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Il libro della natura € scritto in lingua matematica.
Galileo Galilei, | Il Saggiatore, 1623].

“..At the present time, the intimate connection
between causality and the analytic continuation
is revealed. So, it is not improbable to develop a
subtraction procedure even in the most general case
by the use of analytic continuation techniques.”

0.8. Parasiuk, [[7], p.566, the last paragraph, 1956].

This possibility is realized explicitly and efficiently in a body of our
self-consistent renormalization (SCR). The self-consistency means
that all formal relations between UV-divergent Feynman ampli-
tudes are automatically retained as well as between their regular
values obtained in the framework of the SCR. Self-consistent renor-
malization is efficiently applicable on equal grounds both to renor-
malizable and nonrenormalizable theories. The SCR furnishes new
means for the constructive treatment of new subjects: i) UV-
divergence problems associated with symmetries, Ward identities,
and quantum anomalies; ii) new relations between finite bare and
finite physical parameters of quantum field theories. The aim of
this paper is to expose main ideas and properties of the SCR and
to describe three mutually complementary algorithms of the SCR
that are presented in the form maximally suited for practical ap-
plications.

1. Introduction

The keystone idea of a purely mathematical genesis of
the ultraviolet (UV) divergencies of Feynman amplitudes
(FAs) in quantum field theories is at the heart of the
Bogoliubov—Parasiuk R-operation [1-7]. Using this idea
along with related considerations of mathematicians of
the 19th and 20th centuries,! the author has developed

1 Tt is appropriate to pointed out here that the first regularization
recipe to subtract infinities for turning a divergent integral into
a convergent one had been used in Cauchy’s “extraordinary inte-
gral” [9-11] and in d’Adhémar’s [12,13] and Hadamard’s [14-17]
“finite part of a divergent integral”. These recipes are similar
but not identical. But, in both cases, it was extended the va-
lidity of the usual rules of change of a variable, integration by
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an universal, high-efficient, and self-consistent renormal-
ization (SCR) technique which is applicable for any di-
mension n = 2r, + 0,,0, = 0,1, r, € {OUN,} of a
space-time that is endowed by a pseudo-Euclidean (p, q)

parts, and differentiation with respect to the upper limit of in-
tegration to these new objects. The Cauchy’s “extraordinary
integral” has been used for an efficient analytic continuation
of the I'(z)-function to some noninteger real values Rez < 0
firstly by Cauchy himself [10] in 1827, and then in the strips
(=n — 1 < Rez < —n) by Saalschiitz {18, 19] in 1887-1888.
The term “finite part of a divergent integral” was introduced
by d’Adhémar in his thesis presented at the Sorbonne Univer-
sity in December 1903 and defended in April 1904 (see [[20],
p.477]). Referring to Hadamard’s article [14|, d’Adhémar [[13],
p.371] writes “...Independently of each other, we understood the
role of these finite parts...”. In d’Adhémar’s thesis and articles,
this notion was applied to the construction of solutions of the
equation for cylindrical waves [12,13], whereas Hadamard used
finite parts for the solution of the Cauchy problem for second-
order equations with variable coefficients [14-16] and an arbi-
trary number of independent variables [17]. On the applications
of d’Adhemar’s and Hadamard’s “finite part of a divergent inte-
gral” in more details, see Hadamard’s book [21]. 40 years later
on, when analyzing the connections between the intuitive and
logical ways of mathematical inventions, Hadamard [22] wrote:
“...All mathematicians must consider themselves as logics. For
example, I have been asked by what kind of guessing I thought
of the device of the “finite part of a divergent integral”, which I
have used for the integration of partial differential equations.
Certainly, considering in itself, it looks typically like “think-
ing aside”. But, in fact, for a long while my mind refused to
conceive that idea until positively compelled to, I was led to
it step by step as the mathematical reader will easily verify
if he takes the trouble to consult my researches on the sub-
ject, especially my Recherches sur les solution fondamentales et
lint’egration des ’equations lin’eaires aux d’eriv’ees partielles,
2nd Memoir, especially p.121 and so on (Annales Scientifiques
de U’Ecole Normale Superieure, Vol. XXII, 1905) [16]. I could
not avoid it any more than the prisoner in Poe’s tale The Pit and
Pendulum could avoid the hole at the center of his cell...”, see
[[22], p-110, and p.104 or p.86 in two identical Russian trans-
lations from French edition of 1959]. About further develop-
ments see M. Riesz [23,24], F. Bureau [25], R. Courant [26], and
S.G. Samko, A.A. Kilbas, and O.I. Marichev [27].
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metric g*”, where p 4+ ¢ = n, and for an arbitrary topol-
ogy of Feynman graphs.

Algorithmically, the SCR is an efficient realization of
the Bogoliubov—Parasiuk R-operation as some special
analytical extension of the UV-divergent FAs in two pa-
rameters w® and v“ by means of recurrence, compati-
bility, and differential relations fixing a renormalization
arbitrariness of the R-operation in some universal way
based on the mathematical properties of FAs only. The
parameters w® and v“ depend on a space-time dimen-
sion n, a graph-topological invariant |C| determining a
number of independent circuits of a graph G, and two
FAs characteristics Az and d©. The numbers A, and d€
determine the maximal degree of polynomials of the de-
nominator, d® = 2)\;, and the numerator, d™™ = d¢,
respectively in the integrand. As a result, the SCR is
efficiently applicable on equal grounds both to renor-
malizable and nonrenormalizable theories, which is very
important for quantum gravity.

The self-consistency means that all formal relations
between UV-divergent FAs are automatically retained,
as well as between their regular values obtained in the
framework of the SCR. The SCR furnishes new means
for the constructive treatment of new subjects: i) UV-
divergence problems associated with symmetries, Ward
identities, reduction identities, and quantum anomalies;
ii) new relations between finite bare and finite physical
parameters of quantum field theories.

The aim of this article is to expose main ideas and
properties of the SCR (see Sections 2 and 3) and to de-
scribe three mutually complementary algorithms of the
SCR (see Sections 3-5) which are presented in the form
maximally suited for practical applications.

2. The Bases and Possibilities of the SCR

2.1. The SCR is an efficient realization of the
Bogoliubov-Parasiuk R-operation [1-8] which is supple-
mented with recurrence, compatibility, and differential
relations fixing a renormalization arbitrariness of the R-
operation in some universal way based on mathemati-
cal properties of Feynman amplitudes (FAs) only. In its
turn, the Bogoliubov-Parasiuk approach is rested on an
idea that the nature of UV-divergences is purely math-
ematical and, per se, the R-operation is a constructive
form of the Hahn—Banach theorem on extensions of lin-
ear functionals (see, for e.g., [28-30]).

2.2. Elaborating this idea, the author [31-45] has
obtained the high-efficiency realization of this renormal-
ization scheme (renormscheme). In this realization:
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e Properties of special functions of the hypergeometric
type are essentially used.?

e Combinatorics is simplified considerably. Our in-
vestigations confirm the very important assertion by
D.A. Slavnov [52] that the combinatorics of the R-
operation is overcomplicated considerably and can be
simplified essentially.

e Renormalization arbitrariness of the R-operation is
fixed in such a way that the basic functions (R{F)s; =
(R§F)sj(w; M, A) of renormalized FAs obey the same
recurrence relations as the basic functions F,; =
Fsj(w; Me, A) of convergent or dimensionally regularized
FAs:

M Fs_9j1—AFsj1+ (w+j)Fs; =0,
Me (R§F)s—2,5-1 — A(RGF)s,j—1+

+ (w+7) (RgF)s; = 0. (2.1)
The explicit form of Fy; and (R{F)s; are given below
by Egs. (3.30)-(3.31). On the self-consistent version
of the Clifford aspect of the dimensional regularization
which efficiently overcomes the known difficulties con-
nected with n-dimensional generalization of the Dirac
7% matrix, see (39,53, 54].

o Compatibility relations of the first kind:

