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NECESSARY AND SUFFICIENT CONDITION FOR SOLVABILITY
OF A PARTIAL INTEGRAL EQUATION

YU. KH. ESHKABILOV

ABSTRACT. Let T : L2(22) — L2(922) be a partial integral operator [4,7] with the
kernel from C(Q3) where Q = [a,b]”, v € N is fixed. In this paper we investigate
solvability of the partial integral equation f — »T1f = go in the space L2(0?) in
the case where 3¢ is a characteristic number. We prove a the theorem that gives
a necessary and sufficient condition for solvability of the partial integral equation
=T f=go.

In models of solid state physics [1] and also in the lattice field theory [2], there ap-
pear so-called discrete Schrodinger operators, which are lattice analogues of the usual
Schrodinger operators in a continuous space. The study of spectra of lattice Hamilto-
nians (that is, discrete Schrodinger operators) is an important topic in mathematical
physics. Nevertheless, when studying spectral properties of discrete Schrodinger opera-
tors there appear partial integral equations in a Hilbert space of multi-variable functions
[1,3]. Therefore, to investigate spectra of Hamiltonians considered on a lattice, a study
of the solvability problem for a partial integral equations in Lo is essential (and even
interesting from the point of view of functional analysis).

A question on existence of a solution of partial integral equation (PIE) for functions
of two variables was considered in [4-8] and other works. In the work by the author
[9], the PIE f — T f = go was studied in the space L3(922), where Q = [a,b]¥, for a
partial integral operator (PIO) Ty : La(0?) — Lo (92?) with the kernel k(x, s,y) being a
continuous function in three variables on 3. The concept of a determinant for the PIE
as a continuous function on €2 and the concepts of a regular number, a singular number,
a characteristic number, and an essential number for a PIE are given. Theorems on
solvability of the PIE are proved in the case where s is a regular and essential number
[9]. In this paper we study solvability of the PIE f —»T; f = go when s is a characteristic
number, i.e., the paper continues the work by the author [9].

Let L% = L°(Q) be a space of classes of complex-valued measurable functions b =
b(y) on Q. We denote by Lo (02?) the totality of classes of complex-valued measurable
functions f(z,y) on  x Q satisfying the condition: [ |f(z,y)|*dz exists for almost all
y € Q. It is easy to note that Ly 0(02?) is a linear space over C and Lo(Q?) C Lo o(022).
For each b(y) € L° and f(z,y) € L2,0(Q?), we define the function b o f by the formula
(bo f)(z,y) = b(y)f(x,y). Then for any b € L we have bo f € L o(Q?), where f €
Lo o(922). For any f,g € L2 o(Q?), the integral [ f(z,t)g(z,t)dz exists for almost all
teQand ot) = [ f(z,t)g(x,t)dz € LO.

Let V be the Boolean algebra of idempotents in L°. A system {fi, f2,...,fn} C
Lo o(922) is called V-linearly independent, if for all m € V and b1 (y), ba(y), - - ., bn(y) € L°
from Y ), mo (b o fi) = 0 it follows that m- by =7 -by =--- =7 b, =6 [10,11].
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Consider the mapping (-, ) : L2,0(Q2) X L2,0(Q?) — L% acting by the rule

(f.9) = / Fs.0)am) s, f.g € Loo(2).

For every b € L°, we have (bo f,g) = b-(f, g), where f,g € L2,(Q?), i.e., the mapping
(-,-) satisfies the condition of L°-valued internal product [12].
In the space H = L2 o(Q?), we consider a partial integral operator (PIO) S defined by

Sf = /Q a@, s,9)f(s,y)ds, feM,

where q(x, s,y) € L2(2%). The function ¢(z, s,y) is called kernel of the PIO S.
The kernel ¢(s, z,y) corresponds to the adjoint operator S*, i.e.,

Sof = /Q o9 f(s,y)ds, e

Let ' = {a € Q: q(z,s,a) € La(2?)}. Consider a family of compact operators
{Satacq in Lo(§2) associated to S by the following formula

