УДК 621.438

Шкляр В.И., Дубровская В.В., Задвернюк В.В., Колпаков А.Г.

Национальный технический университет Украины «Киевский политехнический институт»

ЭКСЕРГЕТИЧЕСКИЙ АНАЛИЗ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ

Проведено ексергетичний аналіз двох типів ГТУ, які працюють за простою схемою. Розраховано втрати ексергії в елементах обладнання.

Проведен эксергетический анализ двух типов ГТУ, работающих по простой схеме. Рассчитаны потери эксергии в элементах оборудования.

The exergy analysis of two simple scheme gas turbines is performed. The exergy losses in GTU elements are calculated.

Ex – эксергия;

G – расход рабочего тела;

p — давление;

 Δs — изменение энтропии;

T, t – температура;

 η_{EX} – эксергетический КПД;

Украина имеет достаточно развитую отрасль газотурбостроения, способную обеспечить любые потребности энергетики в ГТУ. Появление на отечественном рынке энергетических ГТУ малой и средней мощности с неплохими экономическими показателями (КПД, габаритные размеры, стоимость) и с использованием разных видов топлива, в том числе биогаза, доменного, коксового и синтетических газов, дает возможность реализовывать комбинированное производство электроэнергии и теплоты.

В связи с тем, что ГТУ, даже если они работают по одному и тому же циклу, имеют в своем составе агрегаты с разными техническими характеристиками и параметрами рабочих тел, отличаются условиями эксплуатации, местом установки, всегда существует необходимость выбора наиболее эффективной ГТУ для энергообеспечения заданного объекта.

Цель работы – анализ эффективности работы газотурбинных установок эксергетическим методом.

Для анализа эффективности работы ГТУ используют разнообразные методы, отличающиеся как по своей сути, так и по целям, которые необходимо достичь в результате их применения. Среди таких методов, получивших широкое распространение в последние годы, необходимо от-

 Π – потери эксергии.

Индексы нижние:

BX - BXOД;

вых - выход;

о – окружающая среда.

метить эксергетический [1-3].

В соответствии с этим методом любую теплоэнергетическую установку или ее узел можно условно изобразить в виде так называемого "термодинамического ящика" [2], ограниченного контрольной поверхностью, к которой подводятся и отводятся разные по качеству и количеству виды энергии, пригодные для технического использования, в четырех различных формах — механической (или электрической) энергии, эк-сергии теплоты, эксергии потока и химической эксергии (эксергии топлива). Через эту же поверхность отводятся эксергетические потери. В отдельных случаях некоторые потоки могут отсутствовать.

Эксергетический баланс любой теплоэнергетической установки базируется на уравнении:

$$Ex_{\rm BHX} = Ex_{\rm BX} - \sum_{\rm i=0}^{\rm n} \Pi_{\rm i} \; ,$$

где Ex_{BX} , Ex_{BMX} эксергия на входе и выходе установки.

Эксергетические потери, вызванные каким-либо необратимым процессом, равны произведению абсолютной температуры окру-

жающей среды на прирост энтропии системы:

$$\sum_{i=0}^{n} \Pi_{i} = T_{o} \cdot \sum_{i=0}^{n} \Delta s_{i} .$$

Передача теплоты при конечной разности температур является необратимым процессом, связана с возрастанием энтропии и потерей части максимально возможной работы. В связи с этим, основным показателем эксергетического метода является эксергетический КПД [1,3], равный отношению эксергии, полезно отведенной из установки ($Ex_{\rm BX}$ - $Ex_{\rm Bhix}$), к эксергии, подведенной к ней $Ex_{\rm RX}$:

$$\eta_{\rm EX} = \frac{Ex_{\rm BX} - Ex_{\rm BMX}}{Ex_{\rm BX}} \cdot 100\%.$$

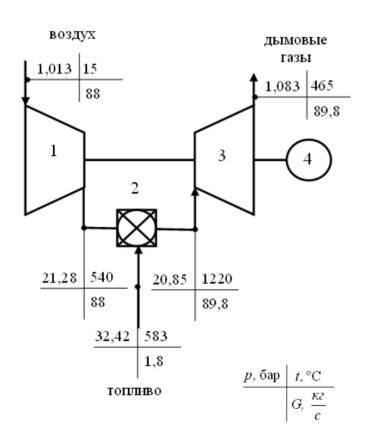


Рис. 1. Схема ГТУ с параметрами установки UGT – 25000 1 – компрессор; 2 – камера сгорания; 3 – турбина; 4 – электрогенератор.

