В.К.Богушевич, Л.Н.Замаренова, Н.С.Никонюк, М.И.Скипа

Отделение гидроакустики Морского гидрофизического института НАН Украины, г. Одесса

О ВОЗМОЖНОСТИ АКУСТИЧЕСКОГО МОНИТОРИНГА НЕОДНОРОДНОСТЕЙ МОРСКОЙ СРЕДЫ В УСЛОВИЯХ ЭФФЕКТА СДВИГА ТЕРМОКЛИНА. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

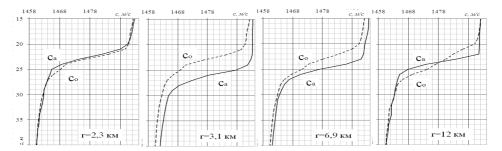
Рассматриваются вопросы восстановления аномалии поля неоднородности методом инверсии аномалий времени лучей в вертикальные сдвиги точек профилей.

КЛЮЧЕВЫЕ СЛОВА: акустический мониторинг, сдвиг термоклина, восстановление поля, аномалия времени лучей, инверсия.

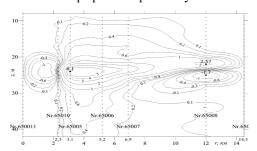
Дистанционные методы наблюдения, использующие прозвучивание (распространяющийся звук), обеспечивают возможность контроля морской среды и на больших расстояниях и на больших глубинах. Акустический мониторинг позволяет восстанавливать поля скорости звука прозвучиваемых пространств, что обеспечивает оценивание явлений и процессов в океане. При лучевом подходе к решению задачи восстановления поля в качестве измеряемых величин берутся времена T_m распространения сигналов по лучам Γ_m , которые несут информацию о неоднородностях среды, встретившихся на пути. Эти времена распространения по лучам Γ_m в аномальном поле скорости звука $c(x, y, z, t) = c_o + \Delta c$ сравниваются с временами T_m^o по лучам Γ_m^o в опорном поле $c_o(x, y, z)$. Аномалия поля $\Delta c(x, y, z, t)$, восстанавливается по совокупности аномалий времён сигналов лучей $\Delta T_m = T_m - T_m^o$ [1, 2].

Задача инверсии $\Delta T_m \to \Delta c(x,\,y,\,z,\,t)$ очень сложна и ее упрощают путем линеаризации. При линейной инверсии аномальные траектории Γ_m заменяют на опорные $\Gamma_m^{\ o}$ и, полагая малость их отличия и малость отличия времен $\Delta t(\Gamma_m,\,\Gamma_m^{\ o})$, получают приближенное, в линеаризованном по Δc виде, выражение $\Delta T_m \approx -\int c_o^{-2}\Delta c\,\,ds\,$ [1, 2]. Ошибка вычисления согласно этим уравнениям в первую очередь определяется отличием траекторий Γ_m и $\Gamma_m^{\ o}$ и разницей времён $\Delta t(\Gamma_m,\,\Gamma_m^{\ o})$. Эта разница и определяет точность восстановления поля и саму возможность применения линейной инверсии — требование $\Delta t(\Gamma_m,\,\Gamma_m^{\ o}) << \Delta T_m$. Но это требование выполняется не всегда. Его выполнение зависит от многих условий [2]. В значительной степени величина $\Delta t(\Gamma_m,\,\Gamma_m^{\ o})$ зависит от эффекта сдвига термоклина (велоклина).

Существует ряд неоднородностей среды, которые не только исключают возможность применения линейной инверсии для восстановления их поля, но и крайне осложняют саму возможность такого восстановления. Такими являются неоднородности, у которых аномалия выражается в изменениях глубины слоёв с высокими значениями градиента скорости звука (температуры) – велоклина (термоклина). В Чёрном море это вихревые образования, внутритермоклинные линзы и опускание тёплых вод в потоке ОЧТ. Вертикальный сдвиг велоклина, как одна из форм проявления аномалии поля ско-


© В.К.Богушевич, Л.Н.Замаренова, Н.С.Никонюк, М.И.Скипа, 2013

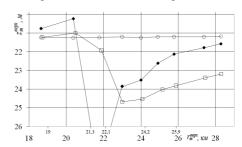
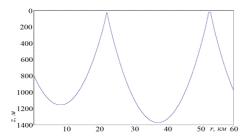
рости звука, представляет собой особый случай в задачах инверсии, когда теряется однозначная связь между величинами аномалии поля, сдвига глубины клина, формой луча и его аномалией времени. В случаях, когда в общей аномалии времени ΔT_m преобладает составляющая, связанная с различием траекторий аномального и опорного лучей $\Delta t(\Gamma_m, \Gamma_m{}^o)$, определяемая в первую очередь отличием глубин их верхних точек заворота $\Delta z_m{}^+$, для восстановления поля не применима линейная инверсия, использующая зависимость Δc от ΔT_m [3].

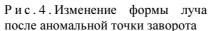

Для решения задачи инверсии и восстановления профилей в случаях сдвига велоклина было предложено использовать зависимость аномалии времени ΔT_m не от аномалии поля Δc , а от сдвига клина Δz , – сдвига по глубине точек аномального и опорного профилей скорости звука, имеющих одни и те же значения скорости. Были определены зависимости ΔT_m от Δz_m^{-1} и предложена методика восстановления профилей [3]. Эта методика позволила восстановить аномальные профили при сдвиге термоклина в потоке ОЧТ в условиях постоянного по трассе волновода [3]. Эту же методику можно использовать и в условиях малоизменяющегося по трассе волновода. Но в случаях неоднородностей с большой горизонтальной изменчивостью аномалии поля применимость метода инверсии $\Delta T \to \Delta z$ оказывается под вопросом. Возможности применения предложенной методики восстановления аномальных профилей для восстановления аномалий полей неоднородностей рассматривались в [4]. Но ограниченность числа лучей, используемых для восстановления, и характер аномалии поля неоднородности (небольшие значения горизонтального градиента) не позволили в должной степени рассмотреть этот вопрос.

Целью работы является оценка применимости метода инверсии аномалий времени в вертикальные сдвиги точек аномальных профилей для восстановления аномалий поля неоднородностей в переменном по трассе волноводе. Задача решается методом численного моделирования лучевой и временной структуры в опорном и аномальном поле в переменных по трассе волноводах. Для решаемой задачи выбрана неоднородность с большими горизонтальными градиентами аномалии – поле температуры в потоке ОЧТ для осеннего разреза с горизонтальным размером $L=14,5~{\rm km},-$ восстановление которой не очень успешно решалось методами линейной инверсии [5]. Профили скорости звука в сечениях неоднородности показаны на рис.1, изолинии аномалии поля температуры – на рис.2.

Основные положения восстановления профилей методом сдвига. Для восстановления изменения глубин велоклина неоднородности при акустическом лучевом зондировании нужно обеспечить ее сканирование лучами, верхние точки заворота которых $BT3^+$ распределены по ее длине L и по интервалу глубин клина. Чем больше этих точек, тем с большей точностью можно восстановить вертикальные сдвиги клина, профили скорости звука в сечениях неоднородности и аномалию ее поля. Для этого можно использовать достаточно крутые лучи с длинами циклов, большими горизонтального размера неоднородности, $D_{ij} > L$. При таком подходе можно восстановить сдвиги глубин Δz в верхней и средней части клина. Сдвиг Δz в нижней части клина восстановить непосредственно по аномалиям времён лучей не представ-

Р и с . 1 . Профили скорости звука аномальные, опорные в сечениях неоднородности.


Рис. 2. Изолинии аномалии поля температуры, НИС «Трепанг», 12.10 1997 г.

Р и с . 3 . ВТЗ лучей: опорные (\circ), аномальные (\square) и расчетные (\blacklozenge).

ляется возможным, как из-за малости длин циклов, $D_{\eta} < L$, так и из-за траекторно-временной неоднозначности [5]. Решить задачу восстановления в этом интервале глубин клина можно по восстановленной его верхней и средней части и по горизонтальному разрезу аномалии, полученному при горизонтальном сканировании неоднородности лучами, отражающимися от поверхности [4]. В результате можно получить оценочное значение поля аномалии во всём интервале глубин и дальностей.

Возможности восстановления на «длинной» трассе. Обеспечить большое число сканирующих лучей, имеющих ВТЗ во всём интервале дальностей и глубин неоднородности, на трассах большой протяжённости можно при использовании нескольких точек излучения и (или) приёма. При нахождении неоднородности на трассе длиной r = 170 км в интервале дальностей от $r_{\scriptscriptstyle H} = 19,0$ км до $r_{\scriptscriptstyle K} = 33,5$ км (L = 14,5 км) высокое пространственное разрешение при восстановлении обеспечивается при трёх точках излучения, $z_u = 350,750$ и 1000 м, и пяти точках приёма, $z_{np} = 200,500,700,900$ и 1100 м. Положение некоторых ВТЗ⁺ опорных и аномальных лучей для верхней части клина и рассчитанные по аномалиям времени ΔT_m вертикальные сдвиги Δz приведены на рис.3. Слева от зоны гидрофронта, r < 21 км (рис.2, 3), рассчитанные значения Δz превышают фактические, справа от зоны, r > 22.2 км – меньше фактических. Аномальный луч, заворачивающий в зоне гидрофронта (r = 21.9 км, рис.2), имея прогнозируемое положение BT3 $^+$, имеет крайне высокие значения аномалии ΔT_m и сдвига Δz . Результат объясняется значительными изменениями формы луча (χ_o, D_u, z_m^-) и времени распространения по лучу Δt_a после верхней точки заворота в аномальной области – уменьшением BT3⁺ с 22 м до 14,5 м и увеличением пути луча в высокоскоростном слое (рис.4).

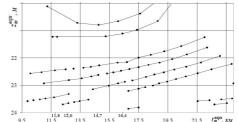
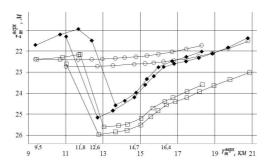



Рис. 5. Верхние точки заворота сканирующих лучей

При принятой методике инверсии $\Delta T_m \to \Delta t \to \Delta z$ [3], предполагающей многократность последовательных приближений $\delta \Delta t \to \delta \Delta z$ и сведение «к нулю» ошибки Δt , отличие фактических значений ΔT_m от значений Δt , определяемых вертикальным сдвигом Δz , их завышение или занижение, не влияет на результат восстановления, а только меняет число приближений. Если, конечно, аномалия ΔT_m не меняет знак, и не возникают нетипичные аномалии ΔT_m . Поэтому метод восстановления поля $\Delta T_m \to \Delta z$ можно считать пригодным для большинства случаев «длинных» трасс и наиболее подходящим способом восстановления в случаях сдвигов высокоградиентных велоклинов. Однако, когда изменения формы луча и времени по лучу после верхней точки заворота в аномальной области оказываются значительными (рис.4) больше, чем аномалия, связанная со сдвигом Δz , $\Delta t_a \geq \Delta t (\Delta z_m^{-1})$, и при этом меняется знак общей аномалии времени ΔT_m , восстановление поля по алгоритму $\Delta T_m \to \Delta z$ для таких лучей оказывается невозможным. При этом возникает вопрос о возможностях применимости алгоритма на более коротких трассах.

Возможности восстановления на «короткой» трассе. В переменном волноводе заворот луча определяется вертикальным g_s и горизонтальным g_s градиентами скорости звука. От соотношения градиентов g_s/g_s и зависит отличие характеристик луча (χ_o , D_u , z_m , t) до и после точки заворота в аномальной области. При $g_s>0$ текущее значение угла скольжения луча χ_i увеличивается, его $BT3^+$ смещается вверх и назад, большим становится значение χ_i на выходе из зоны аномалии и значения z_m^- и D_u (рис.4). При $g_s<0$ происходят обратные процессы. Формируемая отличием левой и правой частей луча аномалия времени Δt_a обычно увеличивается с увеличением горизонтального градиента g_s , зависит от положения неоднородности на трассе и ее длины.

