СИСТЕМЫ ПЕРЕДАЧИ И ОБРАБОТКИ СИГНАЛОВ

Рис. 2. Радиолокационная обстановка:

а — без подавления помех; *б* — с подавлением помех обычными средствами; *в* — с подавлением помех предложенными методами

периодах приема (периодах повтора радиолокационного сигнала) появится дискретная пассивная помеха малой протяжности пачечной структуры с тем же доплеровским сдвигом частоты Ω_{π} , то она окажется в зоне режекции амплитудно-частотной характеристики многоканального фильтра и также будет подавлена [4].

Продолжительность сигнала от цели значительно меньше продолжительности пассивной помехи или некоторых типов дискретных помех. В силу инерционности коррелятора 10, амплитудно-частотные характеристики гребенчатых фильтров накопления перенастраиваться не будут, и сигнал проходит на выход фильтра.

Таким образом, при воздействии дискретных пассивных помех на радиолокационную станцию на выход многоканального фильтра с когерентным гетеродином проходит сигнал только от передней «кромки» первой по дальности дискреты этих помех, остальные дискреты подавляются [4].

При воздействии на радиолокационную станцию протяженных пассивных помех помехоустойчивость обоих предложенных устройств одинакова.

Практические результаты по реализации предложенных методов повышения помехоустойчивости в селекции цели демонстрируются на рис. 2.

В данной работе предложено два способа управления амплитудно-частотной характеристикой много- го сигнала / В. В. Василевский, В. И. Мещеряков. — 22.04.89.

канального доплеровского фильтра с целью настройки зоны режекции на спектр нестационарных дискретных подвижных пассивных помех.

Первый способ предусматривает введение в состав фильтра схемы формирования напряжения управления, которая, с приходом на вход фильтра пассивной помехи, создает доплеровский сдвиг частоты Ω_л.

Второй способ предусматривает введение в состав схемы формирования напряжения управления когерентного гетеродина, который формирует гармоническое колебание с фазой пассивной помехи.

Применение этих способов повышает помехоустойчивость обоих предложенных устройств и эффективность фильтрации доплеровского сигнала цели при воздействии на радиолокационную станцию протяженных пассивных помех.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Теоретические основы радиолокации / Под ред. Я. Д. Ширмана.— Г.: Сов. радио, 1970.

2. Ширман Я. Д., Манжос В. Н. Теория и техника обработки радиолокационной информации на фоне помех. — Г.: Радио и связь, 1981.

3. А. с. 1321248 СССР. Многоканальный фильтр доплеровского сигнала / Н. И. Бугай, В. В. Василевский. — 1.03.87.

4. А. с. 1503526 СССР. Многоканальный фильтр доплеровско-

НОВЫЕ КНИГИ

КНИГИ HOBBIE

Немцов М. В., Немцова М. Л. Электротехника и электроника. М.: Академия, 2009.— 432 с.

В учебнике рассмотрены основные положения теории электрических цепей, промышленной электроники, электрических измерений. Даны описания устройств и рабочих свойств электрических машин синусоидального и постоянного тока, аппаратов автоматики и управления, полупроводниковых приборов, электронных усилителей, генераторов, выпрямителей и стабилизаторов, а также цифровых устройств и измерительных приборов. Приведены сведения об электроприводе, изложены основы электробезопасности.

Для студентов технических специальностей образовательных учреждений среднего профессионального образования.

ФУНКЦИОНАЛЬНАЯ МИКРО- И НАНОЭЛЕКТРОНИКА

расположены приблизительно в серединах разрешенных зон.

Нарушение периодичности кристалла и КС за счет внутренних и поверхностных дефектов приводит к формированию уровней в запрещенных зонах. Дефект в виде атома внедрения или замещения моделируется неоднородностью δ_1 с параметром η_1 (рис. 8, ∂). Исходя из равенства входных импедансов в противоположных направлениях на границе неоднородности δ_1 , получим

$$\operatorname{tg} ka = \frac{\eta_1 + |Z|}{1 - \eta_1 |Z|}.$$
(29)

Кривые 2 на рис. 10 иллюстрируют зависимость уровней дефекта от отношения параметров дефекта и кристалла $\eta' = \eta_1 / \eta$.

Дефекту в виде вакансии соответствует условие η_1 =0. Кристалл с вакансией представляет собой резонатор с резонансной полостью шириной 2*a* и отражателями, образованными полубесконечными решетками δ -барьеров. Иначе — это потенциальная яма с входным импедансом стенок, равным *Z*. Из (9) или (29) следует, что собственные значения такого резонатора определяются выражением tg*ka*=2 η , что совпадает с формулой, приведенной в [7].