(R F)sj = Fojy ifvgi=[(v—1s)/2]+j < -1,

(Re T F)ssrj = (B5F)sj, (2.2)

and the compatibility relations of the second kind:

fsfljfl(w; M., A) = fs,jfl(w§ MeaA) =

:fs_](w - 1;M€7A)7

2 The connection of particular FAs with the hypergeometric func-
tions are well known. See, for example, the investigations of
analytic properties of convergent scalar FAs by using of alge-
braic topology methods [46-48], or calculations of some classes
of FAs for needs of phenomenological physics, by using the dif-
ferential equation method [49-51]. But, in our case, this connec-
tion is established for general divergent FAs in any space-time
dimension n and the (p, ¢) pseudo-Euclidean metric, p + g = n.
Apart from, this connection suggests some simple method of fix-
ing a renormalization arbitrariness of the Bogoliubov—Parasiuk
R-operation in some universal way based on the mathematical
properties of FAs only. As a result, we obtain the self-consistent
renormalization with new valuable properties and possibilities.
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(BoF)s—2,j-1(w; M, A) = (Rg.F)sj(w — 1; M, A),

(Rg}-)s,jfl(w; M., A) = (RS_Q}—)sj(w - 1; M, A)v (23)

are satisfied automatically. From the first of Egs. (2.2),
it follows that the formulae for regular values obtained
in the framework of the SCR describe uniformly both di-
vergent and convergent FAs.

e Differential relations for F,; and (R{F)s; with respect
to mass-damping variables p,:= (m? —ie;), l € L,

am |: fsj(W) :| _
O, -+ Opu,,, [(RGF)sj(w)
_ Foj(w —m)

e an | ) .

are the same, and the differential relations for ones with
respect to external momenta k., e € &,

m/2]
Fsj(w)

[
oz -9 | =2m 3" ADT o ()%
e1 em [(R()]:)sj(w)} ;;0 21 m(%)

Foglw —m ) ] (2.5)

X&%*m%ﬂqw—m+m

are almost the same.
AT om () =
geneous polynomials of degree m — 2 in A% =
A% (k) == Y e Acie(@)kZt and of degree s in
(%%) = Ace, (@)g7i%, where Ao () are matrix ele-
ments of the quadratic Kirchhoff form in external mo-
menta ke, e € £ The polynomials A7 % (s¢|a, k)
have an algebraic structure of quantities generated by
the Wick formula, which represents a T-product of m bo-
son fields in terms of some set of N-products of m — 2s¢
boson fields with s primitive contractions. Here, the
quantities A% and (7.7,) play the role of boson fields
and their contractions, respectively.

e It is essential that F,; and (R{F)s; as functions of
two variables M. and A are the homogeneous functions
of the same degree w4+ j. From this, it follows that they
are solutions to the same partial differential equations,
namely to the Fuler equation for the homogeneous func-

tions

Here, 85;’ = a/a(k&)(fﬂ and
AL om (|, k) are special homo-

€m

Fsj(w)

and to some family of second-order equations emerging
from Eq.(2.6), for example,

[M.03 pp. £ (M. £ A)03, 4 £ ADGA—
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]:sj(w) o
<%fmwﬂ‘&

that can be again represented as the Euler equation

—(W+j = 1)(Om. +a)] { (2.7)

[]\46(9ME + A04 — (w +j5— 1)] X

(Onr, £ 0a)Fs;(w)

(On. £04a) (Rgf)sj(w)} =0 (2.8)

So, an important role of the quantities (Onr, £04)Fs;(w)
and (On, £ 04)(R§F)sj(w) is revealed in our problem.
After repeating this procedure ~ + 1 times, one obtains

[McOn, + ADa — (w+j— N —1)] x

N.
(Orr, +04)F " (w = N)

(Onr, £ 9a) (REF)0F (w — N)] =0, (2.9)

where we define fgi (w—N):= (On, £94)N Fsj(w) and
(REF) o (w—N)i= (Oar, £ 04)N (REF)oj(w). If N such
that (w — N +j) < —1 then both (9, + 8,4).7-"315i (w—
N) = 0 and (y, + 0a)(REF)SF(w — N) = 0. As a
result, Eq. (2.9) with the plus sign is degenerated into

the identical zero, and the equation with the minus sign
is reduced to the Fuler—Poisson—Darboux equation

(w+j—N—1)/2(8 8)]

32
[aMeaA M,— A OM, 0A

FN:(w = N)

sJ

(REF N)] =0. (2.10)

The consistency of solutions to Egs. (2.9)—(2.10) for dif-
ferent preassigned asymptotics of (R§F)s; at the vicinity
of A =0 leads to the relations

O, Fsj(w) = =Fsj(w—1),
a14-7::9]‘(0‘)) = -st(w - 1)a
Om. (R F)sj(w) = —(RgF)sj(w — 1),

0a(RGF)sj(w) = (Rg™*F)sjw — 1) (2.11)

which are also followed from the explicit form of the

basic functions F,; and (R§F)s;, see Egs. (3.30)—(3.31)
below.

489



V.I. KUCHERYAVY

2.3. Relations (2.1)—(2.11) manifest the mutual con-
sistency of asymptotic properties of different terms of
FAs with respect to external momenta and masses. It is
precisely these recurrence, compatibility, and differential
relations that are of great importance for investigating
the problems of symmetries and anomalies and for turn-
ing the developed renormscheme into a self-consistent
one.

In addition, there exist some obvious identities of the
generic nature which are called as the reduction iden-
tities (RIs) [40, 41|, which leads in another way to the
recurrence relations (2.1). The simple idea of cancelling
the equal factors in factorized polynomials in a numera-
tor and a denominator of integrands is used in RIs. The
RIs also are of great importance for applications as an
origin of new nontrivial identities. Some of them have
been used essentially in our investigations [39-41, 43—
45, 55-58].

2.4. Equations (2.1)—(2.11) and the explicit form of
the basic functions F;, (R{F)s; (see Egs. (3.30)—(3.33)
and (3.36)—(3.40)) imply the following important prop-
erties of the SCR:

Algorithmic universality. The SCR is a special an-
alytic continuation of any FA firstly given by an UV-
divergent integral. In so doing, the divergence indices v
of FAs may be as large as one needs. Hereafter, this con-
tinuation will be named as the regular (i.e., finite) value
of a FA. As a result, the regular values of FAs respect
certain recurrence, compatibility, and differential prop-
erties of an universal character and have already been re-
alized efficiently as convergent integrals. Therefore, the
calculations of FAs corresponding to renormalizable and
nonrenormalizable theories do not differ from each other
in the framework of this renormscheme. Actually, the
problem is reduced to calculations of the characteristic
numbers, w, Vs;, and Ag; determining the basic functions
(Rgf)s]"

Separation of problems. The SCR clearly and effi-
ciently separate the problem of evaluating the regular
values of UV-divergent quantities of quantum field theo-
ries from that of the relations between bare and physical
parameters of these theories, i.e., the SCR realizes, in
practice, this very important potential possibility of the
Bogoliubov—Parasiuk R-operation.

Conservation of relations. Any formal relation be-
tween UV-divergent quantities will be retained also be-
tween regular values of those if the regular values of all
quantities involved in this relation are calculated by the
same renormalization index v (the maximum one since,
otherwise, we cannot guarantee the finiteness of all terms
in the relation). So, the SCR is automatically consistent
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with the correspondence principle. As a result, the reg-
ular values obtained in the framework of the SCR do
satisfy the vector and axial-vector canonical Ward iden-
tities (CWIs) simultaneously.
Extraction of anomalies (quantum corrections).
In the SCR, owing to the analytic continuation tech-
nique, quantum anomalies (i.e., quantum corrections
(QCs) more exactly) are automatically accounted for in
quantities satisfying the CWIs. More specifically, the
quantum anomalies (i.e., QCs) reveal themselves either
as the oversubtraction effect for a non-chiral case and for
the chiral limit case (in these cases, the Schwinger terms
contributions (STCs) of current commutators are zero)
or as the nonzero STCs for the chiral case. If necessary,
the explicit form of quantum anomalies (i.e., QCs) can
be easily extracted as a difference between two regular
values of the same UV-divergent quantity calculated for
proper and improper divergence indices.

