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This paper gives a definition of category NC-Einst of noncommu-
tative Einstein spaces, and a Petrov noncommutative topological
quantum field theory (NC TQFT) is constructed. We suggest ex-
tensions of these ideas which may be useful to further NC TQFT
and apply it in higher dimensions.

1. Introduction

The subjects of the double category, TQFT, and non-
commutative Einstein spaces have been studied in [1-
13]. Let us describe some noncommutative geometric
aspects of twisted deformations. Consider a Lie algebra
g over C, and its associated universal enveloping algebra
Ug. A general twist F is an element F € Ug® Uyg in the
tensor product of a Hopf algebra (Ug, -, A, S, €) given by

f:fa®fom f_lzfa®faa (1)
and satisfying the conditions

Fra(A ®id)F = Faz(id @ A)F, (2)

(e@id)F=1=(id®e)F, (3)

where the elements f, fa,fa,fa belong to Ug, A de-
notes the coproduct and e the co-unit of the respective
Hopf algebra [14-16].

Then, the universal R matrix is defined by
R=FuF '=R*®R,, R'=R*®R,. (4)
Using the R matrix, we obtain, for functions h and g,

hxg= R*(g)*x Ra(h). (5)

Our strategy is to deform a product o of some objects A
and B by replacing it with a twisted product o,:

Ao, B:=[*(A)o fa(B). (6)
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The universal enveloping algebra of vector fields can be
deformed in two different ways:

- UE,

This is a Hopf algebra [16] defined by deforming the
structure functions of UZ:

U*U:fa(u).fa(v)a (7)
Ay(u) =u®1+ R*® Ry(u), (8)
ex(u) = €(u) =0, (9)

Si(u) = —R*(u) R, , (10)
where R*(u) is the usual Lie derivative of u along the
vector field R™.

There is a natural action of =, on the algebra of functions
A, given in terms of the usual undeformed Lie derivative,

Ly(h) = [*(u)(fa(h)), (11)

which can be extended to UZ=,.

The *-Lie algebra of vector fields =, generates the Hopf
algebra UZ,.

-y=*

We have the following structure maps:

uwrv=u-v, (12)
ST (u) = S(u), (13)
e (u) = e(u), (14)

AT (u) = FAu)F L. (15)

However, UZ, and UZ” turn out to be isomorphic Hopf
algebras.
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The star-connection V* is defined to satisfy the fol-
lowing axioms:

Viiwz=Vyz2+Viz,
Vst =hxViv,

Vi (hxv) = L (h) x v+ R (h) % Vi v, (16)

where u,v and z are vector fields. Next, we define the
connection coefficients by

V50, =T, %y, (17)

using the basis {9, }. The action of the covariant deriva-
tive on a one-form can be obtained employing the star-
dual pairing of a vector field v with a one-form w,

Vv, whe = Lo (v, w)y =

= (Vav, w)i + (R (v), Vi ()W) (18)
which can be written equivalently as

(0, Viw)s = Loy (Ro(v),w),—

(Ve (Ral0)), 0 (19)
For a given metric

9 = Guv * A" @, di"¥, (20)

the connection that leaves it invariant is called a Levi-
Civita connection:
V3,9 =0. (21)

For a general twist F~! = f® ® f,, the torsion and
curvature tensors are given by [13]

T(u,v) =Viv— VEQ@)RQ(U) = [u, v, (22)
R(u,v,z) = R(u,v)z =
=VoVez = Ve Vanw? ~ Viuw. % - (23)

It is enough to calculate the tensor on a basis (’9# because
of the tensorial property, i.e.,

T(u,v) = u’ *x T(8,,8,) x v". (24)
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In this frame, the star-connection is given by
Viu= LI(u") o, + R™(u”) * Ry (2)H % I d, . (25)

We will need to compute the components of the curva-
ture tensor in this base. They can be expressed in the
following way:

Rijkl = <R(éla éja ék)a di’k>* : (26)
Consequently, we have, for the deformed Ricci tensor,
Rij = Ry (27)

Classical Einstein spaces have a Ricci tensor propor-
tional to the metric. In the noncommutative case, we
are looking for spaces satisfying the same property:

Rij = cgij,
where ¢ is some constant.

