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EXTENSION OF SOME LIONS-MAGENES THEOREMS

ALEKSANDR A. MURACH

Dedicated to the memory of A. Ya. Povzner

Abstract. A general form of the Lions-Magenes theorems on solvability of an elliptic
boundary-value problem in the spaces of nonregular distributions is proved. We find a
general condition on the space of right-hand sides of the elliptic equation under which
the operator of the problem is bounded and has a finite index on the corresponding
couple of Hilbert spaces. Extensive classes of the spaces satisfying this condition are
constructed. They contain the spaces used by Lions and Magenes and many others
spaces.

1. Introduction and statement of the problem

Let Ω be a bounded domain in the Euclidean space Rn, n ≥ 2, with the boundary Γ
which is an infinitely smooth closed manifold of the dimension n − 1. The domain Ω is
situated locally on the same side from Γ.

We consider the nonhomogeneous boundary-value problem in the domain Ω:

(1) Au = f in Ω, Bj u = gj on Γ for j = 1, . . . , q.

In what follows A is a linear differential expression on Ω of an arbitrary even order 2q ≥ 2,
whereas Bj with j = 1, . . . , q is a boundary linear differential expression on Γ of order
mj ≤ 2q− 1. All coefficients of A and Bj are complex-valued functions infinitely smooth

on Ω := Ω ∪ Γ and on Γ respectively.
Everywhere in the paper the boundary-value problem (1) is assumed to be regular

elliptic. This means [1, Ch. 2, Sec. 5.1], [2, Ch. III, § 6, Sec. 5] that the expression A
is properly elliptic on Ω and the collection of boundary expressions B := (B1, . . . , Bq) is
normal and satisfies the complementing condition with respect to A on Γ. It follows from
the condition of normality that all orders mj with j = 1, . . . , q are mutually distinct.

Along with (1) we consider the boundary-value problem

(2) A+ v = ω in Ω, B+
j v = hj on Γ, j = 1, . . . , q,

formally adjoint to the problem (1) with respect to the Green formula

(Au, v)Ω +

q∑

j=1

(Bju, C+
j v)Γ = (u, A+v)Ω +

q∑

j=1

(Cju, B+
j v)Γ, u, v ∈ C∞(Ω ).

Here, A+ is the linear differential expression formally adjoint to A and having the order
2q and coefficients from C∞(Ω ). In addition, {B+

j }, {Cj}, and {C+
j } are certain normal

systems of linear differential boundary expression with coefficients from C∞(Γ). They
orders satisfy the condition

ordBj + ordC+
j = ordCj + ordB+

j = 2q − 1.
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In what follows we denote by (·, ·)Ω and (·, ·)Γ the inner products in the spaces L2(Ω)
and L2(Γ) (formed by functions square-integrable over Ω or Γ respectively) and natural
extensions by continuity of these inner products.

We set

N := {u ∈ C∞(Ω ) : Au = 0 in Ω, Bju = 0 on Γ ∀ j = 1, . . . , q},

N+ := {v ∈ C∞(Ω ) : A+v = 0 in Ω, B+
j v = 0 on Γ ∀ j = 1, . . . , q}.

Since both the problem (1) and (2) are regular elliptic, both the spaces N and N+ are
finite-dimensional [1, Ch. 2, Theorem 5.3], [2, Ch. III, § 6, Sec. 4].

The fundamental property of every elliptic boundary-value problem consists in that
the problem generates the bounded and Fredholm operator on appropriate couples of
functional spaces. Note that a linear bounded operator T : E1 → E2, with E1 and E2

being Banach spaces, is called the Fredholm operator if its kernel kerT and co-kernel
cokerT := E2/T (E1) are finite-dimensional. The Fredholm operator T has the closed
range in the space E2 and the finite index indT := kerT − cokerT . This operator
naturally generates the homeomorphism T : E1/ kerT ↔ T (E1).

Let us formulate the classical theorem on elliptic boundary-value problems (see, e.g.,
[2, Ch. 3, Sec. 6], [1, Ch. 2, Sec. 5.4]). In the paper, we restrict ourselves to the Hilbert
spaces case, which is the most important for applications.

Theorem 0. The mapping

(3) u �→ (Au, Bu), u ∈ C∞(Ω ),

can be extended by continuity to the bounded and Fredholm operator

(4) (A, B) : Hs+2q(Ω) → Hs(Ω) ⊕

q⊕

j=1

Hs+2q−mj−1/2(Γ) =: Hs(Ω, Γ)

for every real s ≥ 0. The kernel of this operator coincides with N , whereas the range

consists of all vectors (f, g1, . . . , gq) ∈ Hs(Ω, Γ) satisfying the condition

(5) (f, v)Ω +

q∑

j=1

(gj , C
+
j v)Γ = 0 for every v ∈ N+.

The index of the operator (4) is equal to dimN − dimN+ and independent of s.

In what follows Hσ(Ω) and Hσ(Γ) are Hilbert spaces with the index σ ∈ R consisting
of some distributions given in the domain Ω or on the manifold Γ respectively (we will
remind their definitions in Sec. 2). In addition, as usual D′(Ω) and D′(Γ) stand for the
linear topological spaces of all distributions given in Ω or on Γ. We always interpret
distributions as antilinear functionals.

Theorem 0 has a generic nature because the spaces in which the operator (4) acts are
common for all elliptic boundary-value problems of the same order. By this theorem, the
operator (A, B) establishes the homeomorphism of the factor space Hs+2q(Ω)/N onto
the subspace

{(f, g1, . . . , gq) ∈ Hs(Ω, Γ) : (5) is true}

for each s ≥ 0. Therefore the theorems on operators generated by elliptic boundary-value
problems are called Homeomorphisms Theorems.

Generally, Theorem 0 is not true in the case s < 0 because the mapping u �→ Bju

with u ∈ C∞(Ω ) can not be extended to the bounded operator Bj : Hs+2q(Ω) → D′(Γ)
if s+2q ≤ mj +1/2. Therefore we have to use the space narrower than Hs+2q(Ω) as the
domain of (A, B), namely

(6) Ds+2q
A,X (Ω) := {u ∈ Hs+2q(Ω) : Au ∈ Xs(Ω)},
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where Xs(Ω) is a Hilbert space embedded continuously in D′(Ω). In what follows the
image Au of u ∈ D′(Ω) is understood in the theory of distributions. We endow the space
(6) with the graphics inner product

(7) (u1, u2)Ds+2q
A,X (Ω) := (u1, u2)Hs+2q(Ω) + (Au1, Au2)Xs(Ω)

and the corresponding norm.
The space Ds+2q

A,X (Ω) with the inner product (7) is complete. Indeed, if (uk) is a

Cauchy sequence in Ds+2q
A,X (Ω), then by a completeness of Hs+2q(Ω) and Xs(Ω) there

are two limits: u := limuk in Hs+2q(Ω) →֒ D′(Ω) and f := limAuk in Xs(Ω) →֒ D′(Ω)
(embeddings are continuous). Since the differential operator A is continuous in D′(Ω),
we deduce from the first limit that Au = limAuk in D′(Ω). This implies by the second

limit the equality Au = f ∈ Xs(Ω). Therefore u ∈ Ds+2q
A,X (Ω) and limuk = u in the space

Ds+2q
A,X (Ω), that is this space is complete.