Он характеризует термодинамическое совершенство работы как любого узла, так и установки в целом.

Для проведения эксергетического анализа была разработана компьютерная программа, позволяющая определить основные термодинамические параметры (давление, температуру, энтальпию) и массовый расход рабочего тела в характерных точках схемы ГТУ при заданных начальных режимных параметрах. В результате расчетов определяются энергетические показатели установки.

С целью выбора ГТУ для покрытия электрической нагрузки в 25 МВт проведем сравнительный эксергетический анализ двух ГТУ простого цикла [4]:

- UGT 25000, разработанной Николаевским НПП "Машпроект";
 - FT8, созданной компанией "Pratt & Whitney

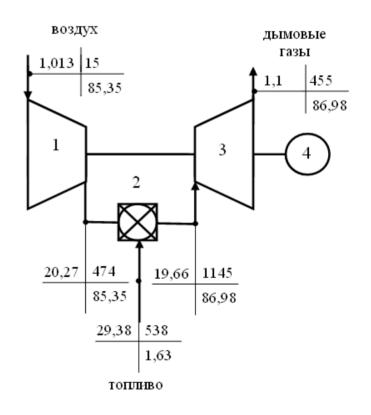


Рис. 2. Схема ГТУ с параметрами установки FT8. Обозначения те же, что и на рис. 1

Табл. 1. Основные характеристики ГТУ

Наименование величины, размерность	UGT – 25000	FT8
Полезная мощность на клеммах генератора, МВт	26,7	25,5
Начальная температура воздуха перед компрессором, °C	15	
Расход воздуха, кг/с	88	85,35
Температура газов на входе в турбину, °С	1220	1145
Температура газов на выходе из турбины, °С	465	455
Максимальное отношение давлений в цикле	21	20
Общий эффективный КПД установки, %	36,5	38
Адиабатный КПД компрессора установки	0,76	0,85
Коэффициент расхода давления входной шахты	0,975	
Коэффициент расхода давления выходной шахты	0,96	0,9447
Коэффициент расхода давления камеры сгорания	0,98	0,97
Коэффициент полноты сгорания топлива в камере сгорания	0,97	
Показатель адиабаты	1,4	
КПД электрогенератора	0,9	0,979
Механический КПД установки	0,95	0,98
Отпуск электроенергии, тыс. кВт·ч/год	210000	
Себестоимость выработанной электроэнергии, грн./кВт·ч.	0,1543	0,1488
Отпуск тепловой энергии, тыс. Гкал/год	335,916	
Себестоимость выработанной тепловой энергии, грн./Гкал	14,84	16,97

Power Systems".

Их схемы с параметрами в характерных точках приведены соответственно на рис. 1 и рис. 2, а основные характеристики установок – в табл. 1.

Результаты расчета эксергетического баланса для двух газотурбинных установок проведены в соответствии с [3,5] и приведены в табл. 2.

Из таблицы видно, что для двух установок наибольшие потери эксергии — в камере сгорания и с уходящими газами, что обусловлено большими конечными разницами температур, повышенным давленим в процессе горения и отличиями в составе продуктов сгорания и окружающего воздуха.

Для повышения эффективности работы (увеличения эксергетического КПД) следует снижать температуру уходящих газов путем утилизации их теплоты; приблизить процессы

сжатия и расширения рабочего тела в цикле к изотермическим (промежуточное охлаждение в компрессоре и промежуточный подогрев в турбине); улучшить условия сгорания и использовать комбинированные установоки, работающих по парогазовому циклу.

Окончательное решение о выборе типа ГТУ можно сделать только после анализа технико-экономических показателей рассматриваемых вариантов ГТУ.

Выводы

- 1. На основании проведенного анализа определена эксергетическая эффективность рассмотренных установок: FT8 33,77 % и UGT 25000 30,94 %.
- 2. В результате рассчетов определены эксергетические потери в элементах установок, при этом максимальные потери эксергии со-

Табл. 2. Общи	і эксергетический	баланс ГТУ
---------------	-------------------	------------

Составляющая баланса		Величина составляющей баланса				
		UGT-25000		FT8		
		%	МВт	%		
Подведенная эксергия						
С воздухом	0,264	0,27	0,256	0,29		
Физическая эксергия горючего газа	3,607	3,65	2,911	3,25		
Химическая эксергия горючего газа	95,03	96,08	86,055	96,46		
Итого	98,9	100	89,2	100		
Отведенная эксергия						
Полезная работа	30,598	30,94	30,126	33,76		
С дымовыми газами	14,144	14,3	18,754	21,02		
Потери от неизоэнтропийного расширения в турбине	0,076	0,08	0,829	0,93		
Потери от неизоэнтропийного сжатия в компрессоре	4,824	4,88	2,847	3,19		
Потери в камере сгорания	44,074	44,55	33,763	37,84		
Механические потери	1,789	1,81	1,321	1,48		
Электрические потери	3,4	3,44	1,586	1,78		
Итого	98,9	100	89,2	100		
Эксергетический КПД	30,94		33,77			

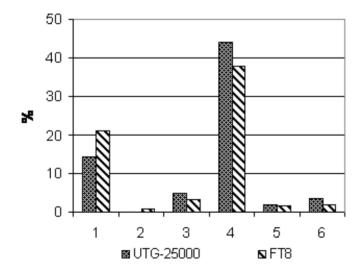


Рис. 3. Эксергетические потери в ГТУ: 1 – с дымовыми газами; 2 – от неизоэнтропийного расширения в турбине; 3 – от неизоэнтропийного сжатия в компрессоре; 4 – в камере сгорания; 5 – механические; 6 – электрические.

ставляют:

- в камере сгорания 37 % для FT8 и 44 % для UGT 25000;
- с уходящими газами 21 % и 14 % соответственно.

Это обусловлено внешней необратимостью протекающих процессов.

3. Выбор типа ГТУ рекомендуется проводить на основании экономического и эксергетического анализа установки.

ЛИТЕРАТУРА

- 1. Эксергетические расчеты технических систем: Справочное пособие // В.М. Бродянский, Г.П. Верхивкер, Я.Я. Карчев. К.: Наукова думка, 1991. 361 с.
- 2. *Ковтун В.В.* Применение эксергетического метода для оценки эффективности работы теплоэнергетических установок, утилизационного оборудования и схем утилизации вторичных энергоресурсов. К.: УМК ВО,

1989. - 76 c.

- 3. Эльснер Н., Фрамчер В. Составление эксергетического баланса газотурбинной установки // В сб.: Вопросы термодинамического анализа (эксергетический метод). Под ред. В. М. Бродянского. М.: «Мир», 1965. С. 122.
- 4. *Воробьев И.Е., Тодорович Е.Г.* Реабилитация ТЭС и ТЭЦ: пути, эффективность. Пособие для теплоэнергетиков // Сер. Энергетика: реаби-
- литация, развитие. К.: Энергетика и электрофикация, 2000. Вып. 1.-256 с.
- 5. Глушко В.П., Гурвич Л.В., Бергман Г.А., Вейц И.В., Медведев В.А., Хачкурузов Г.А., Юнгман В.С. Термодинамические свойства индивидуальных веществ: Справочник / Под ред. В.П. Глушко. М.: Наука. Т. 1—4, 1978-1982.

Получено 05.11.09 г.