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INTEGRAL REPRESENTATIONS FOR SPECTRAL FUNCTIONS OF
SOME NONSELF-ADJOINT JACOBI MATRICES

S. M. ZAGORODNYUK

ABSTRACT. We study a Jacobi matrix J with complex numbers an, n € Z4, in
the main diagonal such that ro < Iman, < r1, 79,71 € R. We obtain an integral
representation for the (generalized) spectral function of the matrix J. The method of
our study is similar to Marchenko’s method for nonself-adjoint differential operators.

1. INTRODUCTION

The main object of our present investigation will be a three-diagonal semi-infinite
complex number matrix of the following form:

ao b() 0 0

bo ay b1 0 .
(1) J = 0 b1 a b2 PN ’
where b,, > 0, and
(2) an, €C: rg <Ima, <ry,

for some 19,71 € R, n € Z,..

Thus, in the case rg = r1 = 0 we obtain the classical Jacobi matrix. The spectral
theory of Jacobi matrices is classic, see [1], [2], [3]. For the Jacobi matrix J, there is a
corresponding non-decreasing function o(z), = € R, which is called a spectral function.
The procedure of a construction of o(z) provides a solution of the direct spectral problem
for J. The inverse spectral problem is to reconstruct J from o. The corresponding
procedure is well-known and simple.

Recently, we have introduced a notion of a spectral function for some nonself-adjoint
semi-infinite banded matrices, see [4], [5]. The spectral function is a bilinear (that means
linear with respect to the both arguments) functional o(u,v), u,v € P, defined on a set of
complex polynomials P. We will use methods which were applied by Marchenko to some
nonself-adjoint Sturm-Liouville operators (see [6]) and obtain an integral representation
for the spectral function o(u,v) of the matrix J from (1).

Notations. As usual, we denote by R, C, N, Z, Z, the sets of real, complex, positive
integer, integer, non-negative integer numbers, respectively. By P we denote the set
of all polynomials with complex coefficients. By 2 we denote a space of vectors z =
(T0,%1,%2,...), Tn € C, n € Zy, such that ||z| = (32°°, |za]?)? < oco. By 12, we
denote a subset of [2 which consists of finite vectors, i.e., vectors x = (zo, 21, 22,...),
xn € C, n € Zy, with only a finite number of nonzero elements z,,.
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2. POLYNOMIALS OF THE FIRST AND OF THE SECOND KINDS

Let J be the semi-infinite matrix from (1), (2). Consider the following difference
equations:

(3) aoyo + boy1 = Ao,

(4) bnflynfl + anYn + bnyn+1 = )\ynv n e N7

where y,, are unknowns and A is a complex parameter.

By P,(\), n € Z4, we denote a solution of (3), (4) with the initial condition Py = 1.
Polynomials P, (\) we will call polynomials of the first kind. Denote by Qn(\), n € Z4,
a solution of (4) with the initial conditions Q¢ = 0, @1 = %. Polynomials @, (\) we will
call polynomials of the second kind.

If we write relation (4) for P, and then multiply it by @y, we will get

(5) bnflpnlen + anPnQn + ann+1Qn = )\Pnan n € N.
In a similar manner we will get
(6) bnlenfan + anQnPn + annJran = )\Qnan n € N.

Subtract (6) from (5) to get
bnfl(Pnlen - Pnanl) - bn(PnQn+1 - Pn+1Qn)7 n € N.

Using the initial conditions we obtain

(7) Po1(A)Qn(A) = Pu(A)@n-1(A) =

We will use relation (7) in the sequel.

1
bnfl’

Proposition 1. Let y, = yn(\), n € Zy, be an arbitrary solution of difference equa-
tion (4). The following relation holds true:

n—1

®) Z(Im a; —Tm A)y;(N)[* = by Im(ya—1(A)ya (V) — bo Im(yo(A)y1 (V)),

n=23,...
Proof. Set an, = an(\) = an, — A\, n € N, and rewrite relation (4) in the following form:
(9) bn_1Yn—1 + @n¥yn + bpynsi1 =0, neN.
Apply the complex conjugation to the both sides of (9) to get
(10) by 1Tn T+ @nlm + buTni1 =0, neN.
Multiply relation (9) by ¥, relation (10) by y,,, and then subtract to obtain
(1) bp1(Yn—1Yn = Yn—1Yn) + (@n — Gn)yn¥n + bn(Yn1¥n — Uniiyn) =0, neN.
Set

An - An (>\) - bn(ynyn+1 - %yn+1) = bn22 Im(ynyn+1)a n e Z-&—-
Then we can write

(12) (an - a—n)yn% - An - An—l» n € N.