J.-L. Lions and E. Magenes [3, 4, 5, 1] found the certain important examples of Xs(Ω)
such that the mapping (3) can be extended by continuity to the bounded and Fredholm
operator

(8) (A, B) : Ds+2q
A,X (Ω) → Xs(Ω) ⊕

q⊕

j=1

Hs+2q−mj−1/2(Γ) =: Xs(Ω, Γ)

if s < 0. In contrast to Theorem 0, the domain of the operator (8) depends on coefficients
of the elliptic expression A. Therefore the theorems on properties of the operator (8) we
naturally shall call the individual theorems. Let us formulate two individual theorems
proved by Lions and Magenes.

Theorem LM1. [3, 4]. Let s < 0 and Xs(Ω) := L2(Ω). Then the mapping (3) can

be extended by continuity to the bounded and Fredholm operator (8). The kernel of this

operator coincides with N , whereas the domain consists of all vectors (f, g1, . . . , gq) ∈
Xs(Ω, Γ) satisfying (5). The index of the operator (8) is dimN−dimN+ and independent

of s.

Here, we especially note the case s = −2q, which is important in the spectral theory
of elliptic operators with general boundary conditions [6–10]; see also the survey [11, Sec.
7.7, 9.6]. In this case the space

(9) D0
A,L2

(Ω) = {u ∈ L2(Ω) : Au ∈ L2(Ω)}

is the domain of the maximal operator Amax corresponding to the differential expression
A [12, Sec. 1.2]. If A is formally self-adjoint, then the minimal differential operator
Amin := A∗

max is semi-bounded symmetric operator in the Hilbert space L2(Ω). Applying
Theorem LM1 and some abstract results, one can describe the class of all self-adjoint

extensions {Ã} of operator Amin by means of boundary conditions. After that one can

select among them self-adjoint realizations Ã with classical spectral properties (semi-
boundedness, discrete spectrum, Weyl’s spectral asymptotics etc).

Even when all coefficients of A are constant, the space (9) depends essentially on
each of them. One can see it from the following result of L. Hörmander [12, Sec. 3.1,
Theorem 3.1].

Let A1 and A2 be constant-coefficient linear differential expressions. If D0
A1,L2

(Ω) ⊆

D0
A2,L2

(Ω), then either A2 = αA1 + β for some α, β ∈ C, or both A1 and A2 are
certain polynomials in the derivation operator with respect to a vector e and moreover
ordA2 ≤ ordA1. Note that the second possibility is excluded for elliptic operators.

To formulate the second Lions-Magenes theorem we need the following weighted space

̺Hs(Ω) := {f = ̺v : v ∈ Hs(Ω) },
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where s < 0, and a function ̺ ∈ C∞(Ω) is positive. We endow this space with the inner
product

(f1, f2)̺Hs(Ω) := (̺−1f1, ̺
−1f2)Hs(Ω)

and the corresponding norm. The space ̺Hs(Ω) is complete and embedded continuously
in D′(Ω). This follows from that the operator of multiplication by ̺ is continuous in D′(Ω)
and establishes the homeomorphism from the complete space Hs(Ω) onto ̺Hs(Ω).

We consider a weight function ̺ := ̺−s
1 such that

(10) ̺1 ∈ C∞(Ω ), ̺1 > 0 in Ω, ̺1(x) = dist(x, Γ) in a neighborhood of Γ.

Theorem LM2. [1, Ch. 2, Sec. 7.3]. Let s < 0, s + 1/2 /∈ Z, and Xs(Ω) := ̺−s
1 Hs(Ω).

Then the assertion of Theorem LM1 remains true.

We note that Lions and Magenes used a certain Hilbert space Ξs(Ω) as Xs(Ω). This
space coincides (up to equivalence of norms) with the weighted space ̺−s

1 Hs(Ω) for each
non half-integer s < 0 [1, Ch. 2, Sec. 7.1]. Theorem LM2 also holds true for every
half-integer s < 0 if we define the space Xs(Ω) by means of the complex (holomorphic)
interpolation, for instance,

(11) Xs(Ω) := [X2s(Ω), L2(Ω)]1/2.

(See the definition and properties of this interpolation, e.g., in [1, Ch. 1, Sec. 14.1]).
In the paper, we find a general enough condition on the space Xs(Ω) under which the

operator (8) is well defined, bounded, and Fredholm if s < 0. The condition consists in
the following.

Condition Is. The set X∞(Ω) := Xs(Ω) ∩C∞(Ω ) is dense in Xs(Ω), and there exists

a number c > 0 such that

(12) ‖Of‖Hs(Rn) ≤ c ‖f‖Xs(Ω) for each f ∈ X∞(Ω).

Here, Of(x) := f(x) for x ∈ Ω, and Of(x) := 0 for x ∈ Rn \ Ω.

In (12), we define by Hs(Rn) the Hilbertian Sobolev space with index s and given
over Rn. Note that if s is smaller, then Condition Is is weaker for the same space Xs(Ω).

Both of the spaces Xs(Ω) := L2(Ω) and Xs(Ω) := ̺−s
1 Hs(Ω) used by Lions and

Magenes satisfy Condition Is.
In the paper, we find all the Hilbertian Sobolev spaces Xs(Ω) = Hσ(Ω) for which

Condition Is is fulfilled. In addition, we describe the class of all weights ̺ ∈ C∞(Ω) such
that the weighted space Xs(Ω) := ̺Hs(Ω) satisfies Condition Is. This class contains
the weight ̺ := ̺−s

1 as a special case. Thus, we get some generalizations of the Lions-
Magenes theorems mentioned above to more extensive classes of the Hilbertian spaces
Xs(Ω) of right-hand sides of the elliptic equation.

Note that we generalize the Lions-Magenes theorems staying in classes of distributions
given in the domain Ω. The different Homeomorphism Theorems for elliptic boundary-
value problems were proved by Yu. M. Berezansky, S. G. Krein, Ya. A. Roitberg [13],
M. Schechter [14], Roitberg [15–18], Yu. V. Kostarchuk and Roitberg [19] (see also the
monograph [2, Ch. III, Sec. 6], survey [11, Sec. 7.9], and textbook [20, Ch. XVI, Sec. 1]).
In these theorems, the solution and/or the right-hand side of the elliptic equation are not
distributions in Ω. Namely, the right-hand side is assumed to be in the negative space
dual to H−s(Ω), s < 0, with respect to the inner product in L2(Ω). We denote this
space by Hs,(0)(Ω); it consists of some distributions in Rn supported on Ω. The solution
is considered in Hs+2q,(0)(Ω) [13, 14] or in the special space Hs+2q,(2q)(Ω) introduced
by Roitberg [15–18] (see the definition in Sec. 3). Roitberg, Z. G. Sheftel’ and their
disciples used the space Hs+2q,(2q)(Ω) systematically in the theory of elliptic problems
(their results are summed up in Roitberg’s monographs [17, 18]).
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These Homeomorphism Theorems have also different applications. Among them we
mention the theorems on increase in smoothness of the solution up to the boundary,
application to the investigation of Green function of an elliptic boundary-value problem,
applications to elliptic problems with power singularities, the transmission problem, the
Odhnoff problem, and many others (see the monographs [2, 17, 18], survey [11, Sec. 7.9],
and references given therein).

