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The analytic structure of non-relativistic unitary and non-unitary
S-matrices is reviewed for the cases of arbitrary interactions (and
may be, with the unspecified equations of motion) inside a sphere
of radius r ≤ a which pass outside it (at r > a) into the centrifu-
gal and decreasing (exponentially, by the Yukawa law, or more
rapidly) potentials on the base of the author’s papers from 1961 till
2006. The one-channel case and special examples of many-channel
cases are considered. Some kinds of the symmetry conditions are
imposed. The Schrödinger equation for r > a for the particle mo-
tion and the condition of completeness of the corresponding wave
functions are assumed. Finally, a scientific program of the future
research is presented as a clear continuation and an extension of
the obtained results.

.

1. Introduction

Only a rather small number of papers is concentrated on
the study of the analytic properties of the S-matrix with
the minimal number of assumptions about the interac-
tion properties on small distances (practically nothing,
except for very general physical and mathematical prin-
ciples, such as certain symmetry properties, causality or
the condition of the completeness of the wave functions
in the external interaction range, and the possibility of
the S-matrix analytic continuation in the complex plane
of kinetic energies or wave numbers). This approach as-
cends to the old idea of Heisenberg [1] (see also [2–5] and
precedent references therein) of the unique fundamental
quantity (S-matrix) which will be sufficient for the pre-
dictions of many observable quantities basing only on
the general physical and mathematical principles.

We now outline the main results of [5] for the unitary
S-matrix, since they will be the initial base of the further

1 This review is dedicated to the memory of my first supervisor
Yu.V. Tsekhmistrenko who had become a victim of the severe
administrative persecution by the political motives in the 1970s

reviewed results of the author’s papers [6–12]. Namely
in [5], the analytical expression for the function Sl(k)
had been obtained. It defines the relation between the
amplitudes of ingoing and outgoing l-waves for the elas-
tic scattering of non-relativistic particles without spin
(with l = 0) for an arbitrary interaction localized inside
the sphere of radius a, starting from the unitary condi-
tion

Sl(k)S∗l (k
∗) = 1, (1)

the symmetry condition

Sl(k)Sl(−k) = 1 (2)

or

S∗l (k)Sl(−k∗) = 1, (3)

and the particular “causality” condition (if the ingoing
wave packet is normalized so that if it represents one
particle at t = −∞, then the total probability to find the
particle at any successive time moment (for instance, t =
0) outside the interaction sphere cannot be more than 1).
Strictly speaking, this condition is not the causality but
the conservation of the total probability. In [13], it was
shown that it does directly follow from the orthogonality
of the eigenfunctions of a self-adjoint operator describing
the motion and the interaction of colliding particles.

Then the existence of the analytic continuation of
Sl(k) into the complex plane of k and the condition of
quadratic integrability of the weight functions of wave
packets had been also assumed. This, in turn, ensured
the uniform convergence (in the range r > a) of the
integrals over the momentum in the Fourier-transforms
of wave packets. Finally, the following expression for
S0(k) was obtained (which had been named then by the
Bargmann representation for the Bargmann potentials):

S0(k) = exp(−2ikα)
∏
λ

kλ−k
kλ+k

∏
s

(ks−k)(k∗s+k)
(k∗s−k)(ks+k)

. (4)

568 ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5



THE ANALYTIC PROPERTIES OF THE S-MATRIX

Here, α ≤ a, kλ are zeros on the imaginary axis (which
are simple on the lower semiaxis), ks are the zeros in
the upper half-plane D+, and the products

∏
λ

and
∏
s

converge on the real k axis. In [14], it was shown that
zeros kλ on the lower and upper imaginary semiaxes and
zeros ks correspond to bound, virtual (anti-bound), and
resonance states, respectively.

If the interaction is described by a local central poten-
tial V (r) independent of k, and the conditions

∞∫
0

drrn |V (r)| <∞, n = 1, 2, (5)

and

V (r) ≡ 0 for r > a, (6)

are fulfilled, expression (4) is valid also for arbitrary val-
ues of l with α = a, and the product over λ contains a
finite number of poles on the upper imaginary semiaxis.
But if only condition (5) is fulfilled, then expression (4)
is, generally speaking, invalid, and one does often use
the expression

Sl(k) =
fl−(k)
fl+(k)

, (7)

where the Jost functions f0±(k) = f0±(k, 0) for l = 0
and

fl±(k) =
kl exp(±ilπ/2)

(2l − 1)!!
lim
r→0

rlfl±(k, r)

for l > 0, fl±(k, r) is the Jost solution of the radial
Schrödinger equation or the integral equation equivalent
to it,

fl±(k, r) = ±i exp(±ilπ/2)krh(1,2)
l (kr)−

− 2µ
~2k

∞∫
0

dr′gl(k; r, r′)V (r′)fl±(k, r′), (8)

with the boundary condition

lim
r→∞

fl±(k, r) exp(µikr) = 1, (9)

where

gl(k; r, r′) =
ikrr′

2
[h(1)
l (kr′)h(2)

l (kr)− h(1)
l (kr)h(2)

l (kr′)],

and h
(1,2)
l (kr) = jl(kr)± inl(kr) are the Hankel spheri-

cal functions of the first and second kinds, respectively
(jl(kr) and nl(kr) are the Bessel and Neumann spheri-
cal functions, respectively). Under such conditions, the
function Sl(k) can have, in addition to the singularities
described by (4), additional singularities, corresponding
to the singularities of fl±(k, r).