2.5. Algorithmically, the SCR is a union of three effi-
cient algorithms of finding;:
i) the convergent a-parametric integral representations
of renormalized FAs with a compact domain of integra-
tion of the simplex type and with the self-consistent basic
functions (R§F)s;, s =0,...,d%, j=0,...,[s/2];
ii) the homogeneous k-polynomials Pg(m, a k), j =
0,1,...,[s/2], of degree (s — 2j) in external momenta
ke, e € &€, being as a-parametric images of homogeneous
p-polynomials PE(m,p), s = 0,...,d%, of degree s in
internal momenta p;, [ € L;
iii) the a-parametric functions A(a), A(a, k), Yi(a, k),
X”/(Oé), l,l/ eL.

3. Parametric Integral Representations and
Basic Functions of FAs in the SCR

3.1. From the mathematical point of view, any Feynman
amplitude associated with an oriented graph G,

G:i=(V,LUE |ey=0,%1, v; €V, l€ LUE),

in which V is a set of vertices; £ is a set of internal lines;
£ is a set of external lines; and e;; is an incidence matrix
(i.e., a vertex-line incidence matrix) such that e; = 0 if
the line [ € £ U & is nonincident to the vertex v; € V;
e;; = 1 if the line [ € L U E is outgoing from the vertex
v; € V; e = —1 if the line [ € L U E is incoming to the
vertex v; € V, can be always represented by the integral

P (m, p)

G — CG n L sG
190m, k)= 4 (@) 5 (0. b) G -
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(d"p)* =d"py---d"pizj, d"pr:=T10_,dpf,

lel, m:=(m,...,my),

,p|£|), k:= (klv'”vkw\)'

Here, P%(m,p) and Q%(m,p) are polynomials in the
numerator and the denominator,

PG(map) = Hv,;GV Pi(mvp)HZE,c Pi(m,p) =

p:= (p1,...

=>4, P (m, p), (3.2)
Q% (m,p)e:= e (e — D)™,

Wle = ml2 —ie, mp >0, >0, \y e Ny, VieLl,

5%(p, k) is a product of vertex §-functions

5% (p,k):= Huiev di(p, k),

6ip,k):=0(3 ], eam+ ) _ eicke); (3:3)

|A| is a number of elements of some finite set A; N is
the set of positive integers; P (m, p), s =0,...,d%, are
s-degree homogeneous polynomials in internal momenta
pi, I € L; P;(m,p), and P;(m,p) are multiplicative gen-
erating polynomials of the numerator P (m, p) that cor-
respond to the vertex v;-contribution V;(m,p, k) and to
the internal line I-contribution A;(m, p)., respectively:

V;(m7p7 k) = Pi(map)(sz(pa k)7

degpP;(m,p) =:d; >0, Yu; €V,

Py (m,p)
A(m,plei= ————5~, 3.4
(m,p) (e — )™ (3.4)
degpyPi(m,p) =:d; >0, Vle L.
The non-degenerate metric form
diagg"”:=(1,...,1,-1,...,—-1), (3.5)
—_—— ———
P q

p+qg=n=2r,+0,, 6,=0,1, r, € {0UN,},
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is used for each n-dimensional p;-integration in Eq. (3.1).
3.2. Two characteristics

V&= 2w% +d°, w:= (n/2)[C] — Az,

‘C| =|£|—|V|+17 A= Zleﬁ/\h

d%:= dy +dg = Zviev di + Zleﬁ dy,

of integral (3.1) are especially important. Here, |C| is the
number of independent circuits of the graph G. There
exist analogous characteristics for all one-particle irre-
ducible (1PI) subgraphs G € G. If v% > 0 or v% > 0
for some 1PI G C G, the integral is UV-divergent and a
renormalization is needed [28, 30].

While Egs. (3.1)—(3.3) are identical to the well-known
representation in terms of vertex-line contributions,

(3.6)

G
5G(p7k)m =TI vitm,p, &) TT Ai(m, p)e,
Ple iy leL

they are more suited for practical calculations. The uni-
versal decomposition of P%(m,p) in terms of s-degree
homogeneous p-polynomials P& (m, p) is very useful.

3.3. We use of the Fock—Schwinger exponential a-
representation (see, for example, [59-61]) along with the
Hepp regularization [30] that introduces parameters r; >
0 in the vicinity of oy = 0, VI € L,

< A—1:2
1 — lim / doy ; P efiozl(,uzef]nf)7
(e = pP)M =0 I'(\)

T

Pl = (—i0/0qi-)e' P )|, _,, (3.7)

P @) =pirqicg™, 0<r <oy <00, VlieLl.

Then the ratio of polynomials P%(m,p)/Q%(m,p). in
Egs. (3.1)—(3.2) can be represented in the form

G
72; ((m’p)) = lim dv (@) iMe x
Pl Tier

RIEN(r)

dG
xS P (m, —i0/dqc) et Me T IWEE
s=0

q1=0
viel

Wi = (pf - acepe) + (PF - dc) =
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=Y i+ Y (), locclw = o dw.

lel leL

In Eq. (3.8), pc and g are (]£] x n)-dimensional actual
and auxiliary internal momenta column-vectors associ-
ated with the set of internal lines, £, of a graph G; T is
the transpose sign, so pz; is the row-vector; a,, is the
|£|-dimensional diagonal matrix of a-parameters; and
Az is defined in Eq.(3.6). Here, the integration mea-
sure dv®(a), the integration region lel(r ), and the a-
parametric function M, = M (m, a)) which is the linear
form in the square of internal masses with ie-damping
are defined as

dalof‘"1>

dvC () := —L ),

() H( r'(\)

RIE(r) = a0 <m < oy < 00, VI € L, },

M= Z upie,  pue:= (mj —ie). (3.9)

leL

Now, substituting Eq. (3.8) in Eq. (3.1) and interchang-
ing the order of integration in p; and «y, VI € L, we ob-
tain the very useful representation of the regularized-by-
Hepp integral I¢(m, k). Its integrand is the (|£] x n)-
dimensional pseudo-Euclidean Gaussian-like expression
but in the mutually dependent variables p;, VI € L,

I%(m, k)F:= ¢ dv® (o) x
RIF(r)
dG o0
< Y PO m,~i0/04e) [ (d"p) 5 pe,ke) P x
s=0 0

e~ iMe+iWpg (3.10)

=0
vieL
The set of internal lines, £, can be always decom-
posed (as a rule, in more than one way) into two mu-
tually disjoint subsets, L = M UN and M NN = 0
which determine some skeleton tree, i.e., 1-tree subgraph
GV, MUE), with [M| = |V|—1, and the corresponding
co-tree subgraph G(V, N UE), with |NV| = L] - |V|+1 =
|C| of the graph G. Supports of all §;(p., ks )-functions,
Yv; € V, (see Eq. (3.3)) are defined by Egs. (3.11)
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and are equivalent to the matrix relations given in Egs.
(3.12) and Sec. 5,

Zleﬁ eupr + 2568 eieke = O, V’Ui S V, (311)

ev/jIMPM + eQu/NPN T+ eqvyjyeke = Oy,
eimMPm + eiNDN + ejeke = 0, v; — the basis vertex,

pr = ecnpn +ece(f)ke,

pm = epmnPN + eme()ke. (3.12)
Thus, the (JM| x n)-dimensional integration by means
of &;(pc, ke)-functions, Yv; € V/j (this is equivalent to
make use of Egs. (3.12)), gives rise to the intermediate
a-parametric representation

I%(m, k) = 6% (ke)c® dv® () x
RE(r)
dG’ [e’e}
% 3" PC(m, —i0/0qc) / (dmp)N e x
s=0 oo

) Ry
Xe—zJVL -+ ZW/\/,E

; (3.13)
q=0
vieLr

Wit o= (px - O (@)pn) + 2(f% - o)+
+(k¢ - Eee(jla)ke) + (a7 - ece(j)ke),
fvi=TE(Gle)ke + 2efarac,

6C (ke):= 5(2665 e(v*)eke).