We have to note that Roitberg [21, Sec. 2.4] considered a condition on the space Xs(Ω),
which was somewhat stronger than our Condition Is. He demanded additionally that
C∞(Ω ) ⊂ Xs(Ω). Under this stronger condition, Roitberg [21, Sec. 2.4], [17, p. 190]
proved the boundedness of the operator (8) for all s < 0. Homeomorphism Theorem
for this operator was formulated in the survey [11, p. 85] provided that −2q ≤ s ≤ 0
and N = N+ = {0}. We also mention Homeomorphism Theorems [19, Theorem 4], [18,
Sec. 1.3.8], in which this condition was used, but solutions of the elliptic boundary-value
problem were considered in the space Hs+2q,(2q)(Ω). Remark that Roitberg’s condition
does not cover the important case where Xs(Ω) = {0} as well as some weighted spaces
Xs(Ω) = ̺Hs(Ω) which we consider.

We also note that Condition Is is fulfilled for some classes of the Hilbertian Hörmander
spaces [22, Sec. 2.2], [23, Sec. 10.1]. Their applications to elliptic operators and elliptic
boundary-value problems were studied by V. A. Mikhailets and the author in [24–33] .

The results of the paper are formulated in Section 2 as Theorems 1, 2, 3, and Corol-
laries 1, 2. The main result, Theorem 1, is proved in Section 4, all the rest in Section 5.
In Section 3, we formulate the auxiliary propositions needed for our proofs. At the end
of the paper, we give Appendix, in which a useful proposition on weight functions of the
form ̺ = ̺δ

1 is established.

2. Results

We introduce some necessary function spaces. Let s ∈ R. Recall that

Hs(Rn) :=
{
w ∈ S′(Rn) : ‖w‖Hs(Rn) := ‖(1 + |ξ|2)s/2 ŵ(ξ)‖L2(Rn

ξ ) < ∞
}
.

Here, S′(Rn) is the topological linear space of tempered distributions in Rn, whereas ŵ
is the Fourier transform of w. For a closed set Q ⊂ Rn, we put

Hs
Q(Rn) :=

{
w ∈ Hs(Rn) : supp w ⊆ Q

}
.

The space Hs
Q(Rn) is Hilbert with respect to the inner product in Hs(Rn). We are

interested in the cases where Q ∈ {Ω, Ω̂, Γ} with Ω̂ := R
n \ Ω.

Following [1, Ch. 1, Sec. 12.1], we will define the Hilbert space Hs(Ω). For arbitrary
s ≥ 0 we set

Hs(Ω) := Hs(Rn)/Hs
�Ω(Rn) =

{
w ↾Ω : w ∈ Hs(Rn)

}
.

The space Hs(Ω) is complete with respect to the Hilbertian norm

‖u‖Hs(Ω) := inf
{
‖w‖Hs(Rn) : w ∈ Hs(Rn), w = u in Ω

}
.

The set C∞(Ω ) is dense in Hs(Ω), each measurable function u over Ω being identified
with the antilinear functional (u, · )Ω. We denote by Hs

0(Ω) the closure of the linear
manifold

C∞
0 (Ω) := {u ∈ C∞(Ω ) : suppu ⊂ Ω}

in the topology of Hs(Ω). The space Hs
0 (Ω) is complete with respect to the inner product

in Hs(Ω).
For arbitrary s < 0, we denote by Hs(Ω) the Hilbert space antidual to the space

H−s
0 (Ω) with respect to the inner product in L2(Ω). Since antilinear functionals from

Hs(Ω) are defined uniquely by their values on functions from C∞
0 (Ω), we can correctly

identify these functionals with distributions in Ω. It useful to keep in mind that Hs(Ω) =



EXTENSION OF SOME LIONS-MAGENES THEOREMS 157

Hs
Ω
(Rn)/Hs

Γ(Rn) with equality of norms for every s < 0 [1, Ch. 1, Remark 12.5], and

Hs(Ω) = Hs(Rn)/Hs
�Ω(Rn) with equivalence of norms for all non half-integer s < 0 [34,

Sec. 4.8.2]. It follows from the first equality that C∞
0 (Ω) is dense in Hs(Ω) for every

s < 0 [34, Sec. 4.3.2, Theorem 1(b)].
Thus, the Hilbert space Hs(Ω) is defined for every s ∈ R and embedded continuously

in D′(Ω). We have the compact dense embedding Hs+δ(Ω) →֒ Hs(Ω) if δ > 0.
We denote by Hs(Γ) the Hilbertian Sobolev space with the index s ∈ R defined over

the closed compact manifold Γ [1, Ch. 1, Sec. 7.3]. The space consists of all distributions
on Γ belonging to Hs(Rn−1) in local coordinates and does not depend on a chose of local
charts on Γ up to equivalence of norms.

Let us formulate the main result of the paper.

Theorem 1. Let s < 0, and Xs(Ω) be an arbitrary Hilbert space embedded continu-

ously in D′(Ω) and satisfying Condition Is. Then the elliptic boundary-value problem (1)
possesses the following properties:

(i) The set

D∞
A,X(Ω) := { u ∈ C∞(Ω ) : Au ∈ Xs(Ω) }

is dense in Ds+2q
A,X (Ω).

(ii) The mapping u → (Au, Bu) with u ∈ D∞
A,X(Ω) can be extended by continuity to

the bounded linear operator (8).
(iii) The operator (8) is Fredholm. Its kernel is N , and its range consists of all vectors

(f, g1, . . . , gq) ∈ Xs(Ω, Γ) satisfying (5).
(iv) If the set O(X∞(Ω)) is dense in Hs

Ω
(Rn), then the index of (8) is dimN −

dimN+.

Let us consider some applications of Theorem 1 caused by a particular choice of the
space Xs(Ω). Evidently, the space Xs(Ω) := {0} satisfies Condition Is. In this case,
Theorem 1 describes properties of the semihomogeneous boundary-value problem (1)
with f = 0 and holds true for every s ∈ R (see also [25]).

All the Hilbertian Sobolev spaces satisfying Condition Is are found in the next theorem.

Theorem 2. Let s < 0 and σ ∈ R. The space Xs(Ω) := Hσ(Ω) satisfies Condition Is if

and only if

(13) σ ≥ max{s,−1/2}.

The next result follows from Theorems 1 and 2.

Corollary 1. Let s < 0, and (13) be valid. Then the mapping u �→ (Au, Bu) with

u ∈ C∞(Ω ) can be extended by continuity to the bounded and Fredholm operator

(14) (A, B) :
{
u ∈ Hs+2q(Ω) : Au ∈ Hσ(Ω)

}
→ Hσ(Ω) ⊕

q⊕

j=1

Hs+2q−mj−1/2(Γ),

its domain being the Hilbert space with respect to the norm
(
‖u‖2

Hs+2q(Ω) + ‖Au‖2
Hσ(Ω)

)1/2
.

The index of (14) is dim N − dimN+ and independent of s, σ.