Sap = /Qq(x, s,a)p(s)ds, @€ Ly(Q) (a€ ),

where ¢(z, s, y) is the kernel of S.
Further, if no set of integration is indicated, we mean integration over the set (2.
Now we consider the equation

(1) f=25f=g0

on the space H where f is an unknown function from H, gg € H is a given function,
» € C is a parameter of the equation.
For each n € N, we define a measurable function

n = H(n)(ﬂh7 ey Ty STy ey Spy L)
on Q" x Q™ x Q by means of the order n determinant,
Q(thl,Q) Q($175n,a)
I (21, .. &0, S1, . Spy @) = : : :
q(Tn,51,0) ... q(an,sn,0)

Now, for every » € C we ”formally” define functions D;(y) = Di(y;») on § and
My (x,s,y) = My(x,s,y; ) on Q2 by means of the sum of measurable functional series
composed from sequences of measurable functions d,(y) on Q and g, (z,s,y) on Q3
respectively, by the following rules

(a) Di(a) = Di(a;¢) =1+ Z @dn(a), a € Q,
neN s
and
(b) Mi(x,s,a) = My(z,s,a;x) =q(z,s,a) + Z (_n%') gn(z,s,), (z,8,a)€ 03,
neN ’
where

dk(a) ://H(k)(glavglmfh7§kaa)dﬂ‘(£l)d/‘j‘(£k)v
Qk(xv";?a) :/"'/H(k+1)(x7§17"'7§kasa§17"'7§kaa)du(§1)"'du(sk)'
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Lemma 1. For each » € C the functions D1(y) = Di(y;») (a) and Mi(z,s,y) =
My (x,s,y; %) (b) are measurable on Q and Q3, respectively. Moreover, for almost all
a € Q, there exists the integral [ [ |Mi(x, s, a)|*dzds.

Proof. Let 2 € C be an arbitrary fixed number. We respectively denote by A((ll)(%) and

Mél) (x, s; ) the Fredholm determinant and the Fredholm minor of the operator I — »S,,
for a € @, where I is the identity operator in Lo(£2). Let v, (y) and ¥, (z,s,y) be the
partial sums of the functional series (a) and (b), respectively. We have the sequences
of measurable functions ¢, (y) on Q and 9y, (z, s,y) on Q2 such that lim, . ¢n(y) =

(1)(%) = D1(y; ») for almost all y € Q and lim,— o ¥n(x,s,y) = Mél)(x,s;%) =
M, (z, s,y; 3) for almost all (z,s,y) € Q3. Therefore, the function D;(y) = D1(y; »)
and the function Mi(x,s,y) = My (z,s,y; ») are measurable on Q and Q3, respectively.
It is known that if the kernel h(z,s) of the integral operator Ay = [ h(z,s)p(s)ds,
¢ € La(9), is an element of the space La(2?), then the minor M (z, s; ») of the operator
I — A is also an element of the space Lo(Q?). Hence we have

// |M;(z,5,a)>deds < oo for almost all a€ Q. O

The measurable functions D;(y) = Di(y;») and Mi(x,s,y) = Mi(z,s,y; ») are,
respectively, called the determinant and the minor of the operator E — xS, » € C, where
E is the identity operator in Lo o(2?).

Lemma 2. Let S : Ly o(Q%) — L2o(Q2) be a PIO with a kernel ¢ € L2(Q3). If the
homogeneous equation ¢ — xSap = 0, 2 € C, has only the trivial solution in Lo(2) for
almost all o € ', then PIE (1) is solvable in the space Lo (Q?) for every go € La2,o(Q?).

Proof. Let » € C, go(z,y) be an arbitrary function from the space La(02?). Let the
homogeneous equation ¢ — S, = 6 have only the trivial solution in the space La(2)
for almost all & € . Then D;(a) = D1 (a; 3) # 0 for almost all o € Q and the equation
o(x) — 2(Sap)(x) = ho(x) has a solution ¢, (z) € L2(Q2) for almost all @ € Q' where
ha(z) = go(z, ) € La(2). Moreover, the solution ¢4 () has the form [13]

o) = ha(a) 4 5 [ M50

Dr(a: ) ha(s)ds.