The explicit forms and some properties of the matri-

ces ecn, ece(f), Onn (@), Ege(jla), and Hegp(jla) are
given in Eqgs. (5.1)-(5.4).

The change of the variables pns by means of a nonde-
generate linear transformation such that

px = By (a)pn — Bya(a) Bioar (@) fir,
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Biar(@)Cnar(@) Buar(a) = Ty,
Byn (@) Biea(@) = Ce(a),
det Buar(er) = [det Cnr(a)] 7% = Aer) ™12,

(d"p)N = (d"5)N| det Byar()|™ | det g V]

= (d"p)V/A(@)"?, detg = (—1)", (3.14)
reduces Eqgs. (3.13)—(3.14) to the form
r d’UG (e
19 (m, k)" := 6 (ke)cC / L
RIE(r)
d® o
X pr(m, —i0/9qr) /(dn]; )Nei(ﬁf/-ﬁ/\f) Y
s=0 s
xe Mo WEE) (3.15)
q1=0
vieLl

Wi = (£ - Crhe(@) )+
+(k¢ - Eee(jla)ke) + (af - ece(j)ke) =
= (k¢ - Ase(jlo)ke)+

+qz - Yee(jla)ke) = §(az - Xee(a)qe).
With regard for the formula
/ dteiit2 — pl/2 %in/4

which is followed from [62], Ch.1.5., Egs. (31) and (32),
we find

/ A"y = g/ 2i=a)m/4 /2 r=n2)

— 00

oo
/ (A7 N PR PPN — (n/2gp) N . (3.16)
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So, all the integrations over n-dimensional pseudo-
Euclidean momenta in the (p, ¢)-metric are performed.
Thus, any FA (3.1) leads to the a-parametric represen-
tation in the fully exponential form,

dv®(a)
An/2 X

16 (m, k) = (27)75 (ke )a® /

R (r)

d° .
x 3" PE(m, —i0/dqc) e MW (3.17)
s=0

q1=0
viel

W= (kL - Ace(jla)ke)+
+(qf - Yee(jloke) — 2(ar - Xco(a)qe),

a:= G (x/2P)Nl2r) i N = |Cl,

where the n-dimensional auxiliary momenta, ¢;,l € L,
are still used. The explicit form and important prop-
erties of matrices Age(jla), Yre(jla), and Xop(«) are
given in Egs. (5.5)-(5.13). Some properties of them are
new.

Next, the following two operations must be car-
ried out: i) to differentiate the exponential func-
tion exp{i(qt - Yze(jla)ke) — i/4(¢- - Xco(a)ge)} by
means of the s-homogeneous differential polynomials
PE(m, —i0/0qz) in —id/0qs, | € L, 0 € {1,...,n},
1 < s <d%; i) to put o =0,V € L, Yo € {1,...,n},
and Vs € {0,1,...,d%}. Finally, we obtain the im-
portant a-parametric representation for the general FA
(3.1),

I%(m, k)* == (2m)"6C (ke )bC

RIF(r)

dv® () x

] -
x W Z Z PSG] (m7 (&% k)l’iwi]e*zMs+’LA7

s=0 j=0

(3.18)

A= A(a, k) = (/ﬂg . Agg(j|a)/€g),
B i G (e 2m) ) 2m) 7, [C] = ],
Pg(m,pa, k) = p i PSGj (m,a, k).
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Here, [s/2] means the largest integer < s/2, i.e., the in-
teger part of s/2; the quadratic Kirchhoff form A(q, k)
in external momenta k., ¢ € £, and the Kirchhoff deter-
minant A(a):= det Cparar(a) are defined by the topolog-
ical structure of a graph G and are homogeneous func-
tions of the first and |C|th degrees in «, respectively,
see Sec. 5 for more details. The quantities PSGj (m,a, k)
are homogeneous k-polynomials in external momenta ke,
e € &, of the degree s — 25, j = 0,1,...,[s/2]. They
are a-parametric images of homogeneous polynomials
P& (m, p). Each monomial of PSGj (m, a, k) is a product of
s — 2j linear Kirchhoff forms Yj(a, k) := > ¢ Yie(a)ke
and j line-correlator functions Xy (), I,I' € L, of a
graph G. The parametric functions Y (o, k) and Xjp (o)
are homogeneous functions of the Oth and (-1)st degree
in «, respectively (see Sections 4 and 5 for more details).
By introducing the new variables,

o =paj, YleL/j, aj=p(l- Zlec/ja;),

Zaf =1, Hdal = pl1=1dp H daoy,

leL leL 1eL/j

Rl(r) = RL(r) x D=1 7 > 0, (3.19)
and assuming that r; = r > 0, VI € L, we can perform
the integration over the variable p, 0 < r < p < oo by

using [63], see Ch.6.3., eq.(3) or Ch.6.5., Eq. (29),

dp“ ()
G T._ nsG G ld
16 (m, k)" = (27)"6C (ke )b / bt x
»iLj—-1
d® [s/2]
XZZP‘S(m o, k)F i (w; Ve),
s=0 j=0

oo

Frw; Ve)i=i—w™d /dpp_“_j_le_ipvf =

s]

T

= VD (—w — jiirVe), Vo= M — A, (3.20)

wi= (n/2)|C] = Az, bF = (x"/2P)ICl(2m) ™

Here, p involved in b€ is the number of positive squares
in the space-time metric g*¥. The integration measure
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dp® (@) and the integration domain X!41=1 of the simplex
type are defined as

dog o't
dpl () = 6(1 - Zal) H (é(x\ll))’

lel lel

S = Loyl ay > 0, VI € L, Zal =1}. (3.21)

leL

In Eq.(3.20), T'(a;z) is one of the two incom-
plete gamma-functions appearing in the decomposition,
') =T(as z) +y(a; ), see [64], Ch.9.1., Egs. (1)—(2),
such that, at Rea > 0, I'(;0) = T'(a), v(e;0) = 0,
where I'(«) is an ordinary gamma-function.

It is worth noting that we actually have the regular-
ization which combines three ones: i) the Hepp regular-
ization [30], (due to a change in the region of integration
over the auxiliary variable p); ii) the analytic regulariza-
tion [80], (due to the complexification of the parameter
Az, the half-degree of the denominator polynomial); iii)
the dimensional regularization [39,53,54] and other suit-
able references in them, (due to the complexification of
the parameter n, the space-time dimension). Recall that
Az and n are constituents of w.

For convergent FAs, the quantities w+j < 0, Vj €
{0,1,...,[d%/2}, and there exists the limit r — 0. After
passing to the limit r — 0 in Eq. (3.20), we obtain

dp(a)
An/2

I%(m, k)e:= (2m)"6% (ke )b® /

SI£]-1

[s/2]
XZZP (m, a, k) Fgj(w; M, A),

s=0 j=0

Foj(w; M, A)i= i7" j/dpp‘“ =lemip (Mc=A) -

=M1 - Z)PT (~w — j) (3.22)

Zk
w—j+k)—+

o Z.:= A/M..

_ MEerj i 1“(
k=0

It is easy to verify that the basic functions F;(w; M, A)
satisfy Egs. (2.1), (2.3), (2.6)—(2.8), and (2.11).

In the case of divergent FAs, for which w+j > 0 at
least for one j € {0,1,...,[d%/2}, the limit 7 — 0 does
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not exist. In this case, expressions (3.18)—(3.21) strictly
defined in the region lel(r) = R (r) x SI£1=1 must be
made meaningful in a wider region R‘f‘ = R} x DI
where RY := RL (r)|,—o.

The Bogoliubov—Parasiuk subtraction procedure used
for this purpose replaces 1¢(m, k)" by

(Ro D) (m, k)e = (2m)" 8 (ke )b x

) / dv® () (RGT)% (m, o, k), (3.23)
RIF!