Summing up we obtain
n—1

(13) Z(Ej fa)y]@ = An,1 - AO = 27Lbn,1 Im(ynfly_n) - 2Zb0 Im(yom), n = 2, 3, e
j=1

Therefore relation (8) is true. O
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Corollary 1. Let P,(\) and Qn(\), n € Z4, be polynomials of the first and of the
second kinds for difference equations (3), (4), respectively. Polynomials P, () satisfy the
following relation:
n—1
(14) Z(Imaj —Im \)|[P;(N)|* = b1 Im(P—1(\)P,(N), neN.
§=0
Choose an arbitrary w € C and consider the polynomials
(15) U, (A w) =wP,(A) +Qn(A), neZ;.
The polynomials U, (A, w) satisfy the following relation:
n—1
(16) > (Imaj — ImA)|¥; (A, w)|* = bp—1 In(¥p 1 (A, w) ¥, (X, w)) —Imw, neN.
§=0
Proof. To obtain relations (14), (16) for n > 2, it is sufficient to write relation (8) for
the polynomials P,(\) and ¥, (A, w), respectively, and to use the initial conditions. For

the case n = 1 relations (14), (16) can be verified using the initial conditions. O
Set
(17) II=T(rg,r1) ={A€C: ro <ImA <r}.

Corollary 2. Let P,(\), n € Z., be polynomials of the first kind for difference equa-
tions (3), (4). The roots of polynomials P, (X\) lie in the strip II(ro,r1).
Proof. For an arbitrary root A\g € C of P,_1(\), n=2,3,..., by (14) we obtain

n—1

(18) Y (Ima; — Im Xo)|P;(Ao)|* = 0.
j=0

Suppose that Im A\ > 1. By (2) we obtain
Imaj—Im)\0<0, j€Z+.

Then (18) leads to a contradiction since Py = 1. If we suppose that Im Ay < rg, we will
get
Ima; —ImXy >0, j€Z,.

That contradicts relation (18) as well. O

3. WEYL’S DISCS

Like in the classical case (see [1]), an important role in our further considerations will
play the following function:

QM) ~TQu (V)
P,(\) —7P,_1(\)’

where \,7 € C, n € N (P,, @, are polynomials of the first and of the second kinds for
difference equations (3), (4)). We set

(200 IOy =M4(r)={Ae€C: ImA>r}, I =I_(rg)={ eC: ImA <rp},

(19) wn(A\, 7) =

(21) HO = Ho(To,’r‘l) = H+(7”1) Ull_ (7"0).
1) Choose an arbitrary A € II;(r1) and n € N. By virtue of Corollary 2, relations (14)
and (2) we get

b1 Im(P, 1 (A) Pu(A)) = by 1| Pu1(V)[* Tm ((%)) =



94 S. M. ZAGORODNYUK

Thus, we have

(22) Im (%) > 0.

So, a pole of the map w, (A, 7) (for the fixed A € I}, n € N) lies in the upper half-plane
C_ . ={AeC: ImA > 0}. In particular, this means that the real line R is mapped on a
circle C,()\) in the w-plane (the complex plane of the variable w). The lower half-plane
C_={reC: Im7 <0} is mapped on a disc D,,(\). The inverse map for w, (A, 7) has
the following form:

P, (X n(A U, (A,
) vy = PP EQY)  BaOw)
wpnfl()\) + anl()\) \Ilnfl()‘a w)
For an arbitrary w € C: W,,_1(A,w) # 0 (this means that w # _%:—11((;))) by virtue of
relation (16) we can write
n—1
W, (A,
(24) ) (Ima; — Im\)[¥; (A, w)[* = —bn,1|\Iln,1()\)|21m((7w)) — Imw.
= U,_1(N\)
In our case we have Ima; —ImA <0, j € Zy. Therefore
n—1
(25) > [Ima; — Tm A% (A, w)[* = Tmw + by 1| ¥y, 1 (A)]* Im 7, (A, w).
j=0
From the last relation and relation (16) for the case w = — ?3::118)) , we see that the disc

Dy, (M) consists of w € C such that

n—1

(26) > [Ima; — Im A[|¥; (A, w)|* < Imw.
§=0

From relation (26) it follows that

(27) Dpy1(N) € Dy(N), neN, Xell,.