The author’s papers [6–12] give the results of that ap-
proach, published gradually during 1961–2006 (mainly
in the Russia and Ukraine). In the final section of this
paper, I present the scientific program which highlights
the remaining problems and the gradually revealed per-
spective, unexpected previously, of how a rigorous math-
ematical method or approach can help to clarify quite
specific and sometimes paradoxical physical phenomena.

2. Properties of the Non-unitary One-channel
S-matrix for Arbitrary Interactions
Externally Passing into the Centrifugal
Barrier and a Potential Which Is
Decreasing More Rapidly Than
Any Exponential Function

Now, following [7], we consider a generalized case where
the interaction is arbitrary and the equation of motion
inside the sphere of radius a is unspecified as before but,
at r > a, contains the centrifugal barrier h2l(l + 1)/r2

and a potential V (r). Moreover, not only the scatter-
ing but also the partial particle absorption or genera-
tion are observed. For convenience, we introduce a new
interaction characteristics, a complex “interaction con-
stant” γ. We agree conventionally that its real part Reγ
will characterize that interaction part which causes by
itself the scattering only, without the particle absorp-
tion or generation. We also agree to set up the negative
(positive) value of Imγ in correspondence with that in-
teraction part, whose absence causes the absence of the
particle absorption (generation). If we further connect
the particle absorption and generation with the simple
decrease or increase of the flux of scattered particles in
comparison with the flux of bombarding particles and as-
sume the conservation of their momenta and other char-
acteristics, then it will be natural to impose the following
conditions:

0 < |Sl(γ, k)|2 ≤ 1, (10a)

1 ≤ |Sl(γ∗, k)|2 <∞, (10b)

with Imγ < 0, for real positive k. Since conditions (10a)
and (10b) are evidently insufficient for the study of the
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analytic properties of Sl(γ, k), we introduce, by gener-
alizing (1)–(3), the new symmetry properties (typical of
central interactions):

Sl(γ, k)Sl(γ,−k) = 1, (2a)

Sl(γ∗, k)Sl(γ∗,−k) = 1, (3a)

and the generalized “unitarity” condition

Sl(γ, k)S∗l (γ
∗, k∗) = 1, (1a)

thus selecting, for any interaction with a constant γ(Imγ,
0), the “conjugate” interaction with a complex conjugate
constant γ∗.

One can easily check that conditions (1a), (2a), (3a),
(10a), and (10b) are automatically fulfilled in the case
where the interaction can be described by a complex
potential which satisfies condition (5) [14,15]. In that
case, the values of γ and γ∗ are not only conventional
but also factual parameters of the potential V (γ, r) =
ReγV1(r) + iImγV2(r).

Instead of the “causality” condition from [5], we use the
condition of completeness for the wave functions outside
the sphere of an unknown interaction, factually assum-
ing, in this region (i.e., for r ≥ a), the possibility to
describe the colliding particles by the Schrödinger equa-
tion with a self-adjoint Hamiltonian:

2
π

∞∫
0

k2dkR
(+)
l (γ, k, r)R(+)∗

l (γ, k, r′)+

+
∑
n

Rnl(γ, knl, r)Rnl(γ, knl, r′) =
δ(r − r′)

r2
, (11)

where

R
(+)
l (γ, k, r) =

i

2kr
[fl−(k, r) exp(ilπ/2)−

−Sl(γ, k)fl+(k, r) exp(−ilπ/2)],

Rnl =
1√
2π
Bnl(γ, knl)fl+(knl, k)/r,

the functions fl±(k, r) are the Jost solutions of Eq. (8);
Imknl > 0 and, consequently, the functions Rnl are inte-
grable together with their squares (at least, in the range
a ≤ r < ∞); all information on the interaction inside

the sphere with radius r < a is contained in the func-
tions Sl(γ, k) and the constants Bnl(γ, knl). In (11), we
assume that Rnl(γ, knl, r) = R∗nl(γ

∗, k∗nl, r).
Equation (11) represents a generalization of the com-

pleteness relation for the eigenfunctions of the most sim-
ple classes of non-Hermitian Hamiltonians [14] in the
cases where all the eigenvalues knl are simple (non-
multiple) and are situated outside the real axis k. When
γ = Reγ, the functions Rnl describe simply the bound
states of the system. For the complex values of γ, they
have the same boundary conditions as the bound states,
and their properties for the non-singular potentials with
the negative imaginary part are partially described in
[16].

