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Piecewise uniform switched vector quantization  
of the memoryless two-dimensional Laplacian source  
 

A simple and complete asymptotical analysis of an optimal piecewise 
uniform quantization of two-dimensional memoryless Laplacian source with 
the respect to distortion (D) i.e. the mean-square error (MSE) is presented. 
Piecewise uniform quantization consists of L different uniform vector quan-
tizers. Uniform quantizer optimality conditions and all main equations for 
optimal number of output points and levels for each partition are presented 
(using rectangular cells). The optimal granular distortion opt

gD (i) for each 
partition in a closed form is derived. Switched quantization is used in order 
to give higher quality by increasing signal-to-quantization noise ratio 
(SQNR) in a wide range of signal volumes (variances) or to decrease neces-
sary sample rate.  

Key words: piecewise uniform quantization, switched quantization, distor-
tion 
 

 
Introduction 

The use of digital representation for audio, speech, images and video is rapidly 
growing with the extending use of computers and multimedia computer applications. To 
provide a more efficient representation of data, many compression algorithms have been 
developed, and in the basis of all these algorithms is quantization. The concept of quan-
tization is a mapping of a large set of amplitudes of infinite precision to a smaller finite 
set  of values,  as shown in the Fig.  1(a).  Vector quantization is simply an extension of 
the scalar quantization to multidimensional spaces; that is, a vector quantizer operates 
on vectors (blocks of samples) instead on scalars. 

The quantizers play an important role in the theory and practice of modern signal 
processing. The asymptotic optimal quantization problem, even for the simplest case — 
uniform scalar quantization, is very actual nowadays [1, 2]. They do consider the prob-
lem of finding the optimal maximum amplitude, so-called, support region for scalar 
quantizers by minimization  of the total distortion D, which is a combination of granular  
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(Dg) and overload (Do) distortion, og DDD += . Extensive results have been obtained 
on scalar quantization but more on vector quantization. The simplest vector quantization 
is two-dimensional vector quantization. 

 

Fig. 1. Illustration of (a) scalar and (b) vector quantization 
 
The analysis of vector quantizer for arbitrary distribution of the source signal is 

given in paper [3]. The authors derived the expression for the optimum granular distor-
tion and optimum number of output points. However, they did not prove the optimality 
of the proposed solutions. Also, they did not define the partition of the multidimensional 
space into subregions. In paper [4], the expressions for the optimum number of output 
points are derived, however the proposed partitioning of the multidimensional space for 
memoryless  Laplacian  source  does  not  consider  the  geometry  of  the  multidimensional  
source. In paper [5], vector quantizers of Laplacian and Gaussian sources are analyzed. 
The proposed solution for the quantization of memoryless Laplacian source, unlike in 
[5], takes into consideration the geometry of the source, however, the proposed vector 
quantizer design procedure is too complicated and unpractical. 

In this paper we give a systematic analysis of piecewise uniform vector quantizer 
(PUQ) of Laplacian memoryless source. We give a general and simple way to design a 
piecewise uniform vector quantizer. We derive the optimum number of output points 
and the optimality of the proposed solutions is proved. The goal of this paper is to solve 
a quantization problem in a case of PUQ and to find corresponding support region. It is 
done by analytical optimization of the granular distortion and numerical optimization of 
the total distortion. If the distortion is measured by a squared error, D becomes the mean 
squared error (MSE). The distortion mean-squared error (MSE i.e. quantization noise) is 
used as a criterion for optimization.  

The MSE of a two-dimensional vector source ),( 21 xxx = , where ix  are zero-mean 
statistically independent Laplacian random variables of variance 2s , is commonly used 
for the transform coefficients of speech or imagery. The first approximation to the long-
time-averaged probability density function (pdf) of amplitudes is provided by Laplacian 

0
1
2
3
4

real numbers

unquantized samples
0
1
2
3
4

integers

quantized samples
(a)

0
1
2
3
4

block into vectors

unquantized samples

codevector
indicies

000 100001 010 011

codevectors

codebook with 2-D codevectors
(b)



Zoran H. Peric, Ivana Lj. Tosic 

 22 

model [7, p. 32]. The waveforms are sometimes represented in terms of adjacent-sample 
differences. The pdf of the difference signal for an image waveform follows the Lapla-
cian function [7, p. 33]. The Laplace source is a model for speech [8, p. 384]. Consider 
two independent identically distributed Laplace random variables (x1, x2) with the zero 
mean and unity variance. To simplify the vector quantizer, the Helmert transformation 
is applied on the source vector giving contours with constant probability densities. The 

transformation is defined as: ( )212
1 xxr += , ( )212

1 xxu -= . In this paper, quan-

tizers are designed and analysed under additional constraint — each scalar quantizer is a 
uniform one.  

PUQ consists of L optimal uniform vector quantizers. More precisely, our quantizer 
divides the input plane into L partitions and every partition is further subdivided into iL  
( Li ££1 ) subpartitions. Every concentric subpartition can be subdivided in four equiva-
lent regions, i.e. The j-th subpartition in signal plane is allowed to have ijp  
( iLjLi ££££ 1,1 ) cells. We perform two-step optimization: 1) distortion optimiza-

tion ( iD ) in every partition under the constraint i

L

j
ij Np

i

=å
=1

4  and 2) optimization of the 

total granular distortion å
=

=
L

i
ig DD

1
 which achieves the optimal number of points iN  

on each partition under the constraint å
=

=
L

i
i NN

1
. 

In this work we design a piecewise uniform vector quantizer for optimal compres-
sion function. We perform analytical optimisation of the granular distