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Pure neutron matter with the spin-triplet p-wave pairing is studied
in the framework of the non-relativistic generalized Fermi-liquid

theory at subnuclear and supranuclear densities (in the range 0.7ng <

n < ng(Skyrme) < 2ng, where ng = 0.17 fm~3 is the saturation
density of the symmetric nuclear matter) at zero temperature and
in the presence of a strong magnetic field. The Skyrme effective
forces are used as interactions between neutrons. As a result, the
general expression (valid for an arbitrary parametrization of the
Skyrme forces) is obtained for the magnetic susceptibility of su-
perfluid neutron matter, and it is specified then for three types of
the Skyrme interaction with different power dependences on the
density n. In particular, it is found for neutron matter with the
so-called RATP, Gs, and SLy2 parametrizations of the Skyrme
forces that the magnetic susceptibility diverges at the densities
nc(RATP) = 1.03ng, nc(Gs) = 1.33ng and nc(SLy2) ~ 1.72ng.
These critical densities correspond to phase transitions from the
superfluid paramagnetic state of neutron matter with triplet pair-
ing to the ferromagnetic state which coexists with triplet superflu-
idity at densities higher than nc (Skyrme). Such phase transitions
might occur in the liquid outer cores of pulsars and the so-called
magnetars.

1. Introduction

Already fifty years have past since the idea of possible
manifestations of the pairing (which was originally in-
troduced in theory by J. Bardeen, L.N. Cooper, and
J.R. Schrieffer [3]) and the superfluidity phenomenon
in infinite nuclear matter and in finite nuclei and also
in dense neutron stars (A.B. Migdal [4]) was proposed
for the first time by N.N. Bogolyubov [1] and A. Bohr,
B. Mottelson, D. Pines [2]. Note that pulsars were dis-
covered later in 1967 by S.J. Bell and A. Hewish [5] (see
also [6]), and then they were identified by T. Gold [7]
as rapidly rotating neutron stars (NS). Pairing and su-
perfluidity play an important role in modeling the struc-
ture and properties of atomic nuclei and pulsars. But, in
spite of the enormous efforts of many investigators (see,
e.g., monographs [9-14] and reviews [8,15-18] and refer-
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ences therein), there are still many unsolved questions
concerning the superfluidity in neutron stars.

As is commonly accepted, neutron stars consist of the
crust (with subnuclear densities n < ng/2, where ng =
0.17 fm ™2 is the saturation density of symmetric nuclear
matter), and the core which are composed of the so-
called outer crust and inner crust and of the outer core
and inner core, respectively. They are distinguished from
each other by composition and by densities. The deeper
the layer in the interior of a neutron star, the denser it
is. Note that neutrons are the prime constituent in the
outer core of NS with a small fraction of protons and
electrons.

Here, we will restrict ourselves by studying the equi-
librium properties of the superfluid phases of infinite
pure neutron matter (SPNM) with spin-triplet pairing
existing inside a liquid outer core of neutron stars at
subnuclear 0.7n9 < n < ng and supranuclear n > ng
densities of neutrons. These superfluid phases of pure
neutron matter are examples of superfluid Fermi liquids
(SFLs) with spin-triplet pairing similar to 3He (see, e.g.,
[15,19,20] and references therein). Here, we have inves-
tigated theoretically dense SPNM with p-wave pairing
of the 3He — A; 5 type in a stationary homogeneous
magnetic field H and have used the generalized non-
relativistic Fermi-liquid approach [21] to derive nonlinear
integral equations for the order parameter (OP) and the
effective magnetic field (EMF) Heg inside SPNM [22-
24] which are valid at arbitrary temperatures from the
interval 0 < T < T, (T, is the normal-superfluid phase
transition (PT) temperature). The effective Skyrme in-
teraction between neutrons depending on the neutron
density (see reviews [25, 26]) has been used.

