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The proof of Harriman’s theorem [1] is given for arbitrary order reduced density matrix of
both the clear, and the mixed states of fermions at once. Its essentia parts are a Pauli exclu-
sion principle, rotation group symmetry of spin functions and new commutation relations.

Teopema I'appumana [ 1] mokazaHa mis peaylMpPOBaHHBIX MATPHIl TUIOTHOCTH YUCTOTO U
CMEIIaHHOTO COCTOSHUM (pepMuoHOB U3 npuHiuna [laynu, cuMMeTpun CUHOBBIX (DYHKIINH,
HOBBIX CJIEICTBUI U3 NIEPECTAHOBOK IITPUXOBAHHBIX U HE IITPUXOBAHHBIX IEPEMEHHBIX.

Teopema I'appimana [1] noBeaeHa Ay peIylUPOHUX MATPHUIb T'YCTUHHU YUCTOTO 1 3MIIIAHOTO

cTaHiB ()epMiOHIB 3 BUKOPUCTAHHAM TpuHumny [laymi, cuMmeTpii ciiHOBUX (PYHKIIIN 1 HOBUX
HACJII/IKIB, MOB'A3aHUX 3 IEPEMIIIICHHIMU IITPUXOBAHUX 1 HEIITPUXOBAHUX 3MIHHUX

1. Reduced density matrix

Reduced density matrix of arbitrary order p (RDM-p) [2, 3], including transitiona

RDM-p, for fermions states with spin projection values M and M’ can be written in form [4]

F(p)“(xl,xz,...,xp|>q,x;,...,x;) = > R((yp))g.ﬁ(ip)ﬂ_ (1)

Its spin and “conjugated” space components |00k like
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There are conjugated unitary transformation coefficients <|O{i }t {i '}t - U ‘ p(V)(D H> and

(2)

i te ).

< p(V)a),U‘ p{i }t {i ,}t B ,U> are appeared in Egs (2), (3). The contravariant spinors
(o|p{i},) = aliy)-ai,) -+ adi, )-B(r)-Bli,) B0, 4

its conjugated covariant spinors and hermit spin tensors -ﬁ((yg)(fj of a rank w are ortho-

normalized. Antisymmetry of wave functions of states is concluded in Eg. (1). Therefore for
antismmetrizer K= &2 is true Z I'y’(yp)ﬁ‘ '-%3)0))“ = & Z F%(yp)l? '%3’23“ ﬁ Both spin
(v Jou (y oot

and space coordinates of particles are designated by its numbers{i}, U {j} = {12,..p}.

2. Recovery of the basis of group m,, representation on its
subgroup Tpxn

Unlike the one-particle contravariant spinors a and £, which connected to spin space ir-
reducible representation (IR) D ” of rotation group SU (2) [5, 6], covariant spinors o (i) and
S *(i) belong to the equivalent IR D™* =V *-D"(V ) * with unitary matrix [5, page 165]: VV *

a-i— ﬂ+
= [(1) _Olj . Then the spinors (V Vz)*-(ﬂ+ = . | aretransforming on space of IR D 'S
-



a

p

to contravariant ones. After replacement every a * (i) on aspinor —4(i) and 8 * (j) respectively

well as spin functions ( j . Therefore conjugated to Eq. (4) covariant spinors are equivalent
on af]) its generate the basis of spinors <G‘p [i ]t> . It’s belong the same space of a direct pro-

duct [, D of pidentical IR D* of group SU (2), as contravariant spinors (see Eq. (4)),

(olp [i])=(=1) -B)-Bli,) Bl ) -aly) - al,) - al, ) . (5)
As result, the basis from products of kontra- and of covariant spinors, as the basis of
p[i']t,>, be-

long to the same representation of rotation group. It allows properties of one basis, established

spinors of a 2p-rank from products of only contravariant spi nors<a‘ p{i} t><a’

on the ground of its group-theoretical reviewing, to transfer on properties of equivalent basis.

From theory of IR [k] - [p+0), p—w] for permutation group Ty it follows, that the

functions @, =\€uéu\,(p and function®,, = \e\,(p , Where permutation é\,u = @u_\,l substitutes
numbers of coordinates in Y oung table of U on numbers from the Young table V [5, 6], as-

similate one IR basis. Instead the permutation éu\, connects functions ¢, and @,, [6]

(§UV(PV = éuv\g/q) = uv\e\/éu_vl UV(P = \€u(§uv(p = (PU ' (6)

Call to mind, that both in lines and in columns of standard Y oung tables [5, 6] the num-
ber of coordinates are ranking from left to right and from top to down according to increase of
their place number in theinitid list. For list 1, 2, ..., p-o, p-otl,...p, 1', 2/, p-o', p-o+1’....,p’
such Y oung table will be obtained, when the coulombs of Y oung scheme [p+®, p-®], where

w=0,1, ..., p,aefillingby numbers 1,1, 2, 2, ..., p-o, p-o’, p-o+l,...p, p-ot+l....p’'

1 2 Im | ... p-® p-ot+1 el p | (potl) | ... o}

|2 im || (pro)

Fig. 1.