In order to be sure that Sl(γ, k) can have the analytic
continuation into the complex plane of k, one has to im-
pose some limitations on the potential tails in the range
r > a. In correspondence with the study of the poten-
tial scattering in [14–17], we can try, at least, to limit
ourselves to the cases where there is a potential in the
range r > a in addition to the centrifugal barrier. This
potential satisfies the condition

∞∫
0

drr |V (r)| exp(br) <∞ (12)

at least with any arbitrarily small b.
Using the known properties

f∗l+(k∗, r) = fl+(−k, r) = fl−(k, r) (13)

for real k and relations (1a),(2a), and (3a) for Slγ, k),
one can transform (11) into the form

1
rr′

∫
C

dkfl+(k, r)fl−(k, r′)−

− (−1)l

rr′

∫
C

dkSl(γ, k)fl+(k, r)fl+(k, r′)+

+
1
rr′

∑
n

(Bnl)2fl+(knl, r)fl+(knl, r′) =
2πδ(r − r′)

r2
,

(14)

where the integration trajectory C goes along the real
axis k from -∞ to +∞, bypassing the point k = 0, where
fl± have the pole of the l-th order, along a semicircle of
the infinitesimal radius located in the upper half-space.
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We limit ourselves to the case where fl±(k, r) be-
haves itself as exp(±ikr) in the whole complex plane
at |k| → ∞. Let us shift the integration contour into
D+ and enclose all the singularities by closed contours.
By utilizing the equalities∫
Γ+

dkfl+(k, r)fl−(k, r) =

=
∫

Γ+

dkeik(r−r
′) =

∞∫
−∞

dkeik(r−r
′) = 2πδ(r − r′), (15)

∫
Γ+

dkSl(γ, k)fl+(k, r)fl+(k, r′) =
∫

Γ+

dkSl(γ, k)eik(r+r
′),

(16)

after reasonings and derivations performed within an ap-
proach that was outlined in [7,10,12] (see also [9,13]), we
obtain

Sl(γ, k) = exp(−2iαk)×

×
∏
n

knl + k

knl − k
∏
λ

kλ − k
kλ + k

∏
s

ks − k
ks + k

∏
s′

ks′ − k
ks′ + k

, (17a)

Sl(γ∗, k) = exp(−2iαk)×

×
∏
n

k∗nl + k

k∗nl − k
∏
λ

k∗λ − k
k∗λ + k

∏
s

k∗s − k
k∗s + k

∏
s′

k∗s′ − k
k∗s′ + k

, (17b)

which generalizes (4), taking conditions (1a)–(3a) into
account. Here, knl are the poles in the lower half-space
D−, kλ are the zeros in D+, and ks and ks′ are the ze-
ros in the first and second quadrants, respectively. (For
γ = Reγ, the points kλ are the zeros knl on the lower
imaginary semiaxis, corresponding to bound states, and
also the zeros on the upper imaginary semiaxis which
define virtual (anti-bound) states and correspond to the
poles situated, at least, by one between the poles knl
and kn+1, following an approach that was outlined in
[9,13].) Results (23a) and (23b) had been first explicitly
obtained in [7].

The above-written simplified assumptions about the
eigenvalues knl in the completeness condition (11) fac-
tually brings to an insignificant limitation of the inter-
action class. The absence of values knl on the real axis

k, i.e. the absence of poles and zeros (spectral points) of
Sl(γ, k) and Sl(γ∗, k) corresponding to them (as well as
the absence of values of ks and ks′) does simply signify
the rejection of the cases of the total absorption of bom-
barding particles and also the rejection of the infinite
increase of the new-particle birth for the physical values
of k ≥ 0. The condition of the absence of the eigenvalues
knl with the multiplicity of more than 1 apparently does
not also bring to the essential limitation of the interac-
tion class. Really, if one naturally assumes that a smooth
change of the interaction parameter γ brings to a smooth
shift of the values knl, then an arbitrarily small change of
the parameter γ will brings to a certain small divergence
of the various trajectories knl(γ) from the point of their
(knl) coincidence. In [9], it was shown (with the help of
another method) that expressions (23a,b) are valid for
local potentials inside r ≤ a with a hard (infinite) core
of radius r0 < a, for non-local separable potentials of
the type v(r) v(r′) with 0 < r, r′ < a, and for non-local
separable potentials with a hard(infinite) core of radius
r0 < a. Expressions (23a,b) were generalized for local
complex potentials with multiple zeros −knl, kλ, and ks.
In the last case, relations (23a,b) will contain factors of
the type (knl+kknl−k )αnl(

kλ−k
kλ+k )αλ(ks−kks+k

)αs , where αnl, αλ, and
αs are the multiplicities of the zeros −knl, kλ, and ks,
respectively.

If there are the centrifugal barrier and a potential
which is decreasing more rapidly than any exponential
function in the external region r ≥ a, then results (23a)
and (23b) remain valid, since the functions fl±(k, r) are
analytical everywhere in this case (see, e.g., [12,14]), be-
sides the points k = 0 and ∞. In the limit |k| → ∞,
they tend to (exp±ikr).

If there are the centrifugal barrier and an exponen-
tial potential of the type V = V0 exp(−br), V0, b > 0,
in the external region, where r ≥ a, then the functions
fl±(k, r) have the simple poles at the points k = ∓i b2m
(m = 1, 2, . . .) and, at the limit |k| → ∞, they tend
to exp(±ikr). Similar results can be obtained for the
Eckart, Hulthén, and Woods–Saxon potentials [13]. Let
the centrifugal barrier and a potential of the type V =
V0Pn(r) exp(−br), where Pn(r) is an nth-order polyno-
mial and b > 0, be present in the external region (with
r ≥ a). Then the function fl±(−k, r) has poles of an
order not higher than n + 1 at the points µib/2, µib,
µ3ib/2, ..., and it is analytic at all other points of the
complex plane.

Moreover, the following theorem was first proved in
[6].

For f0(−k, r) to have poles of the order not higher
than (n1 + 1) at the points ib1/2, ib1, 3ib1/2,..., not
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higher than (n2 + 1) at the points ib2/2, ib2, 3ib2/2,...,
and not higher than (nm + 1) at the points ibm/2, ibm,
3ibm/2,..., it is necessary and sufficient that the corre-
sponding potential have a term

∑
nm

Pnm(r) exp(−bmr).

Then, in [12, 14], the appropriate integral equation
which allows computing fl(−k, r) from f0(−k, r), it was
shown that, in this case, fl(−k, r) has the same isolated
singular points as f0(−k, r). Thus, one can obtain also
results (17a) and (17b) in this case where, in

∏
m
, one must

include the factors corresponding to “redundant” poles
i
2bm

′ (m′ = 1, 2, ...) of the first order in the presence of
an exponential potential tail V = V0 exp(−br) and fac-
tors of the type

∏
m′′

(km′′−k
km′′+k

)n corresponding to multiple

“redundant” poles i
2bm

′′ (m′′ = 1, 2, ...) in the presence
of a potential tail of the type V0

∑
n
Pn(r) exp(−br).

If the centrifugal barrier and a central Yukawa poten-
tial of the type V = V0[(br)−1 exp(−br)], V0, b−1 ∼ a,
are present in the external region r ≥ a, we can study
the analytic properties of fl±(k, r) and Sl(γ, k) following
[12], where it was obtained:

Sl(γ, k) = exp(−2iαk)F (k)×

×
∏
n

knl + k

knl − k
∏
λ

kλ − k
kλ + k

∏
s

ks − k
ks + k

∏
s′

ks′ − k
ks′ + k

, (18a)

Sl(γ∗, k) = exp(−2iαk)F (k)×

×
∏
n

k∗nl + k

k∗nl − k
∏
λ

k∗λ − k
kλ + k

∏
s

k∗s − k
k∗s + k

∏
s′

k∗s′ − k
k∗s′ + k

. (18b)

Here, F (k) is a singular factor,

F (k) =

[
1− iρ

2k ln
(
1− 2ik

b

)][
1 + iρ

2k ln
(
1 + 2ik

b

)] , (19)

containing the logarithmic branch points at k = ±kγ =
±ib/2 (ρ = 2µV0/η

2b3 < 0, and µ is the reduced mass).

3. Properties of the Non-unitary S-Matrix for
Arbitrary Non-central and Parity-violating
Interactions Externally Passing into the
Centrifugal Barrier and a Potential
Which Is Decreasing More Rapidly
Than Any Exponential Function

Following [10], we suppose that the interaction between
two colliding particles is such that the S-matrix is diag-
onal, as regards the total momentum j, does not depend

on the total-momentum projection onto an arbitrary
axis, and contains both diagonal and non-diagonal ele-
ments regarding the orbital momentum l with the mixed
neighboring values l, l′ = j±λ of equal (λ = 1) or oppo-
site (λ = 1

2 ) parities. Particularly, there is a mixture of
values l, l′ = l±1 (in the case of a tensor interaction ad-
mixture) or there is no mixture at all (l = l′ = j, λ = 0).
There is a mixture l, l′ = j + 1

2 in the case of a parity-
violating interaction like υ(r)σ̂p̂+σ̂p̂υ(r), where r is the
relative distance between two particles, σ̂ is the Pauli
pseudo-vector matrix, and p̂ is the momentum operator
for the relative motion of a nucleon and a nucleus with
spin 0. Of course, l = l′ = j and λ = 0 for central
interactions in all the cases.

Thus, we consider an arbitrary non-central or parity-
violating interaction inside the sphere r < a surrounded
by the centrifugal barrier and a central potential which
is decreasing more rapidly than any exponential function
V (r). Supposing that there is not only the scattering,
but also the absorption or the creation of particles, it
is natural to put, by generalizing (10a) and (10b), the
following conditions for the elements Sjll′ of the S-matrix:

0 <
∑
l′

∣∣∣Sjll′(γ, k)∣∣∣2 ≤ 1, (20a)

1 ≥
∑
l′

∣∣∣Sjll′(γ, k)∣∣∣2 <∞, (20b)

and, by generalizing (1a)–(3a), the extended “unitarity”
condition∑
l

Sjl1l(γ, k)S
j∗
ll2

(γ∗, k∗) = δl1l2 (21)

and symmetry condition

Sj∗ll′ (γ
∗, k∗) = (−1)l+l

′
Sjll′(γ,−k) (22)