Here, we have found analytically the approximate so-
lution of the obtained integral equations at zero temper-
ature T' = 0 for SPNM with triplet p-wave pairing in
a strong magnetic field H and have obtained the gen-
eral approximate expression for the effective magnetic
field Heg (at T = 0) on the Fermi surface to the first
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order in the small parameter hext = |pn|H/erp < 1
(for an arbitrary parametrization of the Skyrme inter-
action and with the self-consistent accounting of the
dependence of the neutron effective mass m} on the
NM density n = yng). The function Heg (at T = 0)
is linear in H up to sufficiently high magnetic fields
(but H < ep/|pn|, where ep(n) is the Fermi energy
of NM, and p, < 0 is the magnetic dipole moment
of a neutron) and a nonlinear function of n. As a
result, the general expression (valid for an arbitrary
parametrization of the Skyrme forces) is obtained for
the paramagnetic susceptibility Xxskyrme of superfluid
neutron matter (at 7 = 0), and it is specified then
for three types of the Skyrme interaction with differ-
ent power dependences on the density n. In particu-
lar, it was found for neutron matter with the Sly2, Gs,
and RATP parametrizations [27-29] of the Skyrme forces
that the paramagnetic susceptibility is a monotonically
increasing function of the neutron density (the corre-
sponding figures were plotted), and it diverges at the
critical densities nco(Skyrme) in the range of densities
0.7ng < n < no(Skyrme) < 2np under consideration
(where the non-relativistic Fermi-liquid theory is still
valid). These critical densities no(Skyrme) correspond
to phase transitions from the superfluid paramagnetic
state of neutron matter with triplet pairing to the ferro-
magnetic state which coexists with triplet superfluidity
at densities higher than nc(Skyrme). Such phase tran-
sitions might occur in the liquid outer core of neutron
stars.

Note that other authors have previously investigated
the existence (or absence) of phase transitions of NM
from the normal (nonsuperfluid) state to the ferromag-
netic state in the absence of a magnetic field (see, e.g.,
[30-37] and references therein) and with the effects of
a strong magnetic field (see, e.g., [38—40]) within other
approaches and using different nucleon-nucleon effective
and so-called realistic interactions in NM.

This paper is organized as follows. In the second sec-
tion, we outline the main steps and assumptions made
for the derivation of general equations for the order
parameter and the effective magnetic field for SPNM
with the Skyrme forces and spin-triplet pairing of the
3He — A; » type between neutrons. The third section is
devoted to the derivation of a general formula for the
paramagnetic susceptibility in SPNM (valid for an arbi-
trary parametrization of the Skyrme forces) in a strong
magnetic field at zero temperature, which is specified
then for Sly2, Gs, and RATP parametrizations. In Con-
clusion, the general and particular results for SPNM
with triplet pairing in a high magnetic field are briefly
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discussed and compared with those from some other
works.

2. General Equations for the Order Parameter
and the Effective Magnetic Field for SPNM
with the Skyrme Forces and Triplet Pairing

The order parameter (OP) for the so-called non-unitary
phase (NU) of 3He — A, type with spin-triplet p-wave
pairing has the form [20]

A2 (p) = (Ayda +1A_8,)0(D),

: (1)

Here, AL (T) = (A1(T) £ A[(T))/2; d and é are mu-
tually orthogonal real unit vectors in the spin space,
d-é=0,d2=é? =1; m and n are mutually orthog-
onal real unit vectors in the orbital space, m -n = 0,
m? = 12 = 1. The value n(p) = |A(p) x A*(p)| # 0 is
non-zero for the NU superfluid phases of pure neutron
matter with spin-triplet pairing, in particular. Note also
that the superfluid phase of 3He — A; type is realized
under the condition, when A} =0, A} # 0.

We have chosen the effective Skyrme forces as the in-
teraction between neutrons for SPNM with spin-triplet
p-wave pairing in a spatially uniform magnetic field H.
A system of coupled equations for the OP of the 3He— A,
type and the effective magnetic field Heg inside SPNM
is simplified (in comparison with an analogous super-
fluid phase of real helium-3) because, in the case of the
Skyrme interaction, the normal Fermi-liquid Landau’s
exchange amplitudes F}* # 0 are non-zero only for [ =0
and [ = 1. We also assumed that the quantization axes
of spin and orbital moment of the Cooper pairs (i.e. the
vectors [d X €] and [m x n]) and the magnetic field H
are collinear to one another as in the so-called 3P su-
perfluid state of a dense neutron liquid of neutron stars
(where the strong spin-orbit coupling is taken into ac-
count). As a result, using general formulas (obtained
by us previously [41,42]) for the anomalous and nor-
mal distribution functions of quasiparticles (neutrons)
for SPNM in a magnetic field, we have derived a sys-
tem of integral equations for £(p), A‘T%, and Afz. In
this case for SPNM, &(p) = £(p)H/H = —u,Heg(p)
(pn =~ —0.60308 x 10717 MeV /G is the magnetic dipole
moment of a neutron [43]), and we have the equation