‘We have

My(
Mi(w,s,05) | deds < co for almost all o € Q.

s

This means that we can define a PIO W = W (3) : L2o(Q?) — Lao(Q?) with the
kernel [14]

My (z, s, a; )
Dy (e; )
Therefore we have fo(x,y) = go(z,y) + %(Wgo)(x,y) € Lao(2?) and ¢4 (z) = fo(z, a)
for almost all a € Q. So the function fy(z,y) is a solution of the equation (1). O

The following two propositions are proved analogously to Propositions 1 and 2 from [9].
Proposition 1. Let S : L2 o(Q?) — L2 o(Q?) be a PIO with the kernel g € L2(Q3). Then
the following two conditions are equivalent:

(i) a number X € C is an eigenvalue of the operator S;
(ii) a number A € C is an eigenvalue of operators {Sq }acq,, where Qg is a subset of
Q such that (o) > 0.

Proposition 2. If A € C is an eigenvalue of a PIO S : Ly (Q?) — L2o(Q?) with a
kernel q(z,s,y) € L2(Q3), then the number X is an eigenvalue of the operator S*.
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Theorem 1. Let S : L2o(Q?) — Lao(22) be a PIO with a kernel q(z,s,y) € L2(Q3).
Then every eigenvalue of the PIO S corresponds only to a finite number of V-linearly
independent eigenfunctions.

Proof. Let A € C be an eigenvalue of the PIO S and

(2) flv f27 B an
be some V-linearly independent eigenfunctions, i.e.,

Since any linear combination of the eigenfunctions (2) of the operator S with coeffi-
cients from L is also an eigenfunction, we can apply to the functions (2) the process
of L%-orthogonalization [12]. Thus, we can assume that the functions (2) are mutually
orthogonal and normed in the sense of L%-valued internal products, i.e.,

(fi, f;) =0, i#j and (f;, fi) =1

Therefore we can rewrite (3) in the following form:

X3b@w%:/ﬂ%&w~ﬁ@wm&

From here, it is easy to see that for almost all x € Q the left hand-side of this equality
is an L°-valued Fourier coefficient of the function q(z, s,y) and it is a function of (s,y)
with respect to the orthogonal normed system (2). By the Bessel inequality [12], one can
write

m
|\ Z |fi(z,y)]? < /|q(s,x,y)|2ds for almost all = € Q.
j=1
If we integrate both parts of this inequality with respect to z and ¥y, we obtain

mgw*///m%memw<w

Hence, the number of V-linearly independent functions corresponding to the eigenvalue
A is finite. O

Let S be a PIO with a kernel g(z,s,y) € L2(922). A number 3 € C is called a
characteristic value of the PIE f — 3¢S f = g¢ if the homogeneous equation f —Sf =0
has a non-trivial solution. From here, it is clear that any characteristic value sz of the
PIE f — S f = go is non-zero.

Corollary 1. Let S : Ly o(Q2) — L2o(Q2) be a PIO with a kernel q(z,s,y) € L2(Q3).
Then any characteristic value of the PIE f — »xSf = go corresponds only to a finite
number of V-linearly independent eigenfunctions.

Theorem 2. Let s be a characteristic number of the PIE (1). Then the homogeneous
PIE

(4) f—nSf=0
and the adjoint homogeneous PIFE
(') f-7Sf=0

have the same number of V-linearly independent solutions.

Proof. Let f1,..., fm and ¢1,..., gy be V-linearly independent solutions of the the ho-
mogeneous equations (4) and (4'), respectively. Assume that m < n. We can suppose
that f1,..., fm and g1, ..., g, are orthonormal systems in the sense of L°-valued internal
product.
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Define the function

p(z,s,y) = Q(‘T: 57?/) - ij(&y)gj(m,y).