(as regards the Imk axis), and the symmetry condition
of Sjll′ regarding the lower indices:

Sjll′(γ, k) = Sjl′′l(γ, k). (23)

A state of the system for r ≥ a can be described by the
wave functions

Rj∗ll′(γ, k, r) =
i

2kr
[δll′fl′−(k, r) exp(il′π/2)−

−Sjll′(γ, k)fl′+(k, r) exp(−il′π/2)] (24)
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in the continuous part of the spectrum and

R
j(n)
l (γ, knl, r) = (2π)−1/2Bl(γ, knl)fl+(knl, r)r−1 (25)

in the discrete part.
Generalizing the completeness relation (11) for an ar-

bitrary non-central or parity-violating interaction inside
the sphere r < a surrounded by the centrifugal barrier
and a central potential which is decreasing more rapidly
than any exponential function V (r), we can write

2
π

∑
l

∞∫
0

k2dkR
j(+)
l′l (γ, k, r)Rj(+)∗

l′′l (γ, k, r′)+

+
∑
n

R
j(n)
l′ (γ, knj,r)R

j(n)
l′′ (γ∗, knj , r′) =

δ(r − r′)
r2

δl′l′′ .

(26)

Relation (26) is a generalization of the completeness
condition for eigenfunctions of a class of non-Hermitian
Hamiltonians [17, 18], for which all eigenvalues are sim-
ple (not multiple) and are situated outside the Rek axis.

If there are the centrifugal barrier and a central po-
tential which is decreasing more rapidly than any expo-
nential function V (r) in the external region r ≥ a, we
can study the analytic properties of Sjll′(γ, k), following
[10], where it was obtained:

Sjll′(γ, k) = All′(γ, k) exp[−i(αl + αl′ ]
∏
n

1 + k/knl
1− k/knl

×

×
∏

m,s,s′,p,r,t,t′

(1− k/kp)(1− k/kr)(1− k/kt)(1− k/kt′)
(1− k/km)(1− k/ks)(1− k/ks′)

.

(27)

Here, All′ = δll′ + (1− δll′)Ckl>+1, C = iImC is a con-
stant, and αl = a − βl ≤ a. The topology of the poles
knj , km, ks, ks′ and the zeros knj , kp, kr, kt, kt′ was
specified as follows:

In D−, all the elements Sjll′(γ, k) have the same
poles knj (on the semiaxis Imk < 0), ks (in the 4-th
quadrant), and ks′ (in the 3-rd quadrant) which cor-
respond to the zeros in D+ of the function dj(γ, k) =
Sjll(γ, k)S

j
l′l′(γ, k)− [Sjll′(γ, k)]

2 defined by the equalities

Sjll(γ,−k) = Sjl′l′(γ, k)/dj(γ, k),

Sjll′(γ,−k) = −Sjll′(γ, k)/dj(γ, k)

(with l′ 6= l) and also the zeros −knj which correspond
to the poles knj in D+. In addition, every diagonal ele-
ment Sjll′(γ, k) can have additional poles on the semiaxis
Rek < 0 (kµ), in the 4-th quadrant (kσ) and in the 3-rd
quadrant (kσ′) which correspond to the zeros −kµ, −kσ
and −kσ′ of two functions Sjll(γ, k) and Sjll′(γ, k) in D+.
Moreover, one can conclude from formulae (23) that the
zeros kp (on the axis Imk), kr (on the axis Rek), kt (in
the 1-st and 4-th quadrants) and kt′ (in the 2-nd and 3-rd
quadrants) of the diagonal element Sjll(γ, k) correspond
to the zeros −kp, −kr, −kt and −kt′ of the second di-
agonal element Sjl′l′(γ, k), l

′ 6= l, and also that the zeros
of the non-diagonal element Sjll′(γ, k), l

′ 6= l, can appear
only in pairs ±kπ (on the semiaxis Imk), ±kρ (on the
semiaxis Rek), ±kt (in the rest of the complex plane).
Evidently, the last assertion is true for those zeros which
are not general zeros of all the elements Sjll′(γ, k).

In the case of γ = Reγ, the zeros appear in the pairs
±kr and ks′ = −k∗s , kt′ = −k∗t because of the symmetry
condition (22), and then

Sjll′(Reγ, k) = All′ exp[−i(αl + αl′ ]
∏
n

1 + k/knl
1− k/knl

×

×
∏

m,s,s′,p,r,t,t′

(1− k/kp)(1− k/kr)2(1− k/kt)(1− k/k∗t )
(1− k/km)(1− k/ks)(1− k/k∗s)

.

(28)

4. The Properties of the Non-unitary
Multi-channel S-matrix for Arbitrary
Interactions Externally Passing into the
Centrifugal Barrier and a Potential
Which Is Decreasing More Rapidly
Than Any Exponential Function

In [8, 11], we considered an idealized case where the
structure of colliding particles is described by an infi-
nite discrete set of non-degenerate energy levels εn and
the wave functions ϕn(ξ) of bound states with zero (or
“frozen”) spin. Let the conditions of the orthonormaliza-
tion∫
dξϕm(ξ)ϕn(ξ) = δmn (m,n = 0, 1, 2, . . .) (29)

and completeness

∞∑
n=0

ϕn(ξ)ϕn(ξ′) = δ(ξ − ξ′) (30)
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(ξ is a totality of the internal particle coordinates) be
fulfilled.