E(p) = —pnH + (r + sp*) K2 (&) + sK4(€). (2)

Here, r = t{,+ (t5/6)n® and s = (t; —t})/(4h?), n = yng
is the density of neutron matter; tj, = to(1 — xo), t; =

Y(p) = (hy +1y)pj, D=

SR ke
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t1(1—xq), th = to(l+ma), th = t35(1—z3) and 1/6 < o <
1/3 are the parameters of the Skyrme interaction. The
functionals K3(¢) (8 = 2,4) in Eq. (2) have the form

Pmax

Ks(€) = 8W2h3 /dqq /dﬂm q,7), (3)
where
~z2(g) +€(9) Ey(q,2°)
r(q, )—Wtanh<+2T>—
D) =&a) L (E(g2?)
E_(q,2?) k h< 2T )’ (4)

EY = A% (1 —2®) + (2(q) ££(9))%, (5)
2(q) = ¢*/2m?: — u  (m} is the effective mass of a
neutron, and p is the chemical potential). We have
taken into account that, for SPNM with pairing of the
3He — A, type, the OP can be written as Afa)(T, &,q) =
qAq()(T,€), where the functions Ay} )(T,&) obey the
equations

Aq()(T,€) = =) (1) g X
Pmax 1
tanh(E (q,22)/2T) 6
/ Ey(q,2?) )
Pmin 0

(pmax Z pPr and (pmax - pmin)/pF < 17 where Pr is
the Fermi momentum). Here, c3 = to(1 +a2)/h? < 0
is the coupling constant leading to the spin-triplet p-
wave pairing of neutrons which is expressed through the
parameters to and zo of the Skyrme interaction. We
consider here a model of neutron Cooper pairing in a
shell symmetric with respect to the Fermi sphere (i.e.,
Pmax — PF = PF — pmin)-

This system of nonlinear integral equations (2) and (6)
for the EMF and OP gives us a possibility to describe
the thermodynamics of superfluid non-unitary phases of
the 3He — A; 5 type in dense SPNM with spin-triplet
p-wave pairing in a static uniform high magnetic field
at arbitrary temperatures from the interval 0 < T <
T.(H). In the general case, these equations cannot be
solved analytically, and it is necessary to use numerical
methods for their solving. But we can solve Egs. (2) and
(6), by using analytical methods in the limiting case, at
zero temperature (T=0), and it is the theme of the next
section.
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3. Solutions of Equations for EMF and OP for
Dense SPNM at T =0

Let us consider SPNM at T" = 0. In this case, we have
solved analytically the integral equation (2) (with re-
gard for Eq. (6)) for EMF on the Fermi surface us-
ing perturbation theory on the small parameter heyy =
|n|H/er < a < 1. Here, a = epax/er —1 = 1 —€min/er
is the cutoff parameter which is connected to the maxi-
mal €max = Pmax>/2m;, and minimal iy = Pmin>/2m.;
energies of quasiparticles (neutrons) (where ppa.x and
Pmin have been introduced above in (3) and (6)). Note
that the maximal energy is somewhat larger than the
Fermi energy, emax > €r, so that 0 < a < 1. Thus, we
have obtained the following solution of Egs. (2) and (6)
to the first order in the small parameter heyy:

|,Un|Heff(vaH) _ hext(Hy y)
EF(y) 1-— (7‘ + 28;01:‘2)1/1:*/27

V(H,y) = (7)

where r and s (see the text after (2)) are combinations
of the Skyrme parameters, and the density of states vg
at the Fermi surface is

ve(y) = (mipr)/(7°h%) ~

m (y) y'/% MeV ™ lm 3. (8)

n

~ 0.00419 Y/

Formulas (4)—(8) contain a free neutron mass m, ~
939.56563 MeV /c? [43] and the effective neutron mass
m; which depends on the density of NM n = yng ac-
cording to the formula
m myno
=1

+ 4h?