Для выяснения влияния длины трассы и положения неоднородности на аномалию времени Δt_a , были выполнены расчеты для короткой трассы. На короткой трассе, r=35 км, задача сканирования области сдвига велоклина неоднородности ($r_n=9,5$ км, $r_\kappa=24,0$ км, L=14,5 км) большим числом лучей (рис.5) решается с помощью нескольких точек излучения, $z_u=200,500,700,900$ и 1100 м, и многих точек приёма, $z_{np}=100,200,\ldots,1300$ м (вертикальная цепочка гидрофонов). Положение некоторых ВТЗ+ опорных и аномальных лучей и рассчитанные по аномалиям времени ΔT_m вертикальные сдвиги Δz приведены на рис.6. Аналогично случаю длинной трассы (рис.3) слева от зоны гидрофронта, r<11,8 км, рассчитанные значения Δz превышают фактические, справа от зоны, r>12,6 км, они меньше фактических.

Р и с . б . ВТЗ лучей: опорные (\circ), аномальные (\square) и расчетные (\spadesuit).

Аномальный луч, заворачивающий в зоне гидрофронта, r=11,8 км, имеет сильное смещение $BT3^+$ по дальности ($\Delta r=0,62$ км), но вполне удовлетворительное значение аномалии ΔT_m и рассчитанное значение Δz . Как и в случае длинной трассы, результат объясняется значительными изменениями формы луча в аномальной области. На короткой трассе уже нет неправдоподобных аномалий ΔT_m и нет пре-

пятствий к использованию для восстановления всех зондирующих лучей.

Выводы. Показана возможность применения в условиях переменного по трассе волновода метода инверсии аномалий времени лучей в вертикальные сдвиги точек аномальных профилей и возможность восстановления поля температуры ОЧТ в условиях эффекта сдвига термоклина.

Направление продолжения работ состоит в исследованиях влияния горизонтальных градиентов аномалии поля на аномалии времени сканирующих лучей и возможностей восстановления полей неоднородностей с большими градиентами аномалии.

Список литературы

- 1. *Munk W.*, *Wunsch C*. Ocean acoustic tomography: A scheme for large scale monitoring // Deep-Sea Res. 1979. 26. P.123-161.
- 2. Гончаров В.В., Зайцев В.Ю., Куртепов В.М., Нечаев А.Г., Хилько А.И. Акустическая томография океана.— Н. Новгород: ИПФ РАН, 1997.— 254 с.
- 3. *Богушевич В.К.*, *Никонюк Н.С.*, *Скипа М.И*. Восстановление полей неоднородностей морской среды при акустическом лучевом зондировании в условиях эффекта сдвига термоклина // Системы контроля окружающей среды.— Севастополь: МГИ НАН Украины, 2012.— вып.18.— С.15-24.
- 4. *Богушевич В.К.*, *Замаренова Л.Н.*, *Скипа М.И*. Особенности акустического мониторинга поля температуры Основного черноморского течения в летний период // Системы контроля окружающей среды.— Севастополь: МГИ НАН Украины, 2012.— вып.17.— С.132-139.
- 5. Богушевич В.К., Замаренова Л.Н., Каташинская Н.С., Скипа М.И. Акустический мониторинг поля температуры Основного черноморского течения // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа.— Севастополь: ЭКОСИ-Гидрофизика, 2012.— вып.26.— С.78-89.

Материал поступил в редакцию 11.06.2013 г. После доработки 25.08.2013 г.

АНОТАЦІЯ Розглядаються питання відновлення аномалії поля неоднорідності методом інверсії аномалій часу променів у вертикальні зсуви точок профілів.

ABSTRACT The questions of reconstruction of anomaly field of inhomogeneities by the method of time ray anomaly inversion into vertical shift of profile points are discussed.