2. Noncommutative Einstein Spaces

2.1. Weyl-Moyal plane R}

The metric is the usual Minkowski or Euclidean one; the
twist is Abelian [16]:

F = 6_%9"“'8#@8”7 (28)
where 0*¥ = —9"* € R. The covariant derivative is given
by

Viu=2"'x0,(u”)x 0y + 2" % u’ x T, x 05 . (29)

In a first step, let us show that the choice I'], = 0 is
a good choice and renders the affine connection to be
a Levi-Civita connection. Thus, the expression for the
covariant derivative (29) becomes

Viu=2z'%0,(u")*0,. (30)

Let us show that axioms (16) are satisfied:

o Vi ,z=(ut+v)'x0,(2")*%0,=V,z+Vyz, (31)

o Vv = (hxut)x9,(")*0,
=h*(u'*x0,v" *x0,) =h* Vv, (32)

o Vi(h*v)=ut*0,(h*v")*0, =

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
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=L5(h)*v+u” xh*(0,0")*x 0, =
= L5 (h) % v+ R*(h) % Re (u) % (9,0") % 0, =

= L(h) v+ R(h) * Vi (0 (33)

In a next step, we show that the curvature and the tor-
sion vanish. The torsion is given by
T(0y,0y) = V.0, = V0, = [0,0,]« = 0, (34)

since the Christoffel symbols are all zero, and the deriva-
tives commute. Similarly, we see that the curvature ten-
sor also vanishes:

R(8y,05,0,) =

= V;VE@H — V}%a(aﬁ)vz%a(@u)au - Vrau,aﬁ]*z = O . (35)

At last, we consider the covariant derivative of the
metric:

Vig = Vi (gap dz® @, dz’) =

= 0,(gap)dr® @. dz” — Gopl i dr’ @, da® —

—gapdr® @, Ffwdx“ =0,

since the star-dual pairing (19) yields

V,dz® = =T}, xdz? =0.

Among these metrics, those that are classically Ein-
stein metrics are also shown to be noncommutative Ein-
stein metrics.

5
2.2. R
The algebra is generated by the coordinates Z1,...,&°
satisfying the relations [16]
i}li’z —_ qizil, jliA — q71j4j1,
i‘l,’i5:i‘5,’%1, A2i,4::i,4£27
2% = q2°2?, i'8° = ¢ e (37)
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The coordinate 23 is central. The conjugation is given
by

~ 1% 5 2%

7 :{lA?,.’E 4 ~3%

=1z 3

=i’
Hence, the twist (for the symmetric ordering) reads

th

5 (38)

feXP< (X1®X2X2®X1)> ;

where y; and ys are the following commuting vector
fields:

X1 = 2205 — x484, X2 = '8 — x585 .
Thus, we have, for the inverse R matrix,

R =R'®Ra=["f3® fuf’ =

(T?;?]S?) X;L—m+lxgn+k—l ®

m+k— h n
:Z(*l) +k 1(5) +k

m+k—1l_. n—m-+l
®X1 X2 .

2.2.1. Note on Hermitian generators

Let us introduce Hermitian generators for the algebra
R3:
q

T1 =21 +129, Ts =21 — 1%

To =1 + Y2, T4 = Y1 — 192, (40)

with g7 = ¢; and 27 = 2;, ¢ = 1,2. Inserting these

identifications into the commutation relations (37) yields
the identical relations

2101 = qiit1, e = q Mk,

G152 = q 2201, G2 = q ‘2200, (41)

in the case where ¢ is a square root of unity.
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2.2.2. Geometry
Again, we propose

I, =0 (42)

and show that this definition leads to a sensible covariant
derivative and geometric tensors. The covariant deriva-
tive (25) is given by

Viu=L:(u”)*d,. (43)

This satisfies the axioms for a affine connection, since

o Vi,z=Ll(2)%0, =LL(z")*D,

FLE(Z) %D, = Viz+ Viz (44)
o Vit =L, (0) %0,

= h* LEWY) %Dy = hx Vi (v) (45)
o Vi(hxv)=L:(h*v")%xd, = LE(h)*v

+R(h) % Ly () (v") % Dy

= L*(h) v+ R*(h) x Vi, (V) (46)
The torsion T is given by
T(u,v) =Viv— V}‘%Q(U)Ra(u) — [u,v]«
= L3(0") % Oy = Ly (Ra(w)”) % Dy — [, ], (47)

Computing the torsion for frame elements, we see explic-
itly that

T(dy,d,) = 0. (48)
This is due to the tensorial property and
[éuaéu]* = [fa(éu)afa(él/)] = O, (49)

since the Lie derivative of éu along f, and consequently
also R, is again a vector field with constant coefficients:
c,0u, ¢, €R.