Here, we note the special case where σ = s. If −1/2 < σ = s < 0, then the domain
of (14) coincides with the space Hs+2q(Ω) up to equivalence of norms. If σ = s = −1/2,
then the domain is narrower than H2q−1/2(Ω) but does not depend on A as well (see
Sec. 5.3 below).

We always have Xs(Ω) ⊆ H−1/2(Ω) in Theorem 2. But we can get a space Xs(Ω) con-
taining an extensive class of some distributions f /∈ H−1/2(Ω) and satisfying Condition Is
if we use certain weighted spaces ̺Hs(Ω).
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A function ̺ given in Ω is called a multiplier in the space Hs(Ω) if the operator of
multiplication by ̺ maps this space into itself and is bounded on it. A description of the
class of all multipliers in Hs(Ω) with s ≥ 0 was given in [35, Sec. 6.3.3].

Let s < −1/2. We introduce the following condition on the weight function ̺.

Condition IIs. The function ̺ is a multiplier in the space H−s(Ω), and

(15) Dj
ν ̺ = 0 on Γ for every j ∈ Z, 0 ≤ j < −s − 1/2.

Here, Dν is the derivation operator with respect to the unit vector ν of inner normal to
the boundary Γ of Ω. Note that if ̺ is a multiplier in H−s(Ω), then evidently ̺ ∈ H−s(Ω).
By the trace theorem [1, Ch. 1, Sec. 9.2], there is a trace (Dj

ν̺)↾Γ ∈ H−s−j−1/2(Γ) for
every integer j ≥ 0 such that −s − j − 1/2 > 0. Hence, Condition IIs is formulated
correctly.

Theorem 3. Let s < −1/2, and a function ̺ ∈ C∞(Ω) be positive. The space Xs(Ω) :=
̺Hs(Ω) satisfies Condition Is if and only if the function ̺ satisfies Condition IIs.

The next result follows from Theorems 1 and 3.

Corollary 2. Let s < −1/2, and a positive function ̺ ∈ C∞(Ω) satisfy Condition IIs.
Then the mapping u → (Au, Bu) with u ∈ C∞(Ω ), Au ∈ ̺Hs(Ω) can be extended by

continuity to the bounded and Fredholm operator

(16) (A, B) :
{
u ∈ Hs+2q(Ω) : Au ∈ ̺Hs(Ω)

}
→ ̺Hs(Ω) ⊕

q⊕

j=1

Hs+2q−mj−1/2(Γ),

its domain being the Hilbert space with respect to the norm
(
‖u‖2

Hs+2q(Ω) + ‖̺−1Au‖2
Hs(Ω)

)1/2
.

The index of (16) is dim N − dimN+ and independent of s, ̺.

We give an important example of a function ̺ satisfying Condition IIs for fixed s <
−1/2 if we set ̺ := ̺δ

1, where ̺1 meets (10), and the number δ is such that δ ≥ −s−1/2 ∈
Z or δ > −s − 1/2 /∈ Z (we will prove it in Appendix).

Let us compare Theorem 1 and its Corollaries 1, 2 with the Lions-Magenes theorems
[1, 3, 4, 5] on elliptic boundary-value problems in the spaces of distributions.

We restrict ourselves to the case of Hilbertian spaces, whereas the non-Hilbertian
Sobolev spaces were considered in [3, 4, 5] as well.

A proposition similar to Theorem 1 was proved in [5, Sec. 6.10] for non half-integers
s ≤ −2q and the Dirichlet problem, the space Xs(Ω) obeying some different conditions
depending on the problem. Our Condition Is does not depend on it.

Theorem LM1 is a special case of Corollary 1 where σ = 0, i.e. Xs(Ω) = L2(Ω). Note
that some spaces Xs(Ω) containing L2(Ω) are permissible in Theorem 2 and Corollary 1.
The space Xs(Ω) = H−1/2(Ω) is the most extensive among them provided that s ≤ −1/2.
If −1/2 < σ = s < 0, then Corollary 1 coincides with Theorem 7.5 of Lions and Magenes
[1, Ch. 2] proved under the additional assumption that N = N+ = {0}.

Theorem LM2 for s < −1/2 is a special case of Corollary 2 because the function
̺ := ̺−s

1 satisfies Condition IIs. As we have mentioned, in the case where −1/2 < s < 0
one can use the more extensive space Hs(Ω) instead of the weighted space ̺Hs(Ω) in (16).

3. Auxiliary propositions

First we note [1, Ch. 1, Theorem 11.5] that for every s > 1/2

(17) Hs
0 (Ω) :=

{
u ∈ Hs(Ω) : Dj

ν u = 0 on Γ ∀ j ∈ Z, 0 ≤ j < s − 1/2
}
.
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In addition [1, Ch. 1, Theorem 11.1]

(18) Hs
0 (Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2.

Further we will use some results of Roitberg [15, 17] on properties of the problem (1)
in the Hilbert scale

(19) Hs,(2q)(Ω) := H̃s,2,(2q)(Ω), s ∈ R,

introduced by him. We also need some properties of this scale.
Let us give the definition of the scale (19). Let s ∈ R. In the case were s ≥ 0 we

denote by Hs,(0)(Ω) the space Hs(Ω). In the case were s < 0 we denote by Hs,(0)(Ω)
the space Hs

Ω
(Rn) antidual to H−s(Ω) with respect to the inner product in L2(Ω). The

space Hs,(0)(Ω) is Hilbert for every s ∈ R, with the set C∞(Ω ) being dense in it. Here
as usual, the function f ∈ C∞(Ω ) is identified with the functional (f, · )Ω.

In view of (18)

(20) Hs,(0)(Ω) = Hs(Ω) with equality of norms for s ≥ −1/2.

If s < −1/2, then the spaces Hs,(0)(Ω) and Hs(Ω) are different.
Let s ∈ R and s �= j−1/2 for all j = 1, . . . , 2q. We denote by Hs,(2q)(Ω) the completion

of the linear system C∞(Ω ) with respect to the norm

‖ u ‖Hs,(2q)(Ω) :=
(
‖ u ‖2

Hs,(0)(Ω) +

2q∑

j=1

‖(Dj−1
ν u)↾Γ‖2

Hs−j+1/2(Γ)

)1/2

.

The space Hs,(2q)(Ω) is separable Hilbert.
In the case where s ∈ {j − 1/2 : j = 1, . . . , 2q} we define the separable Hilbert space

Hs,(2q)(Ω) by means of the complex interpolation

Hs,(2q)(Ω) :=
[
Hs−1/2,(2q)(Ω), Hs+1/2,(2q)(Ω)

]
1/2

.

We note that by the trace theorem [1, Ch. 1, Sec. 9.2]

(21) Hs,(2q)(Ω) = Hs(Ω) with equivalence of norms for s > 2q − 1/2.

The spaces Hs,(2q)(Ω) and Hs(Ω) are different if s ≤ 2q − 1/2.
The embeddings Hs2,(0)(Ω) →֒ Hs1,(0)(Ω) and Hs2,(2q)(Ω) →֒ Hs1,(2q)(Ω) are compact

and dense for arbitrary s1, s2 ∈ R, s1 < s2. This follows from the compactness of the
embeddings Hs2(Ω) →֒ Hs1(Ω) and Hs2(Γ) →֒ Hs1(Γ).