Jj=1

We have p(x, s,y) € La(Q3) since f;, gr € La,o(92?). Consider two homogeneous PIE,

(5) f—xWf=0
and
(5") f=7ZW"f=0

where W is the PIO with the kernel p(z, s, ).
Let h(x,y) be a solution of the equation (5). Then we have

(h,gj) = (xWh,g;) = (h,325%g;) — s (h, f;) = (h,g5) —=(h, f5), §=1,2,...,m.
Hence, since » # 0,
(6) <h’f]>:O7 j:172)"'7m'

Thus, any solution of the equation (5) satisfies the conditions (6). But by virtue of this
conditions, one can rewrite the equation (5) in the form f — S f = 0, i.e., any solution
of the equation (5) satisfies the equation (4), too. We obtain that a solution h(x,y) of
the equation (5) is in the form

h‘(xmy):Z(bjofJ)(xay)a bjeL07 j:1727"'7m'
j=1

But we have 0 = <h,fk> = Z;nzl <bJ ij,fk> = Z;nzl bj . <f]>fk> = bk, k= 1,2,...,m.
Thus, we have h(z,y) = 6, i.e., the homogeneous PIE (5) has only the trivial solution. We
show that the adjoint equation (5') has non-trivial solutions. If we substitute g(z,y) =
gx(x,y), where k > m, in the equation (5") then we obtain g, = »*W*g;. Thus, we obtain
the contradiction to Proposition 2: the equation (5) has only the trivial solution, but the
adjoint equation (5') has a non-trivial solution. Hence the case m < n is impossible. One
can prove similarly that the case m > n is also impossible and we obtain that m =n. O

Theorem 3. Let 3 be a characteristic number of the PIE (1). Then

a) the homogeneous equation f — 0Sf = 0 has a non-trivial solution, moreover,
the set of all solutions of the homogeneous equation is an infinite dimensional
subspace of H;

b) PIE (1) is solvable if and only if the given function go satisfies the condition

(1) (90,9) =0,

where g € H is an arbitrary solution of the adjoint homogeneous equation f —
7o S*f = 0.

Proof. The proof of the property a) follows immediately from Proposition 1 and Propo-
sition 3 from [9]. We prove the property b).

i) ("if-part”) Let s be a characteristic number of the PIE (1) and fy € H be a
solution of the PIE (1) and g € H be an arbitrary solution of the adjoint homogeneous
equation f — 7¢S*f = 0. Then

(fo,9) = (g0 + 205 fo, 9) = (90, 9) + (305 fo, 9) = (90, 9) + (fo, 305" g)
= (90,9) + (fo,9)-

Therefore we have (go, g) = 0.
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ii) ("only if’-part) Let s¢ be a characteristic number of the PIE (1). Suppose that
go satisfies the condition (I), i.e., {go,g) = 0 for every solution g € H of the equation
f—=3S5*f=0

Consider the function p(z, s, y) € L2(Q3) given by the equality

p(w,5,y) = q(x,5,9) Zf; 5,9)95(,y),

Jj=1
where f1, fo,..., fm and g1, 92, ..., gm are orthonormal systems of solutions of the equa-
tions (4) and (4'), respectively, in the sense of L°-valued internal product. Then for
almost all @ € © the homogeneous Fredholm equation ¢ — Wy = 0 has in Lo(Q)
only the trivial solution [13], where W, is an integral operator in Lo(€2) with the kernel
p(z, s,a). Hence, by Lemma 2, the PIE f — sW f = go has a solution fy € H of the
form

fo=go(z,y) + 505 folx,y) — 20 Y _(fo. f;) - g(x.,y).

j=1
Therefore, we obtain that

(fo, gk) = (g0, gk} + (520 fo, g&) = Y _{fo, £3) - (095, gk)
7j=1

= (fo0,7205" gk) — 20 (fo, fx) = (fo, gr) — 20 (fo, fr),

i.e., (fo, fr) =0, since ¢ # 0. Thus, the solution fy of the equation f — sW f = go has
the form fo = go + 05 fo and, hence, the function fy is also a solution of the PIE (1) at
n = . O

If there exists a number C such that
(I1) [b(t)| < C for almost all ¢ € ,

then the PIO S is a bounded operator on the space Ly(92?), ie., Sf € Lo(Q?), Vf €
Ly(Q?) C Lap(Q?) and ||SfL,02) < Collfllraa2) for all f € Ly(Q?), where Cy is a

positive number,
bt)z//|q(x,s,t)|2dxds.