Next, we compute the curvature tensor:
R(u,v,2) = ViViz = Via () Ve, w? — Vi

[u,v]*z =
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= L3(L3()) % Oy — Lo o) (L () * O

_Efu"”]* (zy) * a’j = E’Z*’U (ZV) * aIJ_E*Ra (’U)*Ra (u) (ZV) * 8,,—
_L:ru;u]* (ZV) * 3,, :ETL*’U—R“(U)*RQ(U)—[U‘,U]* (ZU) * 81/ =0.
(50)

The Riemann curvature tensor vanishes identically. In
a next step, we show that this connection is a metric
one. We have to evaluate the covariant derivative of the
metric:

Vig = Vi(gapdi® ®, di’),

where

(gaﬁ) = 1
1

In the present case, we again obtain, from the star-
dual pairing (19), that

V5,di? = 0.
Therefore, we get

vf/,g:gﬂﬁx

X (V5d2” @, d2” + R*(di”) ®. V%, 5 di?) =0. (51)

a(éu)

2.3. Gl (N)
The quantum space for Gly(N) [12] is defined by

Pl =qilit i< (52)
Therefore, we have, for the twist,
1 ih ~7 9 A1 A A1 A ~7 A
Fil=exp| =) (70, @0 — i'0; © i'0;)
i<j
(53)

In the same way as before, we can show that the trivial
connection satisfies all requirements and defines a Levi-
Civita connection with vanishing curvature tensor.

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
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2.4. Twisted sphere

The twisted sphere is defined by relations (37) and the
additional condition [15]
r? = 22125 + 2%2*) + (#%)2. (54)

With the use of the stereographic coordinates %%, i =
1,2,4,5, the metric is given by

* 4r? i j
where
1
1
@) =1
1

In order to simplify the notation, we introduce the fol-
lowing definitions: For the vector fields, let us define

— yzaZ

t; == yi oy =

(56)

(we note that no summation over the index 4 is implied).
Hence, we write, for the twist,

ih
F =exp <_Z2§0ijti & t]‘) (57)
with
Pij = —@ji = —Pijr (58)
v12 =1, i = @iy =0, (59)

and i’ = 6 — 4. Furthermore, let us introduce P;; and its
square,

ih
pP.. — Yij .. = P2
1]*62 ”aQZ]* iJ °

(60)
Using these definitions, we can write, for the metric,

4r? i j

[ ot J —
9" = gidy' @.dy = P

ij

(61)

The Levi-Civita connection can be obtained by demand-
ing the vanishing torsion and the vanishing covariant
derivative of the metric. The former condition reads

k k
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The latter condition then leads to

.1
Ur = 9" (150590 + 0igi; — 0195) -

5 (63)

As a result, the universal connection is the same as that
in the undeformed case:
V*=V. (64)
The converse is also true: Assuming (64), we obtain (63)
for the connection coefficients.

Similarily, we obtain, for the Riemann curvature,

R*=R (65)

and, in terms of components,

R = R;‘kklmdyi R dy’ @, dy* @, O, (66)
N 1

Riju =3 (91i95% — Gik G159ik) - (67)

Now let us consider a possible transformation between
a bd theta-deformed plane (see Section 2.1) and a 5d
g-deformed one (see Section 2.2). The theta-deformed
space is chosen in the following way: [z;,x;] = i0;; with
the coordinate x3 commuting with all other coordinates
and

0 h —h 0
g | =0 0 n
Ul h 0 0 -h

0 —~h h 0

Then, with the map y; = exp(z;), we obtain the cor-
rect commutation relations (37). But, unfortunately,
this map does not respect the complex structure, and
the induced metric seems not to be the proper met-
ric for the g-deformed plane. But another possible
map is from the g-deformed sphere to a plane, via a
stereographic projection. Starting with the g-deformed
sphere, commutation relations (37), and the constraint
r?2 = 2(xta® +2%21) +(23)?, we define a map to the plane
in the usual way by y* = 23, y* = (2'r)/(r — 23), i =
1,2,4,5. The induced metric is then given by (55).