Proposition 1. [ [17], Theorems 4.1.1, 5.3.1 ]. Let s ∈ R. The mapping u �→ (Au, Bu)
with u ∈ C∞(Ω ) can be extended by continuity to the linear bounded operator

(22) (A, B) : Hs+2q,(2q)(Ω) → Hs,(0)(Ω) ⊕

q⊕

j=1

Hs+2q−mj−1/2(Γ) =: Hs,(0)(Ω, Γ).

This operator is Fredholm. Its kernel coincides with N , whereas its range consists of

all vectors (f, g1, . . . , gq) ∈ Hs,(0)(Ω, Γ) satisfying condition (5). The index of (22) is

dimN − dim N+.

Proposition 1 is another example of the generic theorem on elliptic boundary-value
problems. If s ≥ 0, then Proposition 1 coincides with Theorem 0 by (21). But if
s < −1/2, then both the spaces Hs+2q,(2q)(Ω) and Hs,(0)(Ω) = Hs

Ω
(Rn) consist of the

elements which are not distributions in the domain Ω.

Proposition 2. [ [17], Theorem 7.1.1 ]. Let s ∈ R, δ > 0, and u ∈ Hs+2q,(2q)(Ω). If

(A, B)u ∈ Hs+δ,(0)(Ω, Γ), then u ∈ Hs+2q+δ,(2q)(Ω).

Proposition 3. [ [17], Theorem 6.1.1 ]. Let s ∈ R. The following assertions are true:
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(i) The norm in the space Hs+2q,(2q)(Ω) is equivalent to the norm

(23)
(
‖u‖2

Hs+2q,(0)(Ω) + ‖Au‖2
Hs,(0)(Ω)

)1/2

on the set of all functions u ∈ C∞(Ω ). Therefore the space Hs+2q,(2q)(Ω) coin-

cides with the completion of the linear system C∞(Ω ) with respect to the norm

(23).
(ii) The mapping IA : u �→ (u, Au) with u ∈ C∞(Ω ) can be extended by continuity

to the homeomorphism

IA : Hs+2q,(2q)(Ω) ↔ Ks+2q,A(Ω).

Here,

Ks+2q,A(Ω) :=
{

(u0, f) : u0 ∈ Hs+2q,(0)(Ω), f ∈ Hs,(0)(Ω),

(u0, A
+v)Ω = (f, v)Ω ∀ v ∈ H2q

0 (Ω) ∩ H−s,(0)(Ω)
}

(24)

is a closed subspace in Hs+2q,(0)(Ω) ⊕ Hs,(0)(Ω).

Proposition 4. [ [17], Theorem 6.2.1 ]. Let s < −2q − 1/2. For each couple of distribu-

tions u0 ∈ Hs+2q,(0)(Ω) and f ∈ Hs,(0)(Ω) satisfying the condition

(25) (u0, A
+v)Ω = (f, v)Ω for all v ∈ C∞

0 (Ω),

there exists a unique couple (u∗
0, f) ∈ Ks+2q,A(Ω) such that

(26) (u0, v)Ω = (u∗
0, v)Ω for all v ∈ C∞

0 (Ω).

Furthermore,

(27) ‖u∗
0‖Hs+2q,(0)(Ω) ≤ c

(
‖u0‖

2
Hs+2q,(0)(Ω) + ‖f‖2

Hs,(0)(Ω)

)1/2
,

with number c > 0 being independent of u0, f , and u∗
0.

Remark 1. [ [17], Sec. 6.2 ]. The conditions (24) and (25) are equivalent for s ≥ −2q−1/2,
but they are not equivalent if s < −2q − 1/2.

4. Proof of the main result

Now we will prove the main result of the paper, Theorem 1. We assume that its
condition be fulfilled; i.e., s < 0 and the Hilbert space Xs(Ω) is embedded continuously
in D′(Ω) and satisfies Condition Is. It follows that the mapping f �→ Of with f ∈ X∞(Ω)
can be extended by continuity to the bounded linear operator

(28) O : Xs(Ω) → Hs
Ω
(Rn) = Hs,(0)(Ω).

This operator is injective. Indeed, let Of = 0 for a distribution f ∈ Xs(Ω). Chose
a sequence (fk) ⊂ X∞(Ω) such that fk → f in Xs(Ω) →֒ D′(Ω). Then Ofk → 0 in
Hs

Ω
(Rn) →֒ S′(Rn) that implies

(f, v)Ω = lim(fk, v)Ω = lim(Ofk, v)Ω = 0 for every v ∈ C∞
0 (Ω).

Thus, f = 0 as a distribution belonging to Xs(Ω) →֒ D′(Ω); i. e., the operator (28) is
injective. This operator defines the continuous embedding Xs(Ω) →֒ Hs,(0)(Ω).

According to Proposition 1, the element Au ∈ Hs,(0)(Ω) is correctly defined for an
arbitrary u ∈ Hs+2q,(2q)(Ω) by means of passing to the limit. We set

D
s+2q,(2q)
A,X (Ω) := { u ∈ Hs+2q,(2q)(Ω) : Au ∈ Xs(Ω) }.

We also endow the space D
s+2q,(2q)
A,X (Ω) with the graphics inner product

(u1, u2)D
s+2q,(2q)
A,X (Ω)

:= (u1, u2)Hs+2q,(2q)(Ω) + (Au1, Au2)Xs(Ω).

The space D
s+2q,(2q)
A,X (Ω) is complete with respect to it. Indeed, let (uk) be a Cauchy

sequence in D
s+2q,(2q)
A,X (Ω). Since both the spaces Hs+2q,(2q)(Ω) and Xs(Ω) are complete,
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the limits u := limuk in Hs+2q,(2q)(Ω) and f := limAuk in Xs(Ω) exist. The first of
them implies that Au = limAuk in Hs,(0)(Ω). We have from this in view of the second

limit and the continuity of (28) that Au = f ∈ Xs(Ω). Hence, u ∈ D
s+2q,(2q)
A,X (Ω) and

limuk = u in D
s+2q,(2q)
A,X (Ω); i.e., the space D

s+2q,(2q)
A,X (Ω) is complete.

By Proposition 1, the restriction of the operator (22) to D
s+2q,(2q)
A,X (Ω) gives the

bounded operator

(29) (A, B) : D
s+2q,(2q)
A,X (Ω) → Xs(Ω, Γ).

The kernel of (29) is N , and the range consists of all vectors (f, g1, . . . , gq) ∈ Xs(Ω, Γ)
satisfying condition (5). Hence, the operator (29) is Fredholm, with its co-kernel being
of a dimension β ≤ dimN+.

Moreover, if O(X∞(Ω)) is dense in Hs
Ω
(Rn), then β = dimN+. Indeed, denoting the

operator (22) by Λ and the narrower operator (29) by Λ0, we consider the operators Λ∗

and Λ∗
0 adjoint to them. Since the embedding Xs(Ω, Γ) →֒ Hs,(0)(Ω, Γ) is continuous and

dense, we have kerΛ∗
0 ⊇ kerΛ∗. Hence

β = dim cokerΛ0 = dimkerΛ∗
0 ≥ dimkerΛ∗ = dim cokerΛ = dimN+.