[tl(l —$1)+3t2(1+3}2)], (9)

my,
where m = (m, +m,)/2 ~ 938.91897MeV/c? is the
mean value of a free nucleon mass [27]; the parameters
t1, to, 1, and x5 have specific numerical values for each
Skyrme parametrization. Note also that the Fermi en-
ergy ep = p&/2m}, of a pure NM with density n = yng
is defined by the formula

K2 .
er = (3n%ymo)P 5 — 60.8601y%/3 ™ MeV.

n n

(10)

It should be emphasized that the general approximate
formula (7) for Heg(pr, H) is valid for all parametriza-
tions of the Skyrme forces admissible for an NM, and
H.g is independent of the cutoff parameter a < 1 and
the energy gap (with accuracy of the first order) in the
energy spectrum of neutrons in SPNM.
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Fig. 1. Ratio Xrree/XsLy2(¥) (see (12)) as a function of the reduced
density y = n/ng for superfluid NM with Sly2 parametrization of
the Skyrme forces and spin-triplet p-wave pairing of the 3He — A
type in a magnetic field at "= 0

Now let us consider the Sly2, Gs, and RATP
parametrizations of the Skyrme forces (see [27-29]).
This specification gives us a possibility to plot the fig-
ures for the ratio of the Pauli susceptibility of the free
neutron gas Xrree and the paramagnetic susceptibility
of SPNM with the Skyrme interaction xsiyrme(y). Note
that the inverse ratio of these functions (see (7))

XSkyrme (y) _ 1
XFree 1- (T + 28p%)VF/2

(11)

describes a renormalization of the magnetic field inside
SPNM with triplet p-wave pairing of the 3He— A; 5 type.

Here, we represent, for the Sly2, Gs and RATP-
variants of the Skyrme interaction, the power indices
QsLy2 = 1/6, ags = 0.30, and agarp = 0.20 in their
density dependence. Then, for the SLy2 parametrization
of the Skyrme forces, we have obtained the required ex-
pression for the ratio of Xxpree and Xskyrme(y) from (11):

XFree 2y'/3(0.5004y /¢ +0.5461)
XsLy2(y) (14 0.659y)
2.7608
___=ov%y (12)
(14 0.659y)
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Fig. 2. Function xrree/xas(y) (see (13)) for superfluid NM with
the Gs parametrization of the Skyrme forces and spin-triplet p-
wave pairing of the 3He — A type in a magnetic field at 7= 0

In a similar way for the Gs parametrization of the
Skyrme forces [28], we have found from (11) that

Xrree o 2y"/3(2.31247y%/10 — 2.80053)
xas(y) (1 + 0.0810y)
1.29732y

(14 0.0810y) (13)

Finally for the RATP parametrization of the Skyrme
forces [29], we have obtained the expression

y/3(1.1757y" /% — 2.6318)

(1+ 0.235y)

XFree
XrATP(Y)

2.6248y 14)
(1+0.235y)

Now, on the basis of formulae (12)—(14), we can repre-
sent Figs. 1-3 for the functions Xrree/XSkyrme(¥)-

Note that the points of intersection of these three lines
(12)—(14) with the abscissa axis correspond to the criti-
cal densities nc(SLy2) ~ 1.72ng, nc(Gs) ~ 1.33ng, and
nc(RATP) &~ 1.03ng, respectively. These critical densi-
ties correspond to phase transitions from the superfluid
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Fig. 3. Function Xgree/XrATP(Y) (see (14)) for superfluid NM
with the RATP parametrization of the Skyrme forces and spin-
triplet p-wave pairing of the 3He — A type in a magnetic field at
T=0

paramagnetic state of neutron matter with triplet pair-
ing to the ferromagnetic state which coexists, quite pos-
sibly, with the triplet superfluidity at densities higher
than ne(Skyrme). But this problem of coexistence of
spin-triplet superfluidity and ferromagnetism in a dense
pure neutron matter should be examined in more details
in a separate investigation. Such phase transitions might
occur in the liquid outer core of neutron stars.