(RYT) (m, a, k)=

G 1 0% 4
=7 (m,Oé,k)e Zﬁ——ﬂl (m7a77—]g)6 —

7=0

1 ; 3 al/Jrl o

- E/dT(l’T) gl (m a, k), (3.24)
0

where the subtraction operations under the integral
sign are performed by using the Schlomilch integro-
differential formula (see the 2nd line of Eq. (3.24)) for
the remainder term of Maclaurin’s series. First, this
formula was applied explicitly to FAs in the Parasiuk
paper [8]. Although this expression guarantees a com-
pact representation of the subtraction procedure, it is,
nevertheless, inconvenient for computational purposes,
because it involves the additional integration and differ-
entiations in the integrand. The expression in the 1st
line of Eq. (3.24) is all the more inconvenient for these
purposes, since every term on the right-hand side of it
may be associated with a divergent integral.

At the same time, the algorithm proposed and applied
in [31-39] is based on the observation (see [64], Ch.9.2.,
Egs. (16,17,18)) that,

R L - (s )

€ — 7, =e€ 7(1+Vsj;x)a 7(a7x) = F(oz) 5
k=0

L g ['(o;)

(3.25)
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Now, if we use: the explicit form of the integrand in
Eq. (3.18); the homogeneous properties for parametric
functions in k., e € &, see Egs. (5.8); the 1st line of Eq.
(3.24); the 1st line of Eq. (3.25); and the relation

- s—2j it S (ZA)k
Z@laTﬂ{T Hem A =D T

k=0

vsji=[(v —5)/2] + ], (3.26)

we arrive at the multiplicative realization of the sub-
traction procedure in the integrand of Eq. (3.23) for the
regular value of the general FA (3.1),

v 1

(ROI)G(ma «, k)e = W X
d° [s/2] A

<33 PG m, k)i e Ve (1t vg5id). (3.27)
5=0 j=0

(3.23) with integrand (3.27) at
v > v~ is now well-defined in the domain R‘f‘. The
substitution of (3.27) into integral (3.23) and the change
of integration variables according to Eq. (3.19) give rise
to the expression

The integral in Eq.
G

G
(RED)C (m, k) = (2m)"6 (k) b9 / dto)
An/2
»ILl-1
[s/2]
XZ ZP m, o, k‘ Rof)sj(w;MmA)’
s=0 j=0
(Rgf)sj(w;MeaA)::
- f“”j/dpp Wil T MDY (1 4 vy5ip A) =
0
FO‘S]’)

= M&PH 8 7 I (1 Agjs 2 + Vg Ze
€ F(2+ng) € 2 1( ) B +VJ7 )7

Veji=[(v—9)/2] +j, Asji=—w—j+1+vs. (3.28)

The integration over p in (3.28) is performed with the
use of the formula (see [65], Ch.17.3., Eq. (15))

oo

/dx e (v ax) =

0
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a'T(p+v) , ,
e T A SRR

a+v)’

Re(a+v) >0, Rev >0, Re(u+vr)>0.

3.4. So, using the properties of special functions sub-
stantially, the author has obtained [31, 32, 34, 36, 37, 39—
41, 44, 45| high-efficiency formulas which realize an an-
alytical continuation (in the variables w® and v%) of
the FAs which are represented first in Egs. (3.1)—(3.3)
by UV-divergent integrals and are given finally in Egs.
(3.28)—(3.30) as convergent ones. As a result, we have
the following a-parametric integral representation:

[ 16(m, k).
(RGD)E (m, k)

dp ()

An/2 X

} = (2m)"6% (k) b¢

sle|-1

d® [s/2]
Fsj(w; M, A)
G 7 ) 5
X2 2 Pilmsask) [(Rm (i M., AJ ’

s=0 j=0

(3.29)

for the convergent or dimensionally regularized value
I%(m, k). and for the regular value (R41)(m, k). of in-
tegral (3.1). The subscripts 0 and superscript v on R
indicate that (R§I)%(m, k). is the regular function in a
vicinity of zero values of the external momenta k., e € £,
and is evaluated for an renormalization index v = v9.

The explicit forms of the basic functions F; (w; M., A)
and (R§F)s;j(w; M., A) are as follows:

Foj(w; M, A)i= M#H (1 - Z )T (~w—j) =
& ) i

= MYt ZF(—w —j+k) k—e!, Z.:= A/M,,

k=0

(RGF)sj(w; Me, A):= M T(Aj) [T (2 + vg) x

XZ61+VSj2F1(1,)\Sj; 2+ Vsj; ZE) =

w+j — . Zéc
=M N T(-w—j+k) = (3.30)
k=14vs;

veji= (v —9)/2| +j = [w]+J + 0,

/\st:7W7j+1+Vsj :175n5\c|/2+0—57
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[w} = 7"11|C| + 5nT|C\ - )‘ﬂv w = [w] + 5n5|C|/27

05:= [(6ndjc| +d —s)/2],

IC| = 27| + Ojc),

The quantities [(v — s)/2], [(v + 1 — $)/2], and [w] in
Egs. (3.28)—(3.31) are the integer parts of (v — s)/2,
(v +1—s)/2, and w, respectively. The subscripts
(s,j) on Fs; and (R§F)s; just mean that these func-
tions are attached to the homogeneous k-polynomials
PSGj(a,m, k) of the degree s —2j, j =0,...,[s/2], in the
external momenta k., e € £. The latter are a-images
of the homogeneous p-polynomials P& (m,p) of the de-
gree s appearing in PY(m,p), see Egs. (3.2). The k-
polynomials Pg(a,m,kj) are constructed by means of
the a-parametric functions Y;(o, k) and Xy (), I’ €
L. The efficient and universal algorithm of building
Pg(a,m,k) is presented in Sec. 4. The a-parametric
functions M, = M(m, a). and A = A(«, k), incoming in
Egs. (3.30) are defined in Egs. (3.9) and (3.18), respec-
tively. The quantity M (m, @), is the linear form in the
square of internal masses with ie-damping. The func-
tions A(a, k) and Yj(a, k) are known as the quadratic
and linear Kirchhoff forms in the external momenta, k.,
e € €. The function A = A(«) is the Kirchhoff determi-
nant, and the X;;(«) are the line-correlator functions.
The high-efficiency and universal algorithm of finding
the a-parametric functions A(o, k), Yi(a, k), Xy (a),
and A(«) is given in Sec. 5.

3.5. The investigation of a complicated tangle of prob-
lems associated, on the one hand, with renormalization
methods and, on the other hand, with conserved and
broken symmetries, the Ward identities behavior, the
Schwinger terms contributions, and quantum anomalies
requires finding the renormalized FAs for different di-
vergence indices. For example, the amplitudes involved
in the Ward identities have divergence indices v and
v9 4+ 1.

The regular values (Ry™1)% (m, k). calculated for the
renormalization index v“ + 1 once again have form of
Eq. (3.29), but with another basic functions (R 'F)s;:

(Rg™F)sji= MEFIT(A) /T (2 + vgy) x

vl
X Z TR (1AL 2 4 )

i3 Ze)s (3.31)
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vy= v +1-29)/2]+j=[w] + 05+,

A=

sj =

—w—j+1+vy =140l 0xdc/2

0; = [(6715\6\ +d+1-19)/2].

In general, (R{T'F)s; # (RYF)sj, as far as v # Ve
The difference between them is the important quantity

(AYTIF) = (RYTF)yy — (REF)yy =

__ gy _TQAy)

’ Merj Z 14vs;
* L2+wvs) ¢ ©

(3.32)

®(V+1’U) = H+

sj (l/slj)egy+17y)7

1 1 1
9§U+ 7V):: Vsj —Vsj =05 =05 :| 611 _55 |7

v=2r,+0,, s=2rs+d;, v,s€{0UN,},

where H, (x) is the Heaviside step function such that
Hi(z) =0, 2 <0, Hi(x) =1, x > 0, and 0,,d, :=
v(mod 2), s(mod 2) = 0, 1. It is this quantity that allows
one to obtain some efficient formulas for calculating the
quantum corrections (QCs) (i.e., quantum anomalies) to
the canonical Ward identities (CWIs) of the most gen-
eral kind, for example, to those involving canonically
non-conserved vector and (or) axial-vector currents for
nondegenerate fermion systems (i.e., for systems with
different fermion masses). Another very useful quantity
that is produced by differences

(A2 F)sj 1= (G F)sj = (R§F)sj =
=(RGF)s—2, — (RY > F)snj=(REF)s—2j — (REF)sj =

F(Asj)

=~ He+vilre oS
sj

Mt Z v (3.33)

is closely related to (A ™)F),;.