Для таммовских поверхностных уровней (рис. 8, e) из условия баланса фаз или равенства нулю знаменателя коэффициента отражения при $E < V_1$ в запрещенных зонах имеем

tg ka =
$$\frac{2\eta}{1 + |Z_1|^2 - 2\eta |Z_1|}$$
.
Если $m_1 = m$, то

$$tg \, ka = \frac{1}{0, 5V_1 - \sqrt{E(V_1 - E)\eta}}$$

что также совпадает с [7]. Глубокие нижние поверхностные уровни близки к нижним границам запрещенных зон. На рис. 10 показаны два нижних поверхностных уровня. * * *

Модель линии передачи позволяет найти аналитические выражения для резонансных параметров и характеристик различных барьерных структур наноэлектроники. Полученные выражения для ДБС удобно использовать при конструировании наноэлектронных устройств с заданными параметрами. Получение и использование аналитических зависимостей представляет большой интерес, поскольку при этом не только заметно упрощается и сокращается расчет, но и становится возможным проведение более детального анализа влияния различных факторов на резонансные параметры. Предложенная модель наглядно объясняет физику формирования спектральных характеристик КС, дает подсказки в отношении конструирования структур с требуемыми характеристиками. Аппарат теории неоднородных линий передачи позволяет анализировать квантово-механические структуры с более сложной зависимостью потенциала.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Нелин Е. А. Импедансная модель для "барьерных" задач квантовой механики // УФН.— 2007.— Т. 177, № 3.— С. 307—313.

2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Т. 3. Квантовая механика. (Нерелятивистская теория).— М.: Физматлит, 2002.

3. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970.

4. Guo H., Diff K., Neofotistos G. et al. Time-dependent investigation on the resonant tunneling in a double-barrier quantum well // Appl. Phys. Lett.— 1988.— Vol. 53, N 1.— P. 131—133.

5. Basdevant J.-L. Lectures on quantum mechanics.— New York: Springer, 2007.

6. Лифшиц И. М., Пекар С. И. Таммовские связанные состояния электронов на поверхности кристалла и поверхностные колебания атомов решетки // УФН.— 1955.— Т. 56, вып. 4.— С. 531—568.

7. Галицкий В. М., Карнаков Б. М., Коган В. И. Задачи по квантовой механике. Часть 1.— М.: Едиториал УРСС, 2001.

8. Галицкий В. М., Карнаков Б. М., Коган В. И. Задачи по квантовой механике.— М.: Наука, 1981.

9. Голант Е. И., Пашковский А. Б. Двухуровневые волновые функции электронов в двухбарьерных квантово-размерных структурах в электрическом поле конечной амплитуды // ФТП.— 2000.— Т. 34, вып. 3.— С. 334—339.

НОВЫЕ КНИГИ

новые книги

Мазор Е. А., Мачусский Е. А., Правда В. И. Радиотехника. Энциклопедия.— М.: Додэка XXI, 2009.— 944 с.

В энциклопедии помещен материал, терминологический состав которого в основном связан с материалами курсов радиотехнических дисциплин, преподаваемых в вузах. Примерно 2500 статей словаря дают толкование примерно 4000 наиболее часто употребляющихся радиотехнических терминов. Книга может быть использована двояко, как энциклопедия по радиотехнике и как сборник 33 кратких учебников по

Для студентов радиотехнических специальностей вузов, а также для студентов смежных специальностей, аспирантов, радиоинженеров, радиолюбителей.

основным радиотехническим дисциплинам.

ФУНКЦИОНАЛЬНАЯ МИКРО- И НАНОЭЛЕКТРОНИКА

Рис. 7. Диаграммы направленности активного элемента с оптическим покрытием на основе многокомпонентных XC разной формы:

I — в виде вытянутой полусферы; 2 — в форме цилиндрической поверхности с полусферическим верхом; 3 — в виде вытянутой полусферы, помещенной в параболический отражатель

ряда многофункциональных приборов полупроводниковой фотоники.

Испытания, проведенные на вибростенде ВЭДС-400А показали, что полупроводниковые источники излучения, содержащие АЭ с оптическими покрытиями из XC, являются механически стойкими и сохраняют свои параметры после действия на них вибрационных нагрузок в диапазоне частоты от 10 до 500 Гц. ***

Исследования диэлектрических материалов на основе стеклообразных сплавов из многокомпонентных халькогенидных систем Ge(Pb)–Sb(Bi,Ga)–S(Se) показали возможность использования их в качестве материалов для оптического покрытия полупроводниковых активных элементов, работающих при комнатной температуре в спектральном диапазоне 2,5— 5,0 мкм.