Hence, there exists a non-empty intersection Dog(X) = NjenD;(A). From relation (26) it
follows that Do (\) consists of w € C such that

(28) > [Tma; — Im AW, (A, w)]* < Tmw.
§=0
2) Choose an arbitrary A € II_(rg) and n € N. Reasoning similarly, we obtain that
P.(A) )
29 Im < 0.
> (P n-1(A)

A pole of the map wy, (A, 7) lies in the lower half-plane C'. = {\A € C: Im A < 0}. The
real line is mapped on a circle C,, () and the upper half-plane C; = {r € C: Im7 > 0}
is mapped on a disc D,(A). For w € C: ¥,_1(\ w) # 0, by virtue of relation (16) we
can write relation (24). In our case we have Ima; —ImA > 0, j € Z,, therefore

n—1

(30) > [Ima; — Im A% (A, w)[* = = Imw — by 1| ¥y, 1 (V)] Im 7, (X, w).
3=0
From relation (15) and relation (16) for the case w = _61?3::11((;\))’ we see that the disc
D,,(\) consists of w € C such that
n—1
(31) > |Ima; — Im A%\, w)|* < —Tmw.

=0
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From relation (31) it follows that

(32) Dn+1()‘) g Dn()‘)v ne Na A€ H+-

Thus, there exists a non-empty intersection Doo(X) = NjenD;(A). From relation (31) it
follows that Do (A) consists of w € C such that

(33) > [Ima; — Im AW, (A, w)]* < —Imw.

Jj=0

The radius of C,()) is denoted by r,(A), A € II,. We will need an analytic expression
for r,(N).

Proposition 2. Let A € Ily and n € N. The radius of the circle Dy, (\) is equal to

(34) r(\) = ! - !
M R O] PV 25 [Tma, T AP0

Proof. To obtain the first equality in (34), one repeats the standard arguments from the
proof of Theorem 1.2.3 in [1]. The second equality follows from relation (14). O

Consider a sequence of functions,
@Qn(N)
P.(\)’

Notice that w,(\) € D,(X), n € N, X\ € IIp. Hence, using relations (26), (31) we can
write

Tn(\) == wa (X, 0) = —

A €Ilg(ro,m), neN.

Mma; =T AL & 00 P, () + Qs )2

n—1
[@a (VI = |20 (M) Po(A) + Qo(N)|* < ; Ty~ Tm Al

[Imw, (N[ [0 (V)]

~ |Imag —ImA| = |Imag —Im )|’

Consequently, we obtain

1

_ oY
(35) [on (M < [Tmag — Im |’

Aellp, neN.

Thus, in any compact subset of Ily, the sequence of functions @y, (A) is uniformly bounded.
The functions @, (A) are analytic in IIy as it follows from Corollary 2. By virtue of
Montel’s theorem (see [7]) we can assert that there exists a subsequence @y, (A), k € N,
which is uniformly convergent to a function m()\) in IIy. The function m()) is analytic
by Weierstrass’s theorem. Passing to the limit in (35) with n = ng, k — oo, we obtain

1
A < TTmag —Tm A’
Observe that m(X\) € D, (X\) for any n € N, and therefore
(37) m(A) € Do (N), X €1lp.
For an arbitrary € > 0 we set
My =My e(ro,r1) ={A€eC:ImA<rg—e}U{A e C:ImA >r +¢€}.
Proposition 3. For the function m(\) the following relation holds true:

(38) m(A) -0, A—oo, Aellp.,, £>0.
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Proof. Since m(A) € Dy, (N), Wn(A) € Dyp(A), n €N, X € Iy, we can write

n(A
(39) ‘m()\)Jr C; (()\))‘ <2r,(A), Aellp,, >0, neN.
From relation (34) we see that
(V] < ! <% jem 2.3
Tn = > ; s, N =4,90,...
2[Ima; — Im A[[PL(A\)2 = 2e[A — aof? 0
Thus, for any fixed n, n = 2,3, ..., we obtain

rn(A) =0, XA—o0, Aell,.

Passing to the limit in relation (39) we see that

n(A
m()\)—FCIi(()\)) —0, A—oo, Aellp..
It remains to notice that N
Q”L >\
0, X
Pn(>\) — U, — 00,
since deg @, =n — 1, deg P, = n. (I

The following theorem is valid.

Theorem 1. Difference equation (4) has a solution y, = m(\)P,(\) + Qn(N), n € Z,
which belongs to 12 for any X € Tl,.

Proof. Since the function m(\A), A € Ily, belongs to the disc D (), from relations (28),
(33) it follows that

(40) > [Ima; — Im Allm(A) P (A) + Q;(V)|* < oc.