We assume that the central interaction between col-
liding particles inside the sphere of radius a is arbitrary
as before, but, at r > a, it contains the centrifugal bar-
rier h2l(l + 1)/r2 and a central potential V (r) which is
decreasing more rapidly than any exponential function,
and there is not only the scattering, but also the partial
particle absorption or generation. We describe the state
of the total system in the external region (r ≥ a) by the
function

R
(+)
nl (E, r, ξ)=

∞∑
m=0

i

2r

√
µ

~2km
[fl−(kn,r) exp(ilπ/2)δmn−

−S(mn)
l (γ,E)fl+(km, r) exp(−ilπ/2)]ϕm(ξ) (31)

in the region of the continuum part of the energy spec-
trum E = εn + ~2k2

n

2µ , i.e. for k2
n ≥ 0 (n = 0, 1, 2, . . .;

ε0 < ε1 < ε2 < . . .), and the functions

Rνl(Eνl, r, ξ)=
1√
2π

∞∑
n=0

B
(n)
νl (γ, k(n)

νl )fl+(k(n)
νl , r)r

−1ϕn(ξ)

(32)

in the region of the discrete part of the energy spectrum

Eνl = εn + ~2[k
(n)
νl ]2

2µ , i.e. for [k(n)
νl ]2 < 0, n = 0, 1, 2, . . .

(γ is a complex parameter which characterizes the scat-
tering (Reγ) and the absorption or generation (Imγ) of
particles). We assume that

∑
m

and
∑
n

do uniformly con-
verge.

If γ = Reγ and E ≥ ε0, the elements S(mn)
l (γ,E) ≡

S
(mn)
l (γ, k0, k1, ...) must satisfy the conditions of unitar-

ity4

N−1∑
n=0

S
(mn)
l (γ,E)S(nm′)∗

l (γ,E) = δmm′ (33)

with εN−1 ≤ E ≤ εN , 0 ≤ m,m′ ≤ N − 1, N = 1, 2, . . .
(N−1 being the number of the last open channel), which
follows from the law of conservation of the particle num-
ber (see, e.g., [13,22,23]), of the symmetry regarding the
indices of open channels

S
(mn)T
l (γ,E) = S

(mn)
l (γ,E) = S

(nm)
l (γ,E) (34)

and of the symmetry regarding the wave numbers

S̃
(mn)∗
l (γ, k0, k1, ...) = S̃

(mn)
l (γ,−k∗0 ,−k∗1 , ...), (35)

where

S̃
(mn)
l =

√
km
kn
S

(mn)
l (36)

for E ≥ εN−1 (m,m′ ≤ N − 1), or, considering that

eiπkn =
{
eiπkn, if the n-th channel is open,
kn, if the n-th channel is closed,

S
(mn)∗
l (γ, k0, k1, ...) =

= S
(mn)
l (γ,−k0,−k1, ...,−kN−1, kN , kN+1, ...). (35a)

Relations (34)–(35a) follow from the principle of the re-
versibility of time (T -invariance) in the external region
(r ≥ a).

Since the values of kn (n = 0, 1, 2, . . .), on which the
elements S(mm′)

l depend relative to (36), represent ir-
rational (radical) functions of one independent variable
(for instance, km), we will study the elements S(mm′)

l on
the Riemann surface which can be obtained, by making
the cuts on the infinite number of the km-planes from
points +

√
2µ
~2 (εn − εm) till points −

√
2µ
~2 (εn − εm), re-

spectively, symmetrically located relative to the imagi-
nary axis (because of the symmetry condition (36)), and
connecting these planes along the cuts. Let draw these
cuts in such a manner, as is shown in Figure.

The usual physical boundary conditions imposed on
the asymptotics of functions (31) imply that kn > 0 for
E > εn and Imkn > 0 for E < εn. Therefore, we choose,
as the physical sheet of the Riemann surface, the km-
plane, on which

sign Rekn = sign Rekm,

sign Imkn = sign Imkm (n = 0, 1, 2, . . .). (37)

Generalizing relations (35)–(38) to the case γ 6= Reγ
with complex values of k0, k1, . . ., we can write

N−1∑
n=0

S̃
(mn)
l (γ, k0, k1, ...)kn×

×S̃(m′n)
l (γ,−k0,−k1, ...− kN−1, kN , kN+1, ...) =

= δmm′km, (38)
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0 ≤ m,m′ ≤ N − 1, N = 1, 2, . . .;

S
(mn)T
l (γ, k0, k1, ...) = S

(mn)
l (γ, k0, k1, ...) =

= S
(nm)
l (γ, k0, k1, ...) (39)

and

S̃
(mn)∗
l (γ∗, k∗0 , k

∗
1 , ...) =

= S̃
(mn)
l (γ,−k0,−k1, ...,−kN−1, kN , kN+1, ...), (40)

0 ≤ m,n ≤ N − 1, N = 1, 2, . . .