3.6. The expressions given by Eqs. (3.28)—(3.30) have
two very important properties.

First, they describe both divergent and convergent
FAs in the unified manner. Really, due to the prop-
erties [62] Ch. 2.8, egs.(4,19), i.e., oF (o, B;; 2) = (1 —
2)~% and
. 27%{1111,2,...2F1(a’b’ ¢; 2)/T(e) =
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()
_ Ot i b 15 2), (3.34)

(- 1)

inthecasea=1,b=Asj =—w—j+1-1l,c=2-1,it
follows from Egs. (3.30) and (3.34) that

(Rgf)sj - MeWJrj F(fw 7.7‘)2F1(la —w—751 Ze) =

:]:sj7 if I/Sj:—l7 ZGN+, (335)
i.e., the first relation in Egs. (2.2).

Second, the basic functions (R{F)s; =
(R§F)sj(w; Mc, A)  of the self-consistently renor-

malized FAs obey the same recurrence relations as the
basic functions Fy; = Fyj(w; M, A) of convergent or
dimensionally regularized FAs. Really, let us multiply
the recurrence relation (see [62] Ch. 2.8, Eq. (42))

(c—b—1)2F1(a,b; ¢; 2) + baFi(a, b+ 15 ¢; 2)—

—(c—1)2F1(a,b; c—1; 2) =0, (3.36)

between the contiguous Gauss hypergeometric functions
oF in the case a = 1, b = Agj, ¢ = 2 + vy;, by the
quantity ME“’+jZ€1+V5jF(/\Sj)/F(2 + vgj). By using the
relations Vs—2.j—-1 = Vsj, )\5_273‘_1((4)) = /\Sj(w) -+ 1, and
Vsj—1 = Vsj — 1, Agj_1(w) = Agj(w), we obtain the
recurrence relations

M (R§F)s—2,5-1 — A(RGF)s,j—1+

+(w +j) (RgF)sj = 0, (3.37)

between the basic functions (R§F)s; =
(RGF)sj(w; Mc, A), ie., the second relation in Egs.
(2.1).

3.7. Transformation formulae (see [62] Ch. 2.1.4, Egs.
(22) and (23)) of o F} give rise to the representations

(=1)T(As5) AV ( Z. )X
T(2+ v )M \Ze =1

(RgF)sj =

Ze
X9 (1,w+j+1;2+ysj;z>, (338)
T(h) |
RV sj — Me - A w+‘7 75] Zl+ysj
( 0‘7:)] ( ) F(2+Vsj) € X
X2F1(1+l/sj,w+j+1,2+l/sj, ZE) (339)
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Equation (3.38) and the behavior of 3 F}(a,b; ¢; z) in a
vicinity z — 1_ determine completely the asymptotics
of the basic functions (R{F)s; for A < 0 in a vicinity
M, — 0, i.e., the chiral limit

M0 (—1)'(As; — 1)A¥=

(RyF)sj = )
0 T(1+vg) M1
if vg; > 0and Ag; —1> 05
M —>0 (—1)Aysj
55
if vg; > 0and Agj — 1 =0;
Y M.—0 ) Wi
(RgF)sj = T(—w—j)(=A4)",

if vg; >0and A\g; —1 <0orv, <1,

which is equivalent also to the asymptotic behavior of the
basic functions in the case A — —oco, M, # 0. Equations
(3.30) yield four different series of values for Ag; — 1:

Asj — 1= —5n5‘c‘/2+

+(7”d - 7“3) + [(5n5|C\ + 64 — 55)/2], (3.41)

Asj —1 = (rq—rs —-1/2, 65\C|—1&6 > 04;

( )
(rd—rs)—i-l/? 1) 5\C| =1& dq > 6s;
( )
( ) =

rqa —Ts), 5n5|(1\ =0&dq > ds;

5n5\c| =0& b5 > 5d§ (3.42)

Td —Ts

d=2rq+ 04, s=2rs+46s, On, 6|C\7 04, 05 =0, 1.

It is evident that Eq. (3.39) presents a multiplicative
realization of the subtraction procedure explicitly,

(ROJ:) =Fsj — (SOV}—)SJ‘ =

= fsj(w; vaA) (HEF)SJ(CW Ze),

(—w = J)itw, Z 1 +vei

(Hgf)sj(w§ Z.):= W

XoFi(14+vgj,w+7+1;2+ v Ze),

VSJ k
€

(SyF -_MWZP —j+k)Z

o (3.43)
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4. Homogeneous k-Polynomials ’Pg. (m,a, k) of
a-Parametric Representation of FAs

4.1. It is evident from Eq. (3.29) that the basic
functions (R{F)s; and the homogeneous k-polynomials
Pg-(m,a,k) in external momenta k., e € &, of degree
s—2j,7=0,1,...,[s/2], are two closely coupled im-
portant universal ingredients of the SCR representation
of FAs. The latter are a-images of the homogeneous p-
polynomials P& (m, p) in the internal momenta p;, | € L,
of degree s, s = 0,1,...,d%, appearing in the numerator
polynomial P (m, p) (see Egs. (3.1)-(3.2)).

Each monomial of PSGj (m,a, k) is a product of s — 2j
linear Kirchhoff forms Y;(a, k) := Y ¢ Vie(a)ke and j
line-correlator functions Xy («), I,I' € L, of a graph G.
The efficient algorithm of finding these expressions from
the initial homogeneous p-polynomials P& (m,p) in the
internal momenta p;, [ € £, of degree s = 0,1,...,d",
has been elaborated in [31-34]. It resembles Wick rela-
tions between time-ordered and normal products of bo-
son fields in quantum field theory. The main steps of
this algorithm are as follows.

e The polynomials P$)(m, a, k) are determined as

Ps% (m,a, k)= ’PsG(map”;Dl:Yz(a,k)a

j=0,s=0,1,...,d%, (4.1)
i.e., by the straightforward substitution p; — Y(«, k),
Vi € L, in the polynomials P& (m, p).

e The polynomials PSGj (m,a, k), j=1,...,[s/2], have
the algebraic structure of quantities generated by the
Wick formula which represents a T-product of s boson
fields in terms of some set of N-products of s — 2j bo-
son fields with j primitive contractions. In this case,
the linear Kirchhoff forms Y, («, k) and their primitive
correlators

Y7t Y= (—1/2) Xiy, (a)g7t 7 =
————

= (=1/2)(%%)- (4.2)
play a role of boson fields and contractions, respectively.

4.2. As a result, we come to the following general
formulae. As far as the homogeneous p-polynomials
PY(m, p) can be always represented as

( ) (i) (4)
E (Z) 2" . T
(m) pl(” pl(z) plgi) )
(i)e@

PE(m,p) =
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1Del, a=1,...,s, (4.3)
where the coefficients a’ )( ) are functions of the masses
my, | € L, it is sufficient to find the image of some general
monomial entering into the sum over (i) € G in Eq.
(4.3). The calculation according to the above-mentioned
Wick-type rule yields

NOEWO Lo A RO
plm pl(n I 1O E Potor.. oy k),
s " (1 s )v]
j=0
()
g,
(lﬁ”---lé“);j( k)
4 Do)
_ - } : o 1> Ta(s)
= (_2) ! P RO (o, k),
(Uatny Li)id

de(15—2327)

s—27

JO! ()
a1 Ta(s) ._ d(a)
P(lu o) )_,(a,k).— H Y() (cr, k)%

ay Lags) I Laca)

oM S0 )
T g @a7orio),
d(b)"d(c)

where the summation in the second equation in (4.4)

(4.4)

is extended over all partitions d of (l;i), léi), c lgi)) ac-
cording to the Young scheme (1572727). Then the image
of homogeneous p-polynomials P& (m,p) given by Eq.
(4.3) is

[s/2]
Z ch(m a, k),

J=0

PE(m,p) —

; PROONC))
Pst(maa7k) = Z agZ) <m>73(l§7) l§>);j(a7k). (45>

(1)eG

In so doing, we arrive at special j-degree homogeneous
polynomials in the variables (7!7?) involved in primitive
correlators (see Eq. (4.2)). Polynomials of this type was
introduced and named as hafnians by Caianiello [66, 67|
in the course of his QED investigations. Hafnians are
the counterparts of phaffians and closely connected with
permanents. The simplest nontrivial hafnian (7'727°9%)
of degree 2 is given below in two last lines of Eq. (4.6).