3. Double (Bi-)Category

Definition 1. A category is a quadruple (Obj, Mor,
id, o) consisting of:

(C1) a class Obj of objects;

(C2) a set Mor(A, B) of morphisms for each ordered
pair (A, B) of objects;
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(C3) a morphism ida € Mor(A, A) for each object A:
the identity of A;

(C4) a composition law associating, to each pair of mor-
phisms f € Mor(A, B) and g € Mor(B, C), a morphism
go fe MOI‘(A, C);

which is such that:

(M1) ho(gof) = (hog)of for all f € Mor(4, B),
g € Mor(B,C) and h € Mor(C, D);

(M2)idgof = foida = f for all f € Mor(A, B);
(M3) the sets Mor (A, B) are pairwise disjoint.
Example 1. The category NC Einst. Objects of the
category NC Einst are noncommutative Einstein spaces
NC Einst defined in Sections 2.1-2.4 by the induced met-
ric (55). For a morphisms s, t: NC Einst — NC Einst’,
we define a map to the plane in the usual way by
3 =23y = (z'r)/(r —23),i=1,2,4,5.

Definition 2. Let X and Y be two categories. A func-
tor from X to Y is a family of functions F which as-
sociates, to each object A in X, an object FA in' Y
and, to each morphism f € Morx (A, B), a morphism
Ff € Mory(FA,FB) which is such that

(F1) F(go f) = Fgo Ff for all f € Morx (A, B) and
g € Mory (B,C);

(F2) F idg =idga for all A € Obj(X).

Definition 3. A double category D consists of:

(1) A category Dy of objects Obj(Dgy) and morphisms
Mor(Dy) of 0-level.

(2) A category Dy of objects Obj(D1) of 1-level and mor-
phisms Mor(Dq) of 2-level.

(8) Two functors d,r : D1=Dy.

(4) A composition functor

*IDl XD0D1_>D17

where the bundle product is defined by the commutative
diagram

D1 XDO D1 E) D1
7T1l J,d
D, 5 Dy

(5) A unit functor ID : Dy — Dy which is a section of
d,r.

The above data is subject to Associativity Axiom
and Unit Axiom. If both of them are fulfilled only up
to the equivalence, then the double category is called a
weak double category, and if they are fulfilled strictly,
then it is a strong double category.

Here, we see that, for two objects A, B € Obj(Dy),
there are 0-level morphisms Dg(A, B) which are noted
by ordinary arrows f : A — B, and 1-level morphisms
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Dy(A, B) which are noted by the arrows { : A = B,
for A=d(¢) and B = r(§). So, with a 2-level morphism
a:&— ¢ where £ : A= Band ¢ : A = B, we can
associate the diagram

A LY B ¢
d@)l L) —  la
A5 B ¢

and the arrow « : d(o) = r(a)
The composition on 2-level is associated with the dia-
gram

A £ B ¢
d(a) | Lr(e) la

AL — ¢
d(a) | 1 r(a) Lo

A// g B// g//

Now we can define, for double categories, double
(category) functors and their morphisms, double
subcategories, the category DCat of double categories,
equivalence of double categories, dual double cate-
gories (changed direction of 1-level morphisms, i.e. d,r
are transposed), and so on [1,22].

Definition 4. [4] The theory of bicategories is the cate-
gory (with finite limits) Th(Bicat) given by the follow-
ing data:

e Objects Ob, Mor, 2Mor
e Morphisms s,t : Ob— Mor and s,t : Mor — 2Mor

e composition maps o : MPairs— Mor and - :
BPairs — 2Mor, satisfying the interchange law
(the requirement that this be a functor means that
the interchange law holds):

(@of)-(a'0f) =(a-a)o(B-5),

where MPairs = Mor Xop, Mor and BPairs =
2Mor X ppor 2Mor are the equalizers of diagrams of

the form:

(68)

(69)

MPairs - Mor?

/\

and similarly for BPairs.

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
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e the assoctator map a : Triples— 2Mor, where
Triples = Xop Mor X o1, Mor is the equalizer of a
similar diagram for involving Mor?® such that a sat-
isfies s(a(f,g,h)) = (f o g) o h and t(a(f,g,h)) =
folgoh)

e unitors [,r : Ob— Mor with sol = tol = idop
and sor =tor =idop

These data are subject to the conditions that the asso-
ciator is subject to the pentagon identity [23], and the
unitors obey certain unitor laws

(goly)of 2% go(of).

lﬁq%
1g><lf

gof

(70)

Definition 5. [4] A double bicategory consists of:

e bicategories Obj of objects, Mor of morphisms,
2Mor of 2-morphisms

e source and target maps s,t : Mor— Obj and
s,t: 2Mor — Mor

e partially defined composition functors o
Mor? — Mor and - : 2Mor? — 2Mor, satisfying
the interchange law (68)

e partially defined associator a : Mor2 — 2Mor
with s(a(f,g,h)) = (fog)oh and t(a(f,g,h)) =
folgoh)

e partially defined unitors I,v : Obj— Mor with
s(l(z)) =t(l(z)) = = and s(r(x)) =t(r(x)) ==.