§=0
Since [Ima;—ImA| > ImA—r; >0, A € I, and | Ima; —Im A| > ro—ImA >0, A e IT_,
the result follows. U

4. THE SPECTRAL FUNCTION

Let J be the semi-infinite matrix from (1), (2). Observe that it is a matrix that is
complex symmetric (with respect to the transposition). Let {P,(A)}nez, , {@n(A) nez,
be the defined above solutions of the corresponding difference equations (3),(4). Recall
(see [4, p. 474]) that a linear with respect to the both arguments functional o (u,v), u,v €
P, is called a spectral function of difference equations (3),(4) if it satisfies relations

(41) U(anpm) = 6n,m7 n,m e ”Z.

For the given difference equations (3), (4) it is not hard to obtain the spectral function
using (41) as a definition and then extending this definition by the linearity. Namely, if
P(N) =32720&Pi(N), & € C, and R(\) = 3272, v Pi(\), vj € C, we set

(42) o(P,R) = Zgjuj.

Here all sums are finite. However, representation (42) is not very convenient. It requires
the knowledge of all coefficients of resolutions of the polynomials P, R via the polyno-
mials {P,(\)}nez, . We are going to derive an analytic representation for the spectral
function o.
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Note that according to Theorem 1 in [4] we have

(43) o(P,R) =0(PR,1), P,ReP.
That means that it is enough to obtain an analytic representation for o(u,1), u € P. If
(44) W) =3 P, e,
§=0
then by (41) we will get
(45) o(u,1) = up.
Let ¥,,(A\,w) and m()\) be defined as in the previous Section. We set
(46) Un(A) = mA) Pa(A) + Qn(A), A €llo,
and
(47) Up(A) =Y W\ f5,  f=(fo, fr.for..) €lRyy A ETI.
§=0

Proposition 4. Let f = (fo, f1, f2,...) € [, and € > 0. For the function V() the
following relation holds:

1
(18) () = (o +301)),
where 5(1) — 0 as A — oo in a strip g ..

Proof. Let f and e be from the statement of the Proposition. Set ¢ = (g0, 91,92, -.),
where

go = aofo + bof1,
gn:bn—lfn—1+anfn+bnfn+17 n € N.
Observe that g € 12, We can write

Ty(N) =D (Mg = YoM (aofo+bofr) + > Ui(N (b1 fi-1+ajfj +bjfit1)
=0

j=1

= Wo(A)(aofo + bof1) + Z U1 (A)b fr + Z W (Naj fj + Z U (N)bi-1fi
=0

j=1 1=2

= To(Naofo+ T1(Mbofo + Y (b1 1(N) + ;5 (A) +b;¥541 (V) f;

j=1
= Wo(Naofo+T1(Mbofo+AY TN f;, Aell,
=1

j
where we have used the fact that U;()) is a solution of difference equation (4).
Since Wp(A) = m(X), and bg¥1(A\) = Am(A\) — agm(N) + 1, we get

Ty(A) = Am(N)fo+ fo+ XD _W;Nf = fo+ XD ;N f5 = fo+ ATs(N).

j=1 j=0
Therefore

(19) U = 2 (—fo + (V) A€ T,

> =
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By virtue of the Cauchy-Buniakovskiy inequality we can write

(50) |wg(x<<z|m oy ) <Z|gj ) A e Tl

If A € Iy, then |Ima; — Im A| > €. Since the function m(X), A € Iy, belongs to the
disc Doo()), by virtue of relations (28), (33) we can write

(51) EZ\m N+Qi(N)° <Z|1ma;—1m/\\\m( )Pj(A\)+Q; (NP < [Imm(A)].

7=0

Hence, we get

(52) v, (/\|<|m(>\ <ZJ > . Aell..

Applying Proposition 3 we complete the proof. (I

Theorem 2. The spectral function o of difference equations (3),(4) has the following
representation:

1 oco+i(r1+e) )
o(P,R) = — lim {/ PA)R(N)e N m(\) dA
—oo+i(r1+e)

(53) oco+i(ro—e)
+/ PV)R(Ne Y m(\) d)\}, P,ReP,
oco+i(ro—e)
where
(54) e>0: > —ry, € >1p.