The completeness condition of the system’s wave func-
tions in the region r ≥ a can be written in the form

2
π

∞∑
n=0

∞∫
εn

dER
(+)
nl (γ,E; r, ξ)R(+)∗

nl (γ,E; r′, ξ′)+

+
∑
ν

Rνl(γ,Eνl; r, ξ)Rνl(χ, , Eνl; r′, ξ′) =

=
δ(r − r′)

r2
δ(ξ − ξ′). (41)

Then, following [8] and shifting the integration contour
into D+, enclosing all the singularities by closed con-
tours, after reasoning and derivations performed within
an approach that was outlined in [8], we сan study the
analytic properties of S(m′m)

l , but we cannot obtain the
explicit analytic expression for S(mm)

l (rS(mn)
JΠ ) on the

Riemann surface.
Quite similarly to the behavior of S(γ, k) for k → 0 in

the one-channel case, one can obtain

S
(mm)
l (γ, k0, k1, ...) →

km→0
1 + O(kqm), q ≥ l + 1, (42)

S
(m′m)
l (γ, k0, k1, ...) →

km→0
O(kq

′

m), m′ 6= m, q′ ≥ l+1/2.

(43)

In [18], the following useful simplified parametrization
was obtained:

Ŝ(α) = Û (α)
∏
ν

(1− iΓ(α)
ν P̂

(α)
ν

E − E(α)
ν + iΓ(ε)

ν /2
)Û (α)T ,

Physical km-plane with the cuts between the channel thresh-
olds ±xmm+n = ±

√
2µ
~2 (εm+n − εm), n = 0, 1, 2, . . .; ±ymm−ν =

±
√

2µ
~2 (εm − εm−ν), m ≥ ν,m, ν = 0, 1, 2, ..., and the contour D′

Û (α)Û (α)∗ = 1,

P̂ (α)
ν = P̂ (α)∗

ν = P̂ (α)2
ν ,TraceP̂ (α)

ν = 1, (44)

coming from the general principles of unitarity, mero-
morphy, and T -invariance of the S-matrix. With this,
it was noted in [18] that there is a practical difficulty
of the explicit consideration of T -invariance in the gen-
eral case of the projectors P̂

(α)
ν non-symmetric and

non-commuting with one another. This parametriza-
tion is the mostly convenient for overlapping and
strongly overlapping resonances (see, e.g., [19,20]) and
was utilized for revealing the time resonances (explo-
sions) of compound clusters and nuclei in high-energy
nuclear reactions in the range of strongly overlap-
ping energy resonances [21]. It was shown in [22]
that when the projectors P̂ (α)

ν do not depend on the
values of any other resonance parameters (E(α)

λ and
Γ(ε)
ν ), then Ŝ(α) = Ŝ(α)T . Really, in that case,

one can rewrite the resonance part Ŝ
(α)
res ≡

Λ(α)∏
ν=1

(1 −

iΓ(α)
ν P (α)

ν

E−E(α)
ν +iΓ

(α)
ν /2

) from expression (44) for Ŝ(α) in the form
of a sum

Ŝ(α)
res = 1− i

∑
ν

Γ(α)
ν P

(α)
ν

E − E(α)
ν + iΓ(α)

ν /2
−
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−
∑
ν′>ν

Γ(α)
ν Γ(α)

ν′ P̂
(α)
ν P̂

(α)
ν′

(E − E(α)
ν + iΓ(α)

ν /2)(E − E(α)
ν′ + iΓ(α)

ν′ /2)
+ ...

(45)

which can be transformed to the Mittag–Leffler expan-
sion

Ŝ(α)
res = 1− i

∑
ν

iG
(α)
ν

E − E(α)
ν + iΓ(α)

ν /2
, (45a)

G(α)
ν =Γ(α)

ν P (α)
ν − i

∑
ν′>ν

Γ(α)
ν Γ(α)

ν′ P̂
(α)
ν P̂

(α)
ν′

E
(α)
ν − E(α)

ν′ + i(Γ(α)
ν − Γ(α)

ν′ )/2
−

−i
∑
ν′′<ν

Γ(α)
ν Γ(α)

ν′′ P̂
(α)
ν P̂

(α)
ν′′

E
(α)
ν − E(α)

ν′′ + i(Γ(α)
ν − Γ(α)

ν′′ )/2
+ ...