Оптические покрытия на основе многокомпонентных XC в форме вытянутой полусферы или цилиндра (с полусферическим верхом) существенно улучшают оптические и эксплуатационные параметры полупроводниковых источников ИК-излучения, обеспечивают механическую защиту, дают эффект просветления АЭ и позволяют управлять диаграммой направленности. Предложенный способ нанесения оптического покрытия разной формы на приборы полупроводниковой фотоники является эффективным и простым в технологическом исполнении.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Кабаций В. Н. Оптические сенсоры газов на основе полупроводниковых источников ИК-излучения // Технология и конструирование в электронной аппаратуре.— 2008.— № 4.— С. 30—35.

Берг А., Дин П. Светодиоды.— М.: Мир.— 1979.

3. Коган Л. М. Полупроводниковые светоизлучающие диоды.— М.: Энергоатомиздат.— 1983.

4. Pat. 1413702 GB. Inorganic glasses / Robert Thomas Bilson, James Cyril Alexander Lewis, Frank William Ainger.— 12.11 1975.

5. Pat. 56027981 JP. Light emitting semiconductor device / Morioka Makoto, Uchida Hisatoshi, Shimada Jiyuichi.— 18.03 1981.

6. Блецкан Д. И. Кристаллические и стеклообразные халькогениды Si, Ge, Sn и сплавы на их основе. Т. I.— Ужгород: Закарпаття, 2004.

7. Пат. 33847 України. Оптичне покриття на основі халькогенідних стекол / Д. І. Блецкан, В. М. Кабацій.— 10.07 2008.

8. Shtets P. P., Fedelesh V. I., Kabatsij V. M. et al. Structure, dielectric and photoelastic properties of glasses in the system Ge-Sb-S // Journal of Optoelectronics and Advanced Materials.— Vol. 3, N 4.— 2001.— P. 937—940.

9. Билинец Ю. Ю., Химинец В. В., Головач Й. Й., Цигика В. И. Защитные покрытия диодных источников излучения в средней ИК-области спектра // Электронная техника. Сер. 6. Материалы.— 1985.— Вып. 9 (208).— С. 70—73.

10. Пат. 33848 України. Спосіб нанесення оптичного покриття на основі багатокомпонентних халькогенідних сплавів / Д. І. Блецкан, В. М. Кабацій.— 10.07 2008.

НОВЫЕ КНИГИ

Чаплыгин Ю. А., Крупкина Т. Ю., Путря М. Г., Шевяков В. И. Технология, конструкции и методы моделирования кремниевых интегральных микросхем. Ч. 2: Элементы и маршруты изготовления кремниевых ИС и методы их математического моделирования.— М.: Бином. Лаборатория знаний, 2009.— 422 с.

Дано представление об основных маршрутах изготовления и конструкциях изделий микроэлектроники на основе кремния. Рассмотрены основные процессы создания интегральных схем: химическая и плазмохимическая обработка материала; введение примесей в кремний; выращивание окисла кремния и его охлаждение; литография; создание металлических соединений и контактов. Приведены методы моделирования процессов распределения примесей в полупроводниковых структурах. Для студентов и аспирантов, специализирующихся в области микроэлектроники и полупроводниковых приборов. Книга может быть использована также специалистами, работающими в данной области.

КНИГИ

HOBBIE

МАТЕРИАЛЫ ЭЛЕКТРОНИКИ

Заключение

Исследования токовых характеристик одно- и двухбазовых структур показали, что физические процессы в них имеют свои особенности, зависящие от свойств каждого из контактов. Характеристики двухбарьерной pAlGaInAs-nGaAs-Au-структуры с омическим контактом к гетерослою и выпрямляющим контактом с тыльной стороны базы несколько отличаются от характеристик однобарьерных диодов. В двухбарьерной *p*-*n*-*m*-структуре в режиме (+)*p*AlGaInAsnGaAs-Au(-) имеет место медленный рост тока, стремящегося к насыщению. Это является следствием протекания тока через запираемый nGaAs-Au-переход, поскольку относительно полярности приложенного напряжения pAlGaInAs-nGaAs-гетеропереход является прямовключенным и в нем нет препятствий для инжектируемых из омического контакта гетерослоя дырок. В результате сопротивление структуры с ростом напряжения уменьшается, при этом толщина слоя объемного заряда гетероперехода также уменьшается, а nGaAs-Au-переход расширяется. Инжекция носителей в базовую область приводит к увеличению ее проводимости за счет изменения времени жизни и подвижности носителей.

Замена в этой структуре омического контакта к гетерослою на запираемый приводит к тому, что протекающий ток уменьшается примерно на два порядка, при этом двухбарьерная *p*-*n*-*m*-структура превращается в двухбазовою трехбарьерную $m_1 - p - n - m_2$ структуру. Что касается сопротивления структуры, то оно с ростом напряжения несколько уменьшается, а затем постепенно возрастает. Соответственно, проводимость базовых областей остается неизменной, а инжекционные процессы исключаются. Физические процессы, протекающие в базовых областях $m_1 - p - p$ $n-m_2$ -структуры, управляются запираемыми m_1-p -и $n-m_2$ -переходами. В $m_1-p-n-m_2$ -структуре с ростом рабочего напряжения слои объемного заряда обоих барьеров «металл—полупроводник» расширяются, в то время как слой объемного заряда гетероперехода изменяется незначительно.

На основании сопоставления токовых характеристик pAlGaInAs-nGaAs-Au- и Au-pAlGaInAs-nGaAs-Ag-структур можно сделать вывод, что в двухбазовой $m_1-p-n-m_2$ -структуре шумы и токи меньше, чем в однобазовой p-n-m-структуре [15]. Такие структуры представляют интерес для волоконно-оптических систем.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

1. Тришенков М. А., Фример А. И. Фотоэлектрические полупроводниковые приборы с *р*-*n*-переходами // Сб. статей: Полупроводниковые приборы и их применение.— М.: Сов. радио, 1971.— Вып. 25.— С. 160—165.

2. Зи С. М. Физика полупроводниковых приборов. Кн. 2.— М.: Мир, 1984.— С. 150—155.

3. Аверин С. В. Определение характеристик контакта металлполупроводник для встречно-штыревых фотодиодных структур // Письма в ЖТФ.— 1990.— Т. 16, вып 4.— С. 49—53.

4. Ёдгорова Д. М., Якубов Э. Н. Детекторы оптического сигнала на основе Аи–*n*Si–Al и Au–*n*Si диодов // Технология и конструирование в электронной аппаратуре.— 2005.— № 4.— С. 39—42.

5. Karimov A. V., Karimova D. A. Three-junction Au/AlGaAs(*n*)/ GaAs(p)/Ag photodiode // Materials Science in Semiconductor Processing.— 2003.— Vol. 6, iss. 1—3.— P. 137—142.

6. Андреев В. М., Долгинов Л. М., Третьяков Д. Н. Жидкостная эпитаксия в технологии полупроводниковых приборов. М.: Сов. радио, 1975.

7. А. с. 762253. Способ получения *p*–*n*-переходов на основе полупроводниковых соединений $A^{3}B^{5}/A$. В. Каримов, М. Мирзабаев. — 16.05 1980.

 Пат. IAP 20060393 РУз. Устройство для жидкостной эпитаксии кольцеобразных слоев на основе соединений А³В⁵ / Д. М. Ёдгорова, А. В. Каримов, Ф. М. Ашрапов и др.— 26.11 2008.

9. Ёдгорова Д. М., Ашрапов Ф. М. Исследование примесного фотоэффекта в микрослойных двухбарьерных *p*−*n*−*m*-структурах // Технология и конструирование в электронной аппаратуре.— 2006.— № 3.— С. 40—47.

 Полевые транзисторы на арсениде галлия / Под ред. Д. В. Ди Лоренцо, Д. Д. Кандеулола.— М.: Радио и связь, 1988.

11. А. С. 167399. Трехбарьерный фотодиод Каримова / А. В. Каримов.— 8.05 1991.

12. Yodgorova D. M., Zoirova L. H., Karimov A. V. The determination of distribution of potential in three-barrier structure // Semiconductor Physics Quantum Electronics Optoelectronics.— 2006.— Vol. 9, N 3.— P. 36—40.

13. Каримов А. В., Ёдгорова Д. М. Одно- и двухбарьерные структуры для оптоэлектроники // Электроника.— 2005.— № 11.— С. 5—13.

14. Зоирова Л. Х. Влияние электрического поля на спектральную чувствительность трехбарьерной структуры // Узбекский Физический журнал.— 2008.— Т. 10, № 4–5.— С. 323—328.

15. Стафеев В. И. Электронные приборы на основе полуизоляторов // Технология и конструирование в электронной аппаратуре.— 2007.— № 5.— С. 3—13.

НОВЫЕ КНИГИ

Гуляева Л. Н. Технология монтажа и регулировка радиоэлектронной аппаратуры и приборов.— М.: Академия, 2009.— 256 с.

В учебном пособии приведены сведения об измерениях и измерительных приборах. Рассмотрены виды монтажа радиоэлектронной аппаратуры, технология монтажа источников питания, усилителей, генераторов, устройств импульсной и вычислительной техники, супергетеродинных радиоприемников и телевизоров, особенности монтажа микросхем на печатные платы. Описаны виды электромеханических устройств, а также изделий радиоэлектронной аппаратуры. Для учащихся учреждений начального профессионального образования.