We have also solved Eq. (6) for the OP Ag(a;y) =
Ay(a;y, H=10)=A|(a;y, H =0) of the SPNM at H =
0 and T' = 0 with a pairing of the *He — A type and have
derived the ratio of the maximal value of the reduced
anisotropic energy gap g(a;y) = pr(y)Ao(a; y)/er(y) to
the PT temperature t.g = Teo/cr (Teo is the tempera-
ture of PT for NM to the superfluid state with triplet
p-wave pairing without magnetic field) which is valid for
an arbitrary parametrization of the Skyrme forces (see
[24]) in the form

9(a;y) (5 bo)
RBY) _gexp( 2 - 20 ) ~2.0174, 15
teo(a;y) P\6 ™ 2 (15)
where

a l(a) 2
too = —exp( —2 4 — = 1
a=gen(e 2 ), (16)
648

3a®>  3a*

~ 20 L 29 1
Ua) = bo+ o=+ 5 (17)
bo = 2(1 1 + 2) + 4%(—1)’““&(—21@) ~

9 75

k=1

~ 1.64932, (18)
and

-,
Ei(—z) = / ?dt (19)

—0Q0

[formulas (15) and (16) are valid for all Skyrme
parametrizations|. Here, c3ngm?, < 0 is the dimension-
less value depending on the Skyrme parameters to, xo
and t1, z1 (see the text after Eq. (6) and Eq. (9)).

Note that, at T = 0 in a sufficiently strong EMF such
that

Y(H,y) <a<l (20)

(see (7)), the approximate analytic expressions for
g1 # g, (which are, by definition, gy()(a;y, H) =
pr(y)Aq(y(a;y, H)/er(y)) can be found from the inte-
gral equations (6) for the OP. But here we only remark
that, according to our numerical estimates for the SLy2,
Gs, and RATP parametrizations [26-29] (proposed for
astrophysical purposes to describe NM properties in the
core of a neutron star at high densities), the values
l91(1) — 9l/9 < 0.01 are small (in the 0.7 < y < 2.0 in-
terval studied here) even in sufficiently strong magnetic
fields Hegr Skyrme < 1017 G (see (20) and (7)) which are
realized very likely in the so-called magnetars [6,44,45],
i.e., strongly magnetized neutron stars. It is possible (as
it was argued in [46]) that magnetars constitute about
10% of the neutron star population.

4. Conclusion

Having solved the integral equations (2) and (6), we have
obtained the general analytic formulas (7) (see also (11))
and (15) for the EMF and OP valid at zero tempera-
ture 1" = 0 for arbitrary parametrizations of the Skyrme
forces in a dense SPNM (at subnuclear and supranuclear
densities in the range 0.7n¢ < n < ne(Skyrme) < 2ng)
with anisotropic OP similar to those of 3He — A. We
have specified Eq. (11) for the specific parametrizations
SLy2, Gs, and RATP [26-29] of the Skyrme forces and
obtained formulae (12), (13) and (14) for the ratio of
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paramagnetic susceptibilities XFree/XSkyrme (y) Which are
valid even for sufficiently strong magnetic fields H (but
H < Hpax). For upper limit Hyax, Skyrme (y) of magnetic
fields, we have (see (9) and (10))

Hmax,Skyrme(y) ~ 1.0098 x 1019y2/3(1 + ﬁSkyrme y) G7
(21)

where Bsry2 = 0.659, Sas ~ 0.081, and SraTp ~ 0.235.
Ultra-strong magnetic fields may approach 10'® G (see,
e.g., [47,48]) in the core region of magnetars.

Note that the critical densities for the onset of ferro-
magnetism no(RATP) ~ 0.17 fm™® and ng(SLy2) ~
0.29 fm™3 (which are very close to our results for
nc(Skyrme)) have been obtained also in [30] and [31],
but for the case of phase transitions in pure NM from
the normal (nonsuperfluid) state to the ferromagnetic
state. Such a proximity with our results (accounting the
triplet superfluidity) for nc(Skyrme) can be explained
by a very small value of superfluid corrections (which
are of the second order, i.e. they are proportional to
(A/er)? < 1, where A is the maximal anisotropic en-
ergy gap in the spectrum of quasiparticles (neutrons) in
the SPNM considered here) to the paramagnetic suscep-
tibility in superfluid NM with spin-triplet pairing. Simi-
larly, in the case of the phase transition between normal
liquid *He and superfluid *He — A [19, 20| in a magnetic
field, their paramagnetic susceptibilities are almost coin-
cide with each other (the difference is less than 1%, see
also [49]).