The number of standard Y oung tables [5, 6] equalsto dimension of IR [p+(0, p—co]
(20 _ 2p ) ( 2p _ (2p)!(20 +1) ,
> “lp-0) | p-0-1)" (pro+1)(p-o) ¥

A permutation may be represented by product not intersected cyclical permutations. Its

do not leave invariant variable places from their list. Cycles are representing by product of

transposition, which are not commute. Such transpositions commutate according to arule [6]

(i.k)- (k1) = (i,1)- (i, k) = (k1)-(i.1), ©
We prove now main assertion according to which it is possible to receive any function

(¢, simmetrized on the standard Young table U for IR [p+(o, p—oo] from function @,

permuting its arguments only inside each of sets on p variable with the primed or not primed

numbers separately, if in the second line of the “standard” table of Young v the variables of

one type set only remain, asin the Young table Vin aFig. 1. Clearly, if transition from @,, to
(¢, demands rearrangement of primed variables with not primed, then in Eq. (6) (§u\, €Ty,
Really, it is possible t ate exactly |t itions §,. =T1" (p+1-i,i’

y, it is possible to separate exactly |, transpositions (l)w—Hi:l(p ')

in (§UV €T,,, conserving after their operation on the table V correct regularity of not primed
numbers concerning primed both in table lines and in table columns. The number pairs |, of
permuted primed and not primed variables is restricted an inequalityl,, < min{ p-o,[p/2]},

where [ p/2] - the whole part from p/2.

The factorization of permutations &, = &, - &, -&,, reduces our assertion to the

)ln Cf \E by an identical

proof of a possibility of replacement of each transposition (im I

operation on \% of permutations belonging to only a subgroup © o X ;
(i, )% = Y€ (k,m) 2/§ /ﬁ Y€ (9)

In equality (9) we alwayshave k < mandasinEq. (6) Young projectors are equal



p-—o
p—®
\€(i'k I C: 11 '% il '@kim&ki’m§{...}pm \imd e km §{{...}pﬂ \i;;,im}b_@
(v:&;m) : (1)

There H ’ﬁw ( pm oo ) is product of antisimmetrizers and of simmetrizers re-

spectively, acting on the corresponding sets of variables, C is constant to ensure that Y€V2: Y€V

Due equality (9) any operator (§UV in (6) may be changed on equal operator but only from

permutations belonging to subgroup 7 p X T ; . It constructs group Ty, basis { 0, } using
the subgroup operators. If i,,i, e {..} . igipe ..} . then &kimg{"_}pﬂ)ﬁr{ \
—&klmﬁ p+co o =0 and in aright-hand part of Eq. (9) instead of 'ﬁkik .ﬁmifn \ev the

transpositions (—(Ik,lli)—(i i )/4 will stay, when the definition (10) for ¥ is used:

’ﬁkim’fﬂkim H &W ( Iklk ' " )) Q...}M §{...}p_0)_ (12)

(v;tk,m)

Here {} and {} are the same sets of variables, asin Eq. (10).

P+o p—®

Take in mind the equality:

Sg{---}pwse{--}p-m:(imik')'se{-{ S€{{.,.}p-mm} (nic). )

and rules (8) we transform expression (12) into an operator

& &”l H& ( (i Nigdic ) — ('lQiFn)(imi;n))'g{{---}pm\im,i&}pm'

(v;tk m) (14)
i, (k).

In Eq. (14) first transpositions are retracted into suitable antisimmetrizers with a change of

sign, and second are retracted into simmetrizers. Transposition (i mil'() will be commutated to



left with all operators transforming its. As aresult we obtain the left-hand part of identity (9).

For the function @y =[(N+M){(n=M)IT"* [a.] [B--B]. ., [6, 7] we aways can

togivetheIR [n+ S, n—S] basis of group 7T, in the following form
Z Zcuv(éléz)'éléz'\ev'q)ww -s<M<s (15)
Gertm Sretnm

Here C,, (éléz) are simple numerical coefficientsand U isastandard Y oung table.