All the partially defined functors are defined for com-
posable pairs or triples, for which the source and target
maps coincide in the obvious way. The associator should
satisfy the pentagon identity [23], and the unitors should
satisfy the unitor laws (70).

4. Action of a Double Category

Double categories are the categorical variants of usual
monoids (and groups), and thus we have the correspond-
ing variant for their actions. Below, the definition of
action of a double category d,r : D; — Dgy on cat-
egories over D is given. Thus, we get an analog of
group-theoretic methods in categorical frames.

Definition 6. (Left) action of a double category d,r :
Dy — Dy on a category p : M — Dqy over Dy is a functor
© such that

(1)The diagram is commutative

Dixp, M % M

rom N\ | p;

Dy

where the bundle product D1 xp, M is defined by the
diagram

Dl XDOM L M
m | lp.
D, 5 Dy

(2)The diagram is commutative to within an isomor-
phism

o d
(Dy Xpy D1) xpy M = Dy xp, (D1 xp, M) 7257 Dy xp, M
® Xp, tdpr | Ly )
D1 XDOM i> M

and there exists a functor isomorphism ¢ such that

V&, € Obj(Dy), m € Obj(My)

Veerm : (ExE)xm — Ex (€ xm).

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5

(8) For the unit functor, we have a functor isomorphism
X ¢ o (ID xidy)—idar or for objects
V A€ Obj(Dy), m € Obj(M1) Xam:IDaxm—m.

So we have the map of a pair of objects £ € Obj(D1),
m € Obj(M) (A £ p(m),m) — (&, m) such that
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p(p(€,m)) = A, and of morphisms a € D;(&,¢'),u €
M(m,m’)

13 A é p(m) (P(fvm)
al f=dla)] / Lr(e) =p(u) — | e(a,u),
¢ A 5 p(m’) @&, m")

where p(p(a, u)) = f.
The definition of a right action is evident.

5. Cobordism and Double Categories

Let M, be the category of oriented compact d-
dimensional smooth manifolds (with boundary) and
piecewise smooth maps (we do not define the sense of
the condition more exactly here; this may be such con-
tinuous maps f : M — Y that are smooth on a dense
open subset Uy C M ), let CMy be its subcategory
of closed (with empty boundary) manifolds and smooth
maps, CMy C My.
There are the following functors:
(1) Disjoint union

UiMdXMdHMdZ(X,Y)HXUY.

(2) Changing of the orientation of manifolds on the op-
posite one

(=) : Mg — My: X — —X.

(3) Boundary operator
0:Mg1 — CMg: X — 0X.

(4) Multiplication on the unit segment I = [0, 1]
Ix .:CMy— Mgy : X — 1 x X.

Now we define a double category C(d) with
(1) C(d), = CMg.
(2) 1-level morphisms C(d)(X,X’) are a set of
pairs (Y, f), where Z is an oriented compact (d + 1)-
dimensional smooth manifold with the boundary 9Y, and
f is a diffeomorphism

Fi(-X)UX' — Y,

where U stands for the disjoint union of —X and X'.
Thus, we write (Y, f) : X = X'.

(3) The composition of (Y, f) : X = X' and (Y, f') :
X' = X" is the morphism

Y Ux Y, (flx) U (f']x)) : X = X",
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where (Y Ux/ Y”) denotes the union (Y UY”) after the
identification of each point f(y) € f(Y) with the point
f'(y) € f'(Y) for all y € Y and smoothing this topolog-
ical manifold.

(4) The 1-level identical morphism IDx is (X x
[0; 1], id(— x)ux ), because (X x [0;1]) = (=X) U X.

(5) 2-level morphisms of C(d),(§,¢') from & = (Y, f :
X' U(-X) - 09Y) : X = X' to& = Y,f :
X"U(=X') - 9Y’) : X! = X" are such triples of
smooth maps (f1, f2, f3) that the following diagram is
commutative:

-xyux’ Loy cy
Lfiufe Lfs.
(-xHux" Loy cy

It is easy to see that the functors U and (—) may be
expanded to double category functors

U:C(d) — C(d),
(=) : C(d) = C(d)’,

and (—) is an equivalence of the double categories.