We note finally that the phenomena of superfluidity
and magnetism in NM at high densities n > 2ng (in-
side the fluid cores of pulsars and magnetars [6,44,45])
should be studied in the framework of a relativistic ap-
proach and with various interpretations of the hadron
matter structure (including mesons, hyperons, quarks,
and other possible constituents).

The material of this paper was presented by the author
at the International Bogolyubov Kyiv Conference “Mod-
ern problems of theoretical and mathematical physics”
(Kyiv, September 15-18, 2009).
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IIPO MATHITHY CIIPUNHSAT/IVBICTD
I'YCTOI HAOIIJIMHHOI HEMTPOHHOI
MATEPIi 31 CIIIH-TPUIIJIETHUM p-CITAPFOBAHHSIM

O.M. Tapacos
Pezowme

CyTo HEATPOHHA MaTEPisi 31 CHIH-TPUIJIETHUM P-CIAPIOBAHHSIM BU-
BYAETHCHA Y MeEXKaxX HEPEJATUBICTCHKOI y3arajibHeHOI Teopil depmi-
piguuu npu cyG’simepHUX Ta Ha sAepHUX rycruHax (y Jlanasoni
ryctun 0,7n9 < n < ngo(Skyrme) < 2ng, ne ng = 0,17 bu—3
— Ile TYCTHHA HACUYEHHsS CUMETPUYHOI siiepHOl Marepil) npu TeM-
neparypi, 10 JOPIBHIOE HYJIO, Ta 3a HasBHOCTI CHJIBHOIO MarHi-
THOrO noJist. Edekrunni cunun CkipMa BUKOPHCTOBYIOTHCA y POJIL
B3a€MO/Iil MiXK HeATpoHaMu. Y pe3yJsbTaTi OTPUMAHO 3araJibHUN
aHAJITHIHAN BUpa3 (ClpaBeIMBUIL JJIs JOBLIBHOI apamMeTrpusa-
uil cusr CkipMa) ayist mapaMarfiTHO! CHPUAHATIMBOCTI HaIJINH-
HOI HeHTpOHHOI MaTepil AK (yHKII] Bif I'yCTHHH IPH HYJIBOBIiHi
Temreparypi. lleit Bupas jajai KOHKpPETU30BaHO /I TPbOX THIIB
B3aemoyiil CKipMa 3 pI3HUMH CTENEHEBUMHU 3aJI€?KHOCTSIMU BiJL I'y-
cruaM N. A came, 3HAWAEHO, IO Il BUMNAJIKIB HEHTPOHHOI Ma-
Tepil 3 Tak 3BanuMu RATP, Gs Ta SLy2 napamerpusaiisiMu CHJI
CkipMa y MarsiTHOl CIPpUHHATINBOCTI BUHHUKAE PO30iKHICTH IIpu
kpurnanux rycrunax no(RATP) & 1,03ng, nc(Gs) = 1,33n0 ta
nc(SLy2) ~ 1,72ng. 1li kpuruani rycruau Bianosizaors dazo-
BUM II€PEX0JIaM 3 HA/IIMHHOTI'O IapaMarHiTHOI'O CTaHy HEATDPOH-
HOT MaTepil 3 TPUIJIETHUM CIIAPIOBAHHAM y PEPOMArHITHUN CTaH,
SKUNA MOKe CIIBICHyBaTH 3 TPHILJIETHOIO HAAIJIMHHICTIO IIPU Ty-
cruHax, 6iibmux 3a ne(Skyrme). Taxi das3osi nmepexoau MoKy Tb
BUHHUKATH Yy PiIKUX 30BHIIIHIX fpax IIyJIbCcapiB i Tak 3BaHUX Ma-
rHETapiB.
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