Taking (45a) and the T -invariance of expression (44) for
Ŝ(α) into account, we can write

Ŝ(α)
res = Ŝ(α)T

res . (46)

Then one can further rewrite (46) in the following form
(see the last ref. in [28]):

G(α)
ν = G(α)T

ν ν = 1, 2, . . .,Λ(α). (47)

Relations (47) are in general too bulky as correlations
between the matrices P̂ (α)

ν with different ν.
But if P̂ (α)

ν do not depend on the values of E(α)
λ and

Γ(ε)
ν , then the relations

P̂ (α)
ν = P̂ (α)T

ν , (48)

P̂ (α)
ν P̂

(α)
ν′ = P̂

(α)
ν′ P̂ (α)

ν , ν, ν′ = 1, 2, . . .,Λ(α). (49)

(i.e. the matrices P̂ (α)
ν will be symmetric and commute

with one another) are the direct consequences of (47).
By the way, such a simplification (the independence of
P̂

(α)
ν of any other resonance parameters) is justified at

least when Λ(α) and the number N of open channels is
very large. Then it follows from the properties (48) and
P̂

(α)
ν = P̂

(α)∗
ν = P̂

(α)2
ν , TraceP̂ (α)

ν = 1 (from (44)) that
the P̂ (α)

ν are real, i.e.

P̂ (α)
ν = P̂ (α)∗

ν . (50)

5. Final Remarks. Conclusions and Perspectives

The presented review contains the results of the almost
complete study of the non-relativistic S-matrix analytic
structure for arbitrary central, non-central (tensor), and
parity-violating T -invariant interactions, linear or non-
linear, with the possible absorption and/or generation of
particles inside a sphere of small radius r ≤ a passing
in the external range (a < r < ∞) into a centrifugal
barrier with the possible presence of decreasing (more
rapidly than any exponential function, according to the
exponential law, or the Yukawa-potential, etc.) tails for
the one-channel and discrete-many-channel scatterings.
This study is based on some general mathematical as-
sumptions like the possibility of the S-matrix analytic
continuation into the regions of complex values of the
wave numbers or kinetic energies of particles and the
completeness conditions for the external wave functions,
as well as on the physical principles like the causality
and some kinds of the symmetry for the S-matrix.

It is rather curious how the results of a research based
on the well-known cognitive principle “with the least
number of assumptions to obtain the most number of
results of a rather general physical and mathematical
character” can also help to reveal some specific physical
phenomena and effects: (a) the enhancement phenomena
caused by the parity violation; (b) the phenomenon of
time resonances (explosions) formed from the strongly
overlapping energy resonances of high-energy many-
channel nuclear reactions mentioned in Section 5 (see
[21]); (c) the paradoxical delay-advance phenomenon in
the center-of-mass system in the range of nuclear isolated
resonances distorted by the non-resonance background,
and the resolution of such paradoxical phenomenon by
passing to the laboratory system of reference, where it is
eliminated by the correct phase analysis with introduc-
ing an additional phase parameter describing the space-
time shift caused by the real motion of the decaying com-
pound nucleus in the laboratory system (see [22–25]).

In the existing publications concerning the analytic
structure of the S-matrix and the scattering (collision)
amplitude, the topic of dispersion relations (certain inte-
gral relations for the scattering amplitude) attracts of-
ten a lot of attention. A great number of papers and
the majority of manuals on quantum mechanics consid-
ering the range of not very high energies are dedicated
to this topic (see, e.g., [5, 17, 26–28] with extensive bib-
liography therein). This topic is studied in details both
for the known potential interactions and the microscop-
ically unknown interactions. Several author’s papers on
dispersion relations considered some applications to the
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nuclear optical model and compound-nucleus processes
[29,30].

As for the future perspectives, it is possible to propose
(a) the study of the enhancement phenomena caused
by violations of T -invariance, quite similarly to the en-
hancement phenomena caused by parity violations of the
S-matrix [10], in addition to the model study in [31,
32], and (b) the study of the S-matrix analytic structure
for arbitrary interactions which externally (in the range
r > a) pass into a centrifugal barrier and a screened
Coulomb barrier (the last one is namely the Yukawa-
type potential differing from the Yukawa potential by
the positive sign (repulsion instead of attraction) and by
the scale.
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АНАЛIТИЧНI ВЛАСТИВОСТI S-МАТРИЦI
ДЛЯ ДОВIЛЬНИХ ВЗАЄМОДIЙ, ЯКI
В ЗОВНIШНIЙ ОБЛАСТI ПЕРЕХОДЯТЬ
В ДОЦЕНТРОВИЙ ТА ШВИДКО
ЗГАСАЮЧI ПОТЕНЦИАЛИ

В.С. Ольховський

Р е з ю м е

Подано огляд робiт, виконаних автором з 1961 по 2006 роки,
з аналiтичної структури нерелятивiстської унiтарної та неунi-
тарної S-матриць у випадку довiльних взаємодiй (i, можливо,
з довiльними рiвняннями руху) всерединi сфери радiуса r ≤ a,
якi в зовнiшнiй областi (r > a) переходять в доцентровий та
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швидко згасаючi (за експоненцiальним чи юкавiвським закона-
ми або згасаючi бiльш швидко) потенцiали. Розглянуто однока-
нальний та особливi багатоканальнi випадки. Накладено умо-
ви симетрiї деяких типiв. Використовуються рiвняння Шре-

дiнгера для руху частинок в областi r > a та умова повноти
вiдповiдних хвильових функцiй. На заключення представлено
програму можливих дослiджень як зрозумiле продовження i
розширення одержаних результатiв.
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