Remark. Two following formulas for 1-level mor-
phisms in algebras and cobordisms [18-20] are of inter-
est:

f:A®k B° — Endi(N) f:(=X)uY — 027,

where we have correspondence between the functors

) = =)
Rk — U7
End, «—— 0.

6. Petrov Noncommutative Topological
Quantum Field Theory

The Petrov Noncommutative Topological Quantum
Field Theory (NC TQFT) is a 2-functor Z from a
certain bicategory of double cobordisms [7] CM(d)
of d-dimensional manifolds into the double bicategory
NC Einst of noncommutative Einstein spaces, and some
axioms are satisfied [1, 17,22, 23].

Thus, Petrov NC TQFT in dimension d is a 2-functor,

7 : C(d) — Mor(NC Einst),

between double bicategories such that
(1) the disjoint union in C(d) goes to the tensor product

U= ®,

ISSN 2071-0194. Ukr. J. Phys. 2010. Vol. 55, No. 5
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where (_)* : NC Einst — NC Einst® is a dualization
of noncommutative Einstein spaces,

(2) changing the orientation in C(d), goes to the dual-
ization

(=)= ()"

Thus, as a consequence of double bicategorical func-
torial properties, we get

(1) for each compact closed oriented smooth d-
dimensional manifold X € Obj(C(d),), the value
of the functor Z(X) is a noncommutative Einstein
space over the field C of the complex numbers,

(2) for each (Y,f) : X = X' from Obj(C(d),),
the value of the functor Z(Y, f) is a homomor-
phism Z(X) — Z(X') of noncommutative Einstein
spaces,

and the following axioms of Petrov NC TQFT are satis-
fied:

A(1) (involutivity) Z(—X) = Z(X)*, where —X de-
notes the manifold with the opposite orientation,
and * denotes the dual noncommutative Einstein
space.

A(2) (multiplicativity) Z(X U X') = Z(X) ® Z(X'),
where U denotes a disconnected union of manifolds.

A(3) (associativity) For the composition
YY" M=, f)« (Y, f') of cobordisms, the fol-

lowing relation holds:

Z(Y//’ f//) —

=ZY', f)o Z(Y, f) € Morc(Z(X),Z(X")).
(Usually, the identifications

Z(X'-X) = Z(X)*©Z(X') = Morc(Z(X), Z(X"))

allow one to identify Z(Y, f) with the element
Z(Y, f) € Z(9Y).
A(4) For the initial object, § € Obj(C(d),) Z(0) = C.

A(5) (trivial homotopy condition)
Z(X X [O, 1]) = Zdz(X)
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7. Conclusions

We have studied the noncommutative counterparts of
the so-called Einstein spaces (such as twisted 4-spheres)
in the framework of twisted gravity. Their Ricci tensor
is proportional to the metric. We have computed the
deformed Riemannian tensor and the scalar curvature
in the formalism of twisted gravity. We could already
see, for some examples, the remarkable property that
being an Einstein space seems to be stable under defor-
mation, using a Killing vector field in the twist. The
deformed Levi-Civita connection and the deformed Rie-
mann tensor are just the undeformed ones. Deformed
spherical symmetric spaces are very important with re-
spect to, e.g., the Black-Hole solutions and are related to
cosmological problems. As a generalization, one should
study star geometries, where the vector fields are not
Killing vectors. On the other hand, the main result of
this paper can be summarized as that the construction
of Petrov NC TQFT is a 2-functor from a certain bi-
category of double cobordisms C'M(d) of d-dimensional
manifolds into the double bicategory NC Einst of non-
commutative Einstein spaces.
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HEKOMYTATHUBHA TOIIOJIOTTYHA KBAHTOBA TEOPIA
I1OJI TUITY IIETPOBA

C.C. Mockanrx, M. Boasenanm

Pezmowme

VYV crarTi maHO O3HAYEHHS KAaTEropil HEKOMYTAaTHBHUX IPOCTOPIB
Eitnmreitna NC Einst Ta no6y/10BaHO HEKOMYTATUBHY TOIIOJIOTI-
uHy KBaHTOBY Teopiio nosisi (HKTII) tuny Ilerposa. ABTOpHM BBa-

2KAIOTh KOPUCHUM O3HAHOMJIEHHS 3 ifesaMu JaHol pobOTH 3 METOIO

naseiioro po3sutky HKTII Ta iT 3acTrocyBaHHs y mpocTOpax BU-

o1 po3MipHOCTI.
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