3. The proof of the Harriman’s theorem

Forthegivenpand u= M- M'=t—1¢ " in Eq. (3) the number of "independent" space
components RDM is determined both impossibility of build-up of tensors of a higher rank,

than w = p, in p—partial spin space, and Harriman’s theorem, proved for some cases [1]. It de-
fines apossibility to receive al components R(f;ff) in Egs. (1), (2) from "standard" component
with the same ® and p, which obtained according to a "standard addition schema of the spin

moments (y0)” [5, 6] , that is equivalent Young table vV in aFig. 1. The obtained above results

(see Eg. 15)) dlow usto give the common proof of the Harriman’s theorem.
To build the irreducible tensors Eqg. (2) routinely the products of the conjugated spinors
ao’, af’, Ba’ and BB must be changed by one-particle operators [ 8],

E=o-a"+B-B", §Z:€1°):%(oc-oc++[3-[3+), (16a)

S =2t =a-B*, S =v2-P=B-a", (16b)
)

. =2 Sl3c§(”)'fi’(“)+_7’ P8 -F=0. (16¢)

Here F is a unit operator, @‘) are components of one-particle tensor of the first rank. Then

the complete set of addition schemes { (y)} may be realized by seria adding the operator € or
@“) to already built irreducible tensor of smaller number of particles. As result, we can define

the union list from p one-particle operators and from the intermediate values of tensor rank for

addition schema (y).



The operators <G‘p{i}t><p{i'}t, G'> and the tensor 'ﬁ((y';’g‘ can be transformed on the spi-

nors <G‘p{i}t><c'

Then last save the same addition schema [y] = (y), the moment ®» and its projection . It is

"]t,>, asin Eq. (5), and fi]z)” depending out of 2p of spin variables.

true, “as from the permutation operators of spin coordinates of particles commute with the

spin rotation operators [6] it follows that the dimension Eq. (7) of [p+, p-o] IR for

groups T, , and the number of addition schemes {[y]} of o, B spins with same complete val-
ues o and p are equal.” Each such addition schema correspond the line of IR of permutation

2p)u

group T, . Therefore 2p-particle functions -%]w can be numbered by addition schemes of

one set {[y]}. They form basisfor IR [/lw] =[p+, p~o] of symmetric group T, and ac-

2
cording to Eq. (15) they can be obtained from a function -'€[y(0]€o)“ . Let's find mutual conformi-

. (2p)u (pu =
ty between spinor 'y, and tensor -|€(vo)<»- It is evident the tensor T "

) with a special

addition schema (yo) = (1”“... )w gives this appropriation. It looks like

e :2‘p_2w|€(1)|€(2 Kp- a)§(p ®+1)- §(p (17)

1P )
It has the predicted values of ranks of the all intermediate tensors for any p and after using

Eqgs. (16), (5) it isequivalent to a function-spinor of arank

el 2o e [T@@p()-pie ) [] ala(i). g

Function (18) is really simmetrized under the Y oung table [6], which columns are completed

by numbers1,1',2,2', ..., p-o, p-m', ...,asin a Fig. 1, and from Eq. (15) follows

T = g 6.2 . LQQ)EE TR elrir e g
’ P

After we return to tensors Eq. (2), using Eqgs. (16) in Eqgs. (18), (19), the same expan-

sion remains valid both for the highest component 'Ie((v‘;i)‘” and for all components of the tensor



'ﬁ((y'[)’iﬁl too, as they may be obtained from T%F)’)Og" by spin projection decreasing operators §
(p) _ (putl
[§i’1€(v)wu]‘\/® (o +1)_”(“i1)'1€(y)mM . (20)

p
A's operators §i = H §i (l) commute with all permutation operators of particles and with

(§- (§' € n,xn, too, we have general proof of “Garriman’s theorem” in spin space
PI(1) — (p) ( ) (M — P(1) 21
o= s CRQQ)EEE -k @
Q.Qem xr
These tensors may be orthonormalized, asin (1), without change its obtained structure (21).

In this case applying expansion (2), we make up the identity (21) into linear relation-
ships between coefficients <p{i}»t {i’}t T ‘ p(y)wu> inside of Egs. (2), (3). They contain same

factors, asin Eq. (21),

<p{i}t {i’}t _ M‘p(ﬂ’)(ﬂp> -

oL QO [P Jon)

Taken into account that the number setsin Eq. (22) and ones at sign factor in EqQ. (3) are

(22)

same we shall receive the connection of space components R((yp))g with standard component

(P)u
ROM-p Ripo |,

W= I (DR &Y = RT R e
6§ e1t, x1€,

where fﬁ((yp)) €M, XT ; ,(-1)"% is sign factor for permutation Q-Q". M oreover, it is true that
() (p)u (p)(w)
R(m = Sp, {F (xl,...,xIO L X! )'Ig(y)m } (24)

if spin tensors (21) are orthonormalized. This simple process always can be applied to obtain

, which issimilar to Eq. (21):

exact result type Eq. (23) for any RDM . It completes generally proof of Harriman’s theorem.
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