4.3 In view of the very important applied signifi-
cance of the algorithm of constructing a family of ho-
mogeneous k-polynomials PSGj(m7a7k:) from the initial

p-polynomials P& (m, p), we give some examples:

1—-35=0:1;
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=3

pl —J=0:Y" =]

o2 . VO1yO2 _. [0102
pl1pl2 HJ*O'}/h 1/lz 7'[l1l2]’

Jj=1: ( %){Xlllz N = ((;11722)}7

01,,02,03 N . 01V 02Y/03 _. [010203
pllpl2plg HJ_O'}/ll }/lg }/lg _'[lll2l3]7

J= 1 R EDIR+ (DT

ph p12 p13 p?f —Jj=0: YETIYZZZYE?’Y}T = [ Lan]

lilo I3y I

5= CDL IR (RI BT

1112 l3la laly l1ly lal3

HEL T EIDL TGO T

12 lg 12 l4 l3 l4
5= 25 (CRPUEEE + (RDNE+

_. (_%)2(01020304)

(TR} = lls Ly 1g)" (4.6)

5. Parametric Functions of FAs

5.1. We now formulate an algorithm of finding the para-
metric functions

Ala), Ala,k), Yi(ok), Xy(a), LI €L,

of Feynman amplitudes. Of course, it is to be men-
tioned that we can use, in principle, any one of
the available approaches. Contributions to this sub-
ject have been made by many authors. We give a
very incomplete list of quotes here, namely, the pa-
pers by Chisholm [68], Nambu [69], Symanzik [70],
Nakanishi [71], Schimamoto [72], Bjorken and Wu [73],
Peres [74], Lam and Lebrun [75], Stepanov [76], Liu
and Chow [77], Cvitanovic and Kinoshita [78], and
the books by Todorov [79], Speer [80], Nakanishi [81],
Zav’yalov [82], Smirnov [83], in which many other refer-
ences can be found. Nevertheless, our algorithm seems
to be very simple, but universal enough. It is named by
the author (32,84, 85| as circuit-path algorithm.

5.2. Suppose we have a connected graph G(V, LU &)
with sets of vertices, V), internal lines, £, and external
lines, £, and with a certain relation of incidence be-
tween V and A = L U & described by an oriented in-
cidence matrix e; = [eyala = 0, £1, v; € V, [ € A.
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In particular, e;; = 0, if line [ is nonincident to the
vertex v;; e; = 1, if line [ is outgoing from the ver-
tex v;; and e;; = —1, if line [ is incoming to the ver-
tex v;. The fact that the set of all lines A is separated
from the very beginning into two mutually disjoint sub-
sets £ and £ (their incident properties are different) is
very important both from the algorithmic point of view
and from potential possibilities. In so doing, we need
not to replace here the set of external lines (incident
to some vertex) by some effective line or to assign the
same orientation to all external lines, as is usually done.
Therefore, we can pose the task of constructing the para-
metric functions of the whole graph via the parametric
functions of its subgraphs. As a result, the circuit-path
approach is naturally arose, and the recursive struc-
ture of the parametric functions of FAs has been ob-
tained [85, 86].

5.3. The set of external lines, £, induces the single-
valued decomposition of the set of all vertices, V, into
the subset of external vertices, V¢*!, and the subset of
internal vertices, V™. The set of internal lines, £, can
be always decompose (as a rule, in more than one way)
into two mutually disjoint subsets, M and N, which
determine some skeleton tree and the corresponding co-
tree subgraphs of the graph G. So, we have the following
decomposition of the set A = EUN UM of all lines of the
graph G into mutually disjoint subsets, £, A/, and M.
Then the circuit-path algorithm requires the following
steps:

e Let us choose a subset N' C L such that the subgraph
GWV,MUE), where M:= L/N, is a skeleton-tree-type
graph and the subgraph G(V,N U &) is a co-tree-type
graph. It is clear that this choice is ambiguous. It is
shown in [84], however, that the parametric functions
are independent of any choice of NV.

o Let us choose a vertex v; € V which will be referred
as a basis vertex, (or reference vertez, or zero point). It is
clear that this choice is also ambiguous. But it is shown
in [84], that the parametric functions are again indepen-
dent of any given choice of v;. From the viewpoint of
practical calculations, it seems reasonable to choose the
basis vertex v; as such a vertex, to which the largest
number of external lines of the graph are incident.

e The choice of N' C £ and the basis vertex v; uniquely
defines the notions of basis circuits C'(n), n € N and
basis paths P(jle), e € €.

The basis circuit C(n) generated by the line n € N
is a union of the line n with the subset M(n) C M
which forms a chain in M between vertices incident to
the line n, i.e. C(n):= {n} U M(n). The orientation in
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the circuit C(n) is defined by the orientation of the line
neN.

The basis path P(jle) generated by the line e € £ and
the basis vertex v; is a union of the line e with the subset
M(jle) € M which forms a chain in M between a vertex
incident to the line e € £ and the basis vertex vj, i.e.
P(jle) := {e} U M(jle). The orientation in the path
P(jle) is defined by the orientation of the line e € £.

e By analogy with the incidence matrix ey which can
be referred, more precisely, as the vertez-line incidence
matrix, one introduces topologically the [line-circuit
ean [77,78,81,84,85], and the line-path eps(j) [84, 85]
incidence matrices, namely:

[ 0, 1¢C(n),
leanlin:= { +1, 1 € C(n);
[ 0, 1¢ P(jle),
leae (J)]ie = { 11 1 P(jle). (5.1)

Here, the plus or minus sign depends on whether the ori-
entation of the line [ € A coincides or not with the orien-
tation of the circuit C'(n) for epnr or the path P(jle) for
eas(j). Asaresult, the column-vector pa of all momenta
p1,1 € A and submatrices of exnr and epg(j), whose rows
are associated with the partition A = £ UN U M, can
be represented as follows [84, 85]:

_ . ext int ext

pa = PR 4P, P = ens(f)ke, PR = eanpn;

eee(j) = lee, ene(jIN) = One,

eme(iIN) = =€ iy metv/ines
een =0en,  ennv = 1w,
EMN = _efé/j}Me{V/j}N' (5.2)

From now on, kg and pas are the column-vectors of the
external momenta k.,e € £, and the independent in-
tegration momenta p,,n € N, respectively; 045 is the
|A| x | B|-rectangular matrix of zeros, and 144 is the |A|-
dimensional unit matrix. The matrices ey, 1e, e(v/j1n,
and egy /3 are submatrices of eyy. Their rows are de-
fined by the set (V/v;) C V, and their columns are de-
fined by the subsets £, N/, M, respectively. The (|]V|—1)-
dimensional square matrix ey ;3 r¢ is nonsingular, and
detleqy/jym] = £1. In submatrices of the second and
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third lines of Eqs. (5.2), the subset N is pointed out ex-
plicitly, because of enrg(j|N) # Onve, and eare(GIN) #
eme(GIN) UN £ N, L=NUM = N'" UM, but
eee(JIN) = ece (JIN') = lee.

e There exist the following very important “orthogo-
nality” relations [84, 85, 87]:

eyaean = eycecn = Oy,
CQV/IINCAN = eqv/yceen = 0y 5N
levaeae(d)]ie = dije(V*)eles

eqv/iinens () = 0pv/iies (5.3)

where e(V*)¢ is the vertex-line incidence matrix of the
“star’-type graph G* :=< V* & > with the one vertex
V* and the set of external lines £ of the graph G. The
graph G*:=< V* &€ > is a result of the shrinking of all
vertices v; € V, and all internal lines [ € L, of the graph
G to the single “black-hole” vertex V*.