Let k(z,s,y) € C(Q3). Then the subspace L3(92?) is invariant for the PIO T} :
(T7 f)(z,y) = [k(x,s,y)f(s,y)ds. Therefore it is possible to study solvability for the
PIE

(7) J=+T1f=go
in the space L2(9?) where f is an unknown function from Lo(92?), g, € L2(£2?) is a given
(known) function, s € C is a parameter of the equation.

Let x1, be a set of characteristic numbers for the PIE (7) (see [9]). the definition of
a characteristic number [9] and the obtained Theorem imply the following.

Theorem 4. Let sy € x1,. Then

a) the homogeneous equation f — Ty f = 0 has a non-trivial solution, moreover,
the set of all solutions of the homogeneous equation is an infinite dimensional
subspace of La(Q?);

b) PIE (7) is solvable if and only if the given function go satisfies the condition

(II1) /go(s,t)g(s,t) ds =0 for almost all t €,

where g € La(92?) is an arbitrary solution of the adjoint homogeneous equation

f—5T; | =



10.
11.

12.
13.
14.

THE NECESSARY AND SUFFICIENT CONDITION FOR SOLVABILITY ... 73

REFERENCES

A. 1. Mogilner, Hamiltonians in solid-state physics as multiparticle discrete Schrodinger oper-
ators: problems and results, Advances in Soviet Math. 5 (1991), 139-194.

. R. A. Minlos, Spectral expansion of the transfer matrices of Gibbs fields, Soviet Sci. Rev., Sect.

C, Math. Phys. Rev. 7 (1988), 235-280.

. S. N. Lakaev, M. E. Muminov, Essential and discrete spectra of the three-particle Schrodinger

operator on a lattice, Theor. Math. Phys. 135 (2003), no. 3, 478-503.

. Abdus Salam, Fredholm solutions of partial integral equation, Proc. Cambridge Philos. Soc. 49

(1952), 213-217.

. S. Feny§, Beitrag zur theorie der linearen partiellen integralgleichungen, Publ. Math. Debrecen

(1955), no. 4, 98-103.

. L. M. Lichtarnikov, On the spectrum of one family of linear integral equation with two para-

meters, Diff. equations 11 (1975), no. 6, 1108-1117. (Russian)

. L. M. Lichtarnikov, L. Z. Vitova, On solvability of a linear integral equation with partial inte-

grals, Ukrain. Mat. Zh. 28 (1976), no. 1, 83-87. (Russian)

. E. Chulfa, Fredholm solutions of partial integral equations, Dokl. Akad. Nauk Resp. Uzbekistan

(1997), no. 7, 9-13.

. Yu. Kh. Eshkabilov, On solvability of a partial integral equation in the space La(Q x Q), Meth-

ods Funct. Anal. Topology 14 (2008), no. 4, 323-329.

A. G. Kusraev, Vector Duality and Its Applications, Nauka, Novosibirsk, 1985. (Russian)

I. G. Ganiev, K. K. Kudaybergenov, Finite dimensional modules over the ring of measurable
functions, Uzbek Math. J. (2004), no. 4, 3-9.

A. G. Kusraev, Dominated Operators, Nauka, Moscow, 2003. (Russian)

V. 1. Smirnov, A Course in Higher Mathematics, Vol. 4, Part I, Nauka, Moscow, 1974. (Russian)
K. K. Kudaybergenov, V-Fredholm operators in Banach-Kantorovich spaces, Methods Funct.
Anal. Topology 12 (2006), no. 3, 234-242.

NATIONAL UNIVERSITY OF UZBEKISTAN, TASHKENT, UZBEKISTAN
E-mail address: yusup62@rambler.ru

Received 07/03/2007; Revised 12/12/2008