Therefore β = dimN+ and the index of (29) is equal to dim N − dimN+ if O(X∞(Ω))
is dense in Hs

Ω
(Rn).

Let us show that the set D∞
A,X(Ω) is dense in D

s+2q,(2q)
A,X (Ω). Since X∞(Ω)×(C∞(Γ))q

is dense in Xs(Ω, Γ), we can write by the Gohberg-Krein lemma [36, Lemma 2.1]

(30) Xs(Ω, Γ) = (A, B)
(
D

s+2q,(2q)
A,X (Ω)

)
∔ Q(Ω, Γ),

where Q(Ω, Γ) is a finite-dimensional subspace satisfying the condition

(31) Q(Ω, Γ) ⊂ X∞(Ω) × (C∞(Γ))q .

Denote by Π the projector of the space Xs(Ω, Γ) onto the first term in (30) parallel to
the second term.

Let u ∈ D
s+2q,(2q)
A,X (Ω). Approximate F := (A, B)u by a sequence (Fk) ⊂ X∞(Ω) ×

(C∞(Γ))q in the the topology of Xs(Ω, Γ). We have

(32) limΠFk = ΠF = F = (A, B)u in Xs(Ω, Γ),

and by (31)

(33) (ΠFk) ⊂ X∞(Ω) × (C∞(Γ))q

The Fredholm operator (29) naturally generates the topological isomorphism

Λ0 := (A, B) : D
s+2q,(2q)
A,X (Ω)/N ↔ Π(Xs(Ω, Γ)).

In view of (32),

limΛ−1
0 ΠFk = {u + w : w ∈ N} in D

s+2q,(2q)
A,X (Ω)/N.

Hence, there is a sequence of representatives uk ∈ D
s+2q,(2q)
A,X (Ω) of cosets Λ−1

0 ΠFk such
that

(34) limuk = u in D
s+2q,(2q)
A,X (Ω).

In addition, by (33) we have

(A, B)uk = ΠFk ∈ C∞(Ω ) × (C∞(Γ))q .

It follows in view of Proposition 2, equality (20) and the Sobolev embedding theorem
that

uk ∈
⋂

δ>0

Hs+2q+δ,(2q)(Ω) =
⋂

δ>0

Hs+2q+δ(Ω) = C∞(Ω ).

Thus, in (34) we have (uk) ⊂ D∞
A,X(Ω); therefore D∞

A,X(Ω) is dense in D
s+2q,(2q)
A,X (Ω).
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Next, we will consider the cases −2q − 1/2 ≤ s < 0 and s < −2q − 1/2 separately.
The first case: −2q − 1/2 ≤ s < 0. Then Hs+2q,(0)(Ω) = Hs+2q(Ω) in view of (20).

We use Proposition 3 and consider the mapping I0 : u �→ u0 in which u ∈ D
s+2q,(2q)
A,X (Ω)

and (u0, f) := IAu. This mapping establishes the homeomorphism

(35) I0 : D
s+2q,(2q)
A,X (Ω) ↔ Ds+2q

A,X (Ω).

Indeed, note that (24) ⇔ (25) for arbitrary u0 ∈ Hs+2q,(0)(Ω) = Hs+2q(Ω) and f ∈
Xs(Ω) →֒ Hs,(0)(Ω) (see remark 1). Condition (25) means that Au0 = f as distributions

in Ω. It follows by Proposition 3 that I0(D
s+2q,(2q)
A,X (Ω)) = Ds+2q

A,X (Ω). Moreover, we have
the equivalence of the norms:

‖u‖2

D
s+2q,(2q)
A,X (Ω)

= ‖u‖2
Hs+2q,(2q)(Ω) + ‖f‖2

Xs(Ω)

≍ ‖u0‖
2
Hs+2q,(0)(Ω) + ‖f‖2

Hs,(0)(Ω) + ‖f‖2
Xs(Ω)

≍ ‖u0‖
2
Hs+2q(Ω) + ‖f‖2

Xs(Ω) = ‖u0‖
2
Ds+2q

A,X (Ω)
.

Hence, the mapping I0 establishes the homeomorphism (35).
It follows from properties of the operator (29) denoted by Λ0 and the operator (35)

that

(36) Λ0I
−1
0 : Ds+2q

A,X (Ω) → Xs(Ω, Γ)

is a bounded and Fredholm operator, with the range and index being the same as for
(29). Since I0 bijectively maps the set D∞

A,X(Ω) onto itself, this set is dense in Ds+2q
A,X (Ω),

and (36) is an extension by continuity of the mapping u → (Au, Bu) with u ∈ D∞
A,X(Ω).

Theorem 1 is proved in the first case.
The second case: s < −2q − 1/2. Then Hs+2q,(0)(Ω) = Hs+2q

Ω
(Rn). In addition

Hs+2q(Ω) =
{
w ↾Ω : w ∈ Hs+2q

Ω
(Rn)

}
,(37)

‖u‖Hs+2q(Ω) = inf
{
‖w‖Hs+2q(Rn) : w ∈ Hs+2q

Ω
(Rn), w = u in Ω

}
.(38)

This follows immediately from the equality Hs+2q(Ω) = Hs+2q

Ω
(Rn)/Hs+2q

Γ (Rn) men-

tioned in Section 2.
Let us denote Rw := w ↾Ω for w ∈ S′(Rn). We will prove that the mapping I0 : u �→

Ru0 with u ∈ D
s+2q,(2q)
A,X (Ω) and (u0, f) := IAu establishes the topological isomorphism

(35) in the case under consideration. (In the first case, Ru0 = u0.) We use Proposition 3

and note that (24) ⇒ (25). For an arbitrary u ∈ D
s+2q,(2q)
A,X (Ω), we have: Ru0 ∈ Hs+2q(Ω)

(see (37)), f = Au ∈ Xs(Ω), and

(Ru0, A
+v)Ω = (u0, A

+v)Ω = (f, v)Ω for every v ∈ C∞
0 (Ω);

i. e., ARu0 = f as distributions in Ω. Therefore I0u = Ru0 ∈ Ds+2q
A,X (Ω). Moreover, in

view of (38) and the definition of Hs+2q,(2q)(Ω) we have:

‖I0u‖
2
Ds+2q

A,X (Ω)
= ‖Ru0‖

2
Hs+2q(Ω) + ‖f‖2

Xs(Ω)

≤ ‖u0‖
2
Hs+2q(Rn) + ‖f‖2

Xs(Ω) ≤ ‖u‖2

D
s+2q,(2q)
A,X (Ω)

.

Hence, the operator I0 : D
s+2q,(2q)
A,X (Ω) → Ds+2q

A,X (Ω) is bounded.

Now we will show that this operator is bijective. Let ω ∈ Ds+2q
A,X (Ω) and f := Aω ∈

Xs(Ω). Due to (37), there is a distribution u0 ∈ Hs+2q

Ω
(Rn) such that ω = Ru0. Distri-

butions u0 and f satisfy condition (25) because

(u0, A
+v)Ω = (ω, A+v)Ω = (f, v)Ω for every v ∈ C∞

0 (Ω).
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According to Proposition 4, for u0 ∈ Hs+2q,(0)(Ω) and f ∈ Xs(Ω) →֒ Hs,(0)(Ω) there
exists a unique couple (u∗

0, f) ∈ Ks+2q,A(Ω) such that condition (26) is fulfilled. This
implies by Proposition 3 that

u∗ := I−1
A (u∗

0, f) ∈ D
s+2q,(2q)
A,X (Ω), and I0u

∗ = Ru∗
0 = Ru0 = ω.

