакетов с коридорной компоновкой. В этом случае с ростом числа поперечных рядов в области $1 \le z_2 < 6$ величина $\mathrm{Eu}_0^{}$ должна падать быстрее, чем падает $\mathrm{Eu}_0^{}$ в случае шахматной компоновки при прочих равных условиях. Кроме того, значения этих величин должны совпадать при $z_2 = 1$. Отмеченное обстоятельство свидетельствует о недостаточной точности нормативной зависимости (кривая 5) для коридорных пучков круглоребристых труб.

Зависимость для определения поправки C_z на малорядность коридорных пучков круглоребристых труб (кривая 4) соответствует указанной выше тенденции и описывается следущим соотношением:

При
$$z_2 < 6$$
 $C'_z = 1 + \frac{0,65}{(z_2)^3}$ (9)
При $z_2 \ge 6$ $C'_z = 1$.

Выводы

- Входные ряды существенно влияют на интенсивность теплообмена и аэродинамическое сопротивление пучков. Это влияние проявляется тем больше, чем меньше число поперечных рядов труб в пучке.
- При расчете и проектировании малорядных трубчато-ребристых теплообменников, например калориферов, теплообменных секций АВО и др. неучет влияния входных рядов труб может привести к занижению поверхности нагрева и сопротивления пучка, что в свою очередь влечет к росту температуры внутреннего теплоносителя на выходе (при его охлаждении), неправильному выбору тяго-дутьевых устройств или работе их не в оптимальном режиме и к снижению надежности теплообменного аппарата в целом.
- Величину поправки C_z , учитывающую влияние на теплообмен числа поперечных рядов плоско-овальных труб с неполным оребрением для шахматной компоновки, предлагается определять по формуле (3), для коридорной по (4).
- Входные ряды шахматных пучков плоско-овальных труб не влияют на аэродинамическое сопротивление пучка, поправка при этом равна 1.
- Величину поправки C_z , учитывающей влияние на сопротивление числа поперечных рядов плоско-овальных труб с неполным оре-

брением для коридорной компоновки, предлагается определять по зависимости (8).

ЛИТЕРАТУРА

- 1. Письменний С.М., Терех О.М., Рогачов В.А., Бурлей В.Д. Теплообмінна труба. Деклараційний патент на корисну модель. Україна. №4871. 15.02.2005. Бюл. № 2.
- 2. *Письменний Є.М., Терех О.М., Рогачов В.А., Бурлей В.Д.* Теплообмінна труба. Патент на корисну модель. Україна. № 25025 25.07.2007. Бюл. №11.
- 3. Письменный E.H. Новые эффективные развитые поверхности теплообмена для решения задач энерго-и ресурсосбережения // Пром. теплотехника. 2007. T.29, №5. C. 7-16.
- 4. *Багрий П.И*, *Терех А.М.*, *Рогачев В.А*. Сравнение тепловой эффективности шахматных пучков поперечно-оребренных труб различного профиля // Восточно-Европейский журнал передовых технологий. − 2007. − №6/5 (30). − С. 51-56.
 - 5. Письменный Е.Н. Теплообмен и аэроди-

- намика пакетов поперечно-оребренных труб.-Киев: Альтерпрес, 2004. – 244 с.
- 6. Письменный Е.Н., Терех А.М. Теплообмен малорядных пучков поперечно-оребренных труб // Пром. теплотехника. -1991.-T.13, №3. -C.55-60.
- 7. Кунтыш В.Б., Кузнецов Н.М. Тепловой и аэродинамический расчеты оребренных теплообменников воздушного охлаждения // С-Пб.: Энергоатомиздат. Санкт-Петерб. отд., 1992. 280 с.
- 8. *Аэродинамический расчет* котельных установок (Нормативный метод) /под ред. С.И. Мочана. Изд.3-е. Л.: Энергия, 1977. 256 с.
- 9 *PTM* 108..030.140-87 Расчет и рекомендации по проектированию поперечно-оребренных конвективных поверхностей нагрева стационарных котлов. М.: Минэнергомаш 1988. 30 с.
- 10. *Юдин В.Ф.*, *Тохтарова Л.С.* Сопротивление пучков ребристых труб при поперечном омывании потоком // Энергомашиностроение. $-1974. N_26. C. 30-32.$

Получено 17.12.2009 г.