Proof. We first note that the function W;(X) from (47) is analytic in IIy. Choose an
arbitrary ¢ > 0 which satisfies (54) and consider points a}, = —N+i(r1+¢), ¢t = i(r1+e),
bl = N+i(r1+e¢),and ay = —N +i(rg —€), ¢~ =i(ro — ), by = N +i(ro — €) in the
complex A-plane. We also denote

Cy={ eC: A=c"|=N, ImA>r +¢},

Cy={re€C: |A=c|=N, ImA <rg—ec}.
Condition (54) ensures that the points af,ct, b} and the half of the circle, Cf;, lie in

the open upper half-plane C’,. The points ay,c™,by and the half of the circle, Cy, lie
in the open lower half-plane C’ . Using the analyticity we can write

(55) /bN \I/f(A)d)\+/ Up(\)dA =0,
a;(] CIJ\r,

(56) /aN qff(x)dwr/ U(\) dA = 0.
N Cxn

By virtue of Proposition 4 we can write

(57) /C+ fof(A)dA:—fo/c+ %dx—/w %5(1)&

N
where (1) = —¥4(A) (see (49)) is an analytic function in ITy. Since [A| > N — |rq + €]
in C]J(,, we get,
lo(1)]

N —|r1 +¢|’

o(1)

|T\ <
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and the second term in the right-hand side of (57) tends to zero as N — co. For the first
term in the right-hand side of (57), we can write

—fo(lna} —Inb}) = —foi(arga}, — argbl) — —mifo,
as N — oo. Here we have used an arbitrary analytic branch of the logarithm in
C\[0, +00). Calculating arguments we used that points aj;, b} lie in C/,..
Passing to the limit in (55) we get
by
(58) lim U (A)dh = mifo.

N—oo +
an

Proceeding in an analogous manner with relation (56) we obtain

(59) fm [ U (\) dA = mifo.

N—oo bo
N

Summing up relations (58) and (59) we get

bx ay
(60) lim {/+ \Iff(/\)d)\+/bi \I/f()\)d/\} = 2mifo.

N—o0
N

Let us show that

oco+i(r1+e) )
(61) Jim / W s(A\)d\ = lim e MW () d.
6—0 —oo+i(ry+e)
We first note that the integral in the right-hand side of (61) exists, since ¥ () is bounded
(see (48)). For an arbitrary € > 0 we can write

oco+i(r1+e) R b;
‘/ e oA Wy(A)dA — lim /+ \I/f()\)d)\‘

(62) oco+i(r1+e)
_ L&

hm/ (e~ — 1) 4( )\)d/\‘ ‘/ e —1)\I/f()\)d/\‘

for N > Ny, Nog € N. On the finite segment [a}o,bj(,o], the function (e~ — 1)We(N)
uniformly tends to zero as § — 0. Therefore,

+

/ e 1WA A -0, 60,
a+
No

Hence, we can choose 8 > 0 such that |§] < 8y implies

po | ™)

(63) ‘/GN - \I/f()\)d)\' <

From relations (62), (63) it follows that (61) holds. In an analogous manner we obtain
ay —oo+i(rg—e) )
(64) lim T 4(N\)d\ = lim e W () dA
N—oo Jp,~ 6—0 oco+i(rog—e)
N
From (60), (61), (64) we obtain

oco+i(r1+¢) ) —oo+i(ro—¢) 5
(65)  lim {/ e N W L(N) d)\+/ e N W p(N) d)\} = 2mi fo.
6—0 —oo+i(r1+e) oco+i(rg—e)
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Let u(A) € P be an arbitrary complex polynomial which has resolution (44). A vector of
coefficients u = (ug, u1,us, ...) belongs to lﬁn. For A\ € Il we can write

(66)  Wu(X) =D W(Nu; =Y (mNP;(A) +Q;(N)u; = m(Nu(h) + Y Q;(\)uy.
j=0 j=0 j=0

Let us show that

co+i(ri+e) ) —oo+i(ro—¢) R
(67) lim {/ e Q;(N) dA +/ e QN d/\} =0, j€Zy.
6—0 —oo+i(r1+e) oco+i(rg—e)

Since the function e~ Q;(X) is analytic in C, we have

N+i(ri+e) ) —N+i(rog—e) )
/ e Qi) dA+/ e N Q;(\) dA

(68) —N+i(ri1+4e) N+i(ro—e)

N+i(ro—e) ) —N+i(r14e) )

+/ e Q) d)\+/ e Q,;(\)d\=0.
N+i(ri+e) —N+i(ro—¢)

The last two terms in the left-hand side of (68) tend to zero as N — co. In fact, the

length of the path of integration is constant and the function under the integral tends to

zero as N — oo, in the both cases. So, proceeding to the limit in (68) we obtain (67).
If we write relation (65) for the function ¥, (\) from (66) and use (67), we will get

oco+i(r1+e) ) —oo+i(rog—e¢) R
lim { / e N m(A\)u(\) dr + / e N m(A\)u(N) d)\}
(69) 6—0 —ocoti(r1+e) oo+i(ro—e)

= 2miug = 2mio(u(A), 1).

If we take into account relation (43), we will obtain relation (53). The proof is complete.

O
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