e By assigning the parameter a; > 0 to every internal
line I € L, we define the circuit Carar(@), path Ece(jla),
and path-circuit Tlgpr(jla) matrices [84, 85], according
to:

[CaN (@] = [eEyaccecnlmm = Y au,
leC(n)NC(n’)

[Bee(jla)eer = [efe(Daccece (e =+ Y
leP(jle)nP(jle’)

Menr(fla)len:= [Fe(Daccecnlen == > au.
leP(jle)nC(n)

(5.4)

Here, the plus or minus sign depends on the mutual ori-
entations of the sets, over which the summation is per-
formed, on their intersection. The plus sign corresponds
to the case of coinciding orientations. It is clear that
the explicit form of these matrices in any given case
can be easily obtained by inspecting the graph. From
now on, a o is the diagonal |£|-dimensional matrix, i.e.,
locclur = ag opr.

e The parametric functions are derived by means of
the use of the following matrices [84, 86]:

Age(jlo) := Eee(jla) — Ten (o) Oy () ILE pr (lev),
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Yee(jla) = ece(f) — ecnCni ()i (jle),
Xee(@):=ecnCipr(a)ety,

A(a):= det Cyn (). (5.5)

So, the quadratic A(a, k) and linear Yi(o, k), | € L,
Kirchhoff forms in the external momenta k., e € £, and
the line-correlator functions X («), I,1’ € L, are defined
as (84, 86]

Ala, k)= (kg - Aee(jla)ke) =

= Y. veelAee (Gla)eer (ke - ker),

Yi(a, k)= Yig(jla)ke = ¥ocg [Yie (jla)]cke,
Yie(jlor) = e (4) — e O (@) Ex (j]a),

X (o) = enCip(@)efpr- (5.6)

Here, ejn and ejg(j) are the row-vectors of matrices
(5.1)—(5.2) for the line [ € L.

5.4. It should be mentioned that the functions A(a)
and A(a, k) do not depend on the orientation of inter-
nal lines. However, when the orientation of line [ is
changed, the parametric functions Y;(«, k) and X (o)
reverse their signs.

It is also useful to represent the quantities A(a, k) and
Yz (a, k) in a form exhibiting a special role of the matri-
ces Xrr(a) and Xpn () [78, 84]:

A, k) = (pZU(R) T - [ace — aceXec(a)ace | pF(R)),
P (k) = ece(ke, pE(k) = ke, pF'(k) =0n,
Ye(ook) = [1ee — Xeo(@)ace | p7 (k) =

= pZt (k) = Y™ (a, k),

Y (o, k)= Xee(a)aee pF(k),

Xee(a):= egNXNN(a)egN,

Xnn(@):= Cri(a),
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where k¢ is the column-vector of the external momenta
ke, e € £. The following homogeneous properties hold:

Alpa) = pIA(a),  Xur(pa) = p~" Xu(a),

A(pa, Tk) = pr?A(ay k),  Yi(pa, k) = 7Yi(a, k),

G _ —j s—2j pG
Pgi(m, pa, 7k) = p~ I 757 Pr(m, o, k). (5.8)

5.5. Now we exhibit some important properties of
a-parametric functions [45]. Let us introduce the quan-
tities

- U
KZC.—X[;[;C%[;[;, Kﬁﬁo— oreXror,

Lipi=1pp —Kip, i=n, 1. (5.9)

Using Egs. (5.3)-(5.5), we find that the matrices
K% (o) and L% () are projectors with the properties

i i i iori _Ti .
KreKrp=Kpp, LppLlpp=Lpg, 1=l

KiﬁLZbE = 0[;[;7 KZLQKELZL = 055, (5.10)

From Egs. (5.10), we get some relations between prod-
ucts of Xy, app, and Yeg:

(Xecace)"Xee = XecoareXer = Xee,
(L72)" X =0z,

(Xecace)"Yee = XepopeYee = Oce, (5.11)
(L72) " Yze = Yie,

Te[(Kze)"] = Te[Kpe] = Yiep crXula) = IV,

Tr[(Lee)™] = Te[Lee] = IM), i=rl,

and the relations between the quadratic A(a, k) and lin-
ear Y;(a, k), | € L, Kirchhoff forms:

Ala,k) = (Y - apep®) = 05T - apcYr) =

=, ale (k) Vil k) =
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= (Y} caecYe) =Y aYP(a,k).

The following relations are also satisfied:

s (5.12)

eveke + eveYr(a, k) = 0y, egNa[;[;Yg(a, k) = O,
eveXeo(a) = Ovg,

Krrece(j) = —ecnYne(jla) = ecnKppece (),
Krrecn = ecn,

(ViRT . appYy) =

= (YﬁintT QLo p(ZXt) - (Yli:ntT . OzLLYEint) =0. (513)

In our case of a-parametric functions, two relations in
the first line of Egs. (5.13) are analogs of the first and
second Kirchhoff laws in electric networks. Similarly, in
the third line of Egs. (5.12), we find an analog of the
well-known expression for a power dissipated in electric
networks.
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CAMOY3IOJI2KEHA PEHOPMAJII3ATLIISI
SIK EOEKTUBHA PEAJII3AIIISI TOJTOBHUX
LIEI R-OIIEPALI BOT'OJIIOBOBA-TIAPACIOKA

B.I. Kyvepasut

Pezowme

Kuura Ipupoau Hall¥CaHa MOBOIO MaTe€MaTHUKU.

T'anineo Laninet, | Il Saggiatore, 1623].

“...B 3B’s3Ky 3 THIM, 110 B OCTaHHi#l Yac 3Hai1eHO Ti-
CHMI1 3B’SI30K MiK NIPUYUHOBICTIO Ta aHAJITHUYHICTIO,
He BUKJIIOUEHA HMOBIpHICTH m0OOYIOBH BigHiMaIbHOT
omepariili HaBiTb B CaMOMy 3araJlbHOMy BHIAJIKY
METOJaMH aHAJIITUIHOrO MPOJOBXKEHHS.”

O.C. Hapacrox, [[7], c.566, ocmanniti ab3ay, 1956].

Ilio MOKJIMBiCTH peasi3oBaHO SBHO Ta edEKTUBHO 3acCO0aMH Ha-
mol camoysromkenoi penopmasizanii (CYP). Ilix camoysromxke-
HICTIO pO3yMilOTh, 1110 BCi dhopMmasbHi coiBBigHOmIEHH: Mixk YD-
po36izkHUME (DEHHMAHOBUMHU AMILIITYJaMUA TAKOXK aBTOMATHYHO
36epiraioTbcs MiK IXHIMM DPEryIsipHUMU 3HAYUCHHSIMU, 3HANCHU-
mu 3rigao 3 upoueayporo CYP. Camoysromzxena peHopMmasiiza-
[isl 3 OQHAKOBOIO €(PEKTUBHICTIO 3aCTOCOBHA SIK O PEHOPMOBHIX,
Tak i 7m0 HepenopmoBHux Teopiit. CYP mae edekruBHi 3acobu
JUUIsl KOHCTPYKTHBHOIO PO3IVISZly HOBUX 3aJ1ad: a) peHOpMaJli3altii-
HUX IPO6JIeM, IO MOB’S3aHl 3 CHMETPIsIMH, TOTOXKHOCTSMU YOpaa
Ta KBAHTOBHMH aHOMAJIsAMU; 6) HOBUX B3a€MO3B’f3KIB MiK CKiH-
YEeHHUMM 3aPOJKOBUMH Ta CKIHUEHHMMH (Di3UYIHIMU IapaMeTpa-
MH KBaHTOBO-IIOJILOBUX Teopiit. HaBeneno oriysan rosoBHux imeit
Ta Biactusocreit CYP, a Takok 9iTKO OIICaHO TPU B3AEMOIOIIOB-
moBawibHi asropurmu CYP, saki nogano y Buriszni, MakCUMaIbLHO
IIPUCTOCOBAHOMY Il IPAKTUIHUX 32CTOCYyBaHb.
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