The element u∗ is a unique preimage of ω under the mapping I0. Indeed, if I0u
′ = ω

for some u′ ∈ D
s+2q,(2q)
A,X (Ω), then the couple (u′

0, f
′) := IAu′ ∈ Ks+2q,A(Ω) satisfies the

following conditions:

f ′ = ARu′
0 = Aω = f and (u′

0, v)Ω = (ω, v)Ω = (u0, v)Ω ∀ v ∈ C∞
0 (Ω).

Therefore by Proposition 4, the couples (u′
0, f

′) = (u′
0, f) and (u∗

0, f) are equal that
implies the equality of their preimages u′ and u∗ under the mapping IA.

Thus, the linear bounded operator (35) is bijective in the case examined and therefore
is a topological isomorphism by the Banach theorem on inverse operator. Now using the
Fredholm property of (29) and reasoning as in the first case, we complete our proof in
the second case.

Theorem 1 is proved.

5. Proofs of Theorems 2, 3, and corollaries

5.1. Proof of Theorem 2. By the condition, s < 0, σ ∈ R, and Xs(Ω) := Hσ(Ω).
Then the set X∞(Ω) = C∞(Ω ) is dense in the space Hσ(Ω).

Sufficiency. Let (13) be fulfilled, i.e. σ ≥ max{s,−1/2}. Then by (20) we have

Hσ(Ω) = Hσ,(0)(Ω) →֒ Hs,(0)(Ω),

with the embedding being continuous. We remind that each function f ∈ C∞(Ω ) is
identified with the functional (f, · )Ω, the last being identified with the function Of from
the space Hs

Ω
(Rn) = Hs,(0)(Ω). Hence

‖Of‖Hs(Rn) ≤ c ‖f‖Hσ(Ω) for every f ∈ C∞(Ω ),

with number c > 0 being independent of f . Sufficiency is proved.
Necessity. Let Xs(Ω) := Hσ(Ω) satisfy Condition Is. We assume that σ < 0.

(If σ ≥ 0, then (13) holds true). The operator (28) establishes the continuous dense
embedding Hσ(Ω) →֒ Hs,(0)(Ω). This implies that

H−s(Ω) = (Hs,(0)(Ω))′ ⊆ (Hσ(Ω))′ = H−σ
0 (Ω),

we denoting by H ′ the space antidual to H with respect to the inner product in L2(Ω).
Hence, −s ≥ −σ. Moreover −σ ≤ 1/2, because if −σ > 1/2, then the function f ≡ 1 ∈
H−s(Ω) would not belong to H−σ

0 (Ω) by virtue of (17). Thus, σ satisfies (13). Necessity
is proved.

5.2. Proof of Corollary 1. Let numbers s < 0 and σ satisfy inequality (13). The
boundedness and the Fredholm property of (14) follow immediately from Theorems 1
and 2 in which Xs(Ω) := Hσ(Ω) and D∞

A,X(Ω) = C∞(Ω ). Moreover, since the set

O(C∞(Ω )) identified with C∞(Ω ) is dense in Hs
Ω
(Rn) = Hs,(0)(Ω), the index of (14) is

equal to dim N − dimN+ by Theorem 1(iv) and therefore independent of s, f .

5.3. Remark to Corollary 1. Here we consider the special case of Corollary 1 where
−1/2 ≤ σ = s < 0. In this case the domain of the operator (14) does not depend on A.
Indeed, if −1/2 < σ = s < 0, then we have the bounded operator A : Hs+2q(Ω) → Hs(Ω)
because s is not half-integer [1, Ch. 1, Proposition 12.1]. It follows that the domain of
(14) coincides with Hs+2q(Ω) and therefore does not depend on A.

If s = σ = −1/2, we cannot reason as above because the space H−1/2(Ω) is narrower
than A(H2q−1/2(Ω)). However, in view of Theorem 1(i), equality (20), and Proposition 3
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we draw a conclusion that the domain of (14) is the completion of the set of all u ∈
C∞(Ω ) with respect to the norm

‖u‖2
H2q−1/2(Ω) + ‖Au‖2

H−1/2(Ω) = ‖u‖2
H2q−1/2,(0)(Ω) + ‖Au‖2

H−1/2,(0)(Ω) ≍ ‖u‖H2q−1/2,(2q)(Ω).

Hence, the domain coincides with the space H2q−1/2,(2q)(Ω) independent of A.

5.4. Proof of Theorem 3. By the condition, s < −1/2 whereas ̺ ∈ C∞(Ω) is positive.
Let us denote by M̺ and M̺−1 the operators of multiplication by ̺ and ̺−1 respectively.
We have the isometric isomorphism M̺ : Hs(Ω) ↔ ̺Hs(Ω). It follows from this and
from the density of C∞

0 (Ω) in Hs(Ω) that the set C∞
0 (Ω) is dense in Xs(Ω) := ̺Hs(Ω).

Hence, the more extensive set X∞(Ω) is dense in Xs(Ω).
We need the following lemma.

Lemma 1. Let s < −1/2. The multiplication by ̺ ∈ C∞(Ω) is a bounded operator

(39) M̺ : H−s(Ω) → H−s
0 (Ω)

if and only if ̺ satisfies Condition IIs.

Proof. Necessity. If the multiplication by ̺ defines the bounded operator (39), then ̺
is a multiplier in H−s(Ω) and belongs to H−s

0 (Ω). Therefore ̺ satisfies Condition IIs in
view of (17).

Sufficiency. Let ̺ satisfy Condition IIs. We only need to prove that ̺u ∈ H−s
0 (Ω)

for every u ∈ H−s(Ω). Condition IIs implies that ̺ ∈ H−s
0 (Ω) in view of (17). We chose

sequences (uk) ⊂ C∞(Ω ) and (̺j) ⊂ C∞
0 (Ω) such that uk → u and ̺j → ̺ in H−s(Ω).

Since both the functions ̺ and uk are multipliers in the space H−s(Ω), we have therein

lim
k→∞

(̺uk) = ̺u and lim
j→∞

(̺juk) = ̺uk for every k.

This in view of ̺juk ∈ C∞
0 (Ω) implies that ̺u ∈ H−s

0 (Ω). Sufficiency is proved. �

Now let us define the following space with inner product:

̺−1H−s
0 (Ω) := {f = ̺−1v : v ∈ H−s

0 (Ω) },

(f1, f2)̺−1H−s
0 (Ω) := (̺f1, ̺f2)H−s(Ω).

We have the isometric isomorphism

(40) M̺−1 : H−s
0 (Ω) ↔ ̺−1H−s

0 (Ω).

Hence, the space ̺−1H−s
0 (Ω) is complete, with C∞

0 (Ω) being dense in it.
Note that

(41) (̺−1H−s
0 (Ω))′ = ̺Hs(Ω) with equality of norms.

Indeed, passing in (40) to adjoint operator, we get the isometric isomorphism

M̺−1 : (̺−1H−s
0 (Ω))′ ↔ (H−s

0 (Ω))′ = Hs(Ω).

This by the definition of ̺Hs(Ω) implies the isometric isomorphism

I = M̺M̺−1 : (̺−1H−s
0 (Ω))′ ↔ ̺Hs(Ω),

where I is the identity operator. Thus, (41) is proved.
Now we can complete the proof of Theorem 3 in the following way. According to

Lemma 1, Condition IIs is equivalent to the boundedness of the operator (39) that by
(40) is equivalent to the continuous embedding H−s(Ω) →֒ ̺−1H−s

0 (Ω). This embedding
is dense and by (41) is equivalent to the continuous dense embedding

̺Hs(Ω) = (̺−1H−s
0 (Ω))′ →֒ (H−s(Ω))′ = Hs

Ω
(Rn).

Finally, the embedding ̺Hs(Ω) →֒ Hs
Ω
(Rn) is equivalent to Condition Is. Note that the

last embedding is dense because C∞
0 (Ω) is dense in Hs

Ω
(Rn) [34, Sec. 4.3.2, Theorem 1(b)].

Thus, Conditions IIs and Is are equivalent for Xs(Ω) = ̺Hs(Ω).
Theorem 3 is proved.
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5.5. Proof of Corollary 2. Let s < −1/2, and a positive function ̺ ∈ C∞(Ω) satisfy
Condition IIs. The boundedness and Fredholm property of the operator (16) follow
from Theorems 1 and 3 with Xs(Ω) := ̺Hs(Ω). In addition, since the set O(Xs(Ω)) is
dense in Hs

Ω
(Rn), Theorem 1(iv) implies that the index of (16) is dim N − dimN+ and

independent of s, ̺.
Acknowledgments. The author would like to thank Yu. M. Berezansky and V. A. Mi-

khailets for their valuable remarks and interest in this work.

Appendix

A.1. In Appendix we will prove the following proposition, which gives an important
example of the function satisfying Condition IIs.

Proposition A. Let a number s < −1/2 and a function ̺1 satisfying condition (10) be

given. Assume that δ ≥ −s − 1/2 ∈ Z or δ > −s − 1/2 /∈ Z. Then the function ̺ := ̺δ
1

satisfies Condition IIs.

A.2. Proof of Proposition A. Condition (15) is fulfilled for the function ̺ = ̺δ
1

because ̺1 = 0 on Γ, and δ ≥ −s − 1/2. Therefore we only need to prove that ̺δ
1 is a

multiplier in the space H−s(Ω). If the positive number δ is integer, then the function
̺δ
1 belongs to C∞(Ω) and therefore is a multiplier in H−s(Ω). Further we assume that

δ /∈ Z. Then by the condition, δ > −s − 1/2.
It is not difficult to verify that the function ηδ(t) := tδ, 0 < t < 1, belongs to

H−s((0, 1)) (we will do it in the next paragraph). Hence, this function has an extension
from the interval (0, 1) to R pertaining to H−s(R). Let us retain the notation ηδ for the
extension. By the Strichartz theorem [37], [35, Sec. 2.2.9], every function from the space
H−s(R) is a multiplier therein if −s > 1/2. Hence, ηδ is a multiplier in H−s(R). Then
[35, Sec. 2.4, Proposition 5] the function ηδ,n(t′, tn) := ηδ(tn) of arguments t′ ∈ Rn−1,
tn ∈ R is a multiplier in H−s(Rn). This function coincides with ̺δ

1 in the special local
coordinates (x′, tn) near the boundary Γ. Here, x′ is a coordinate of a point on Γ, and tn
is the distance from Γ. It follows by [35, Sec. 6.4.1, Lemma 3] that ̺δ

1 is a multiplier in
each space H−s(Ω∩Vj), where {Vj : j = 1, . . . , r} is a finite collection of balls in Rn with a
sufficiently small radius ε, and the collection covers the boundary Γ. By supplementing
this collection with the set V0 := {x ∈ Ω : dist(x, Γ) > ε/2}, we get the finite open
covering of the closed domain Ω. Let certain functions χj ∈ C∞

0 (Vj), j = 0, 1, . . . , r,

form the partition of unity on Ω corresponding to this covering. Since the multiplication
by a function from C∞

0 (Vj) is a bounded operator in the space H−s(Ω∩Vj), the function
χj̺

δ
1 has to be a multiplier in this space and therefore in H−s(Ω). Hence, ̺δ

1 =
∑r

j=0 χj̺
δ
1

is a multiplier in H−s(Ω).
It remains to proof that ηδ ∈ H−s((0, 1)). We use the inner description of the space

H−s((0, 1)). If −s ∈ Z, the inclusion ηδ ∈ H−s((0, 1)) is equivalent to that ηδ ∈ L2((0, 1))

and η
(−s)
δ ∈ L2((0, 1)). The last two inclusions are fulfilled because δ > −s−1/2. Hence,

ηδ ∈ H−s((0, 1)) in the case examined. If −s /∈ Z, then by [38, p. 214, Sec. 7.48] the
inclusion ηδ ∈ H−s((0, 1)) is equivalent to that ηδ ∈ H [−s]((0, 1)) and

(42)

∫ 1

0

∫ 1

0

|D
[−s]
t tδ − D

[−s]
τ τδ|2

|t − τ |1+2{−s}
dt dτ < ∞.

Here as usual, [−s] and {−s} are the integral and fractional parts of −s respectively.
Since δ > [−s] − 1/2, we have ηδ ∈ H [−s]((0, 1)), that was proved above. In addition,
inequality (42) holds true by virtue of the following elementary lemma, which we will
prove in Subsection A.3.
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Lemma A. Let α, β, γ ∈ R, and in addition, α �= 0, γ > 0. Then

(43) I(α, β, γ) :=

∫ 1

0

∫ 1

0

|tα − τα|γ

|t − τ |β
dt dτ < ∞

if and only if the following inequalities are fulfilled:

(44) αγ − β > −2, γ − β > −1, αγ > −1.

Indeed, the double integral in (42) is equal to c I(α, β, γ), where c is a positive number,
whereas α = δ − [−s], β = 1 + 2{−s}, and γ = 2. Equalities (44) are fulfilled for these
numbers α, β, and γ, because

αγ − β = 2(δ + s) − 1 > −2, γ − β = 1 − 2{−s} > −1, αγ = 2(δ − [−s]) > −1.

We have used the condition δ > −s − 1/2 in the first and the third inequalities. Thus,
the inclusion ηδ ∈ H−s((0, 1)) is also valid in the case of non-integer s < −1/2.

Proposition A is proved.

A.3. Proof of Lemma A. Changing the variable λ := τ/t in the inner integral, we can
write the following in view of evident transformations:

I(α, β, γ) = 2

∫ 1

0

dt

∫ t

0

|tα − τα|γ

|t − τ |β
dτ = 2

∫ 1

0

tαγ−β+1dt

∫ 1

0

|1 − λα|γ

|1 − λ|β
dλ.

Here, the integral in variable t is finite if and only if αγ − β > −2, whereas the integral
in τ is finite if and only if both the inequalities αγ > −1 and γ − β > −1 hold. Hence
(43) ⇔ (44), which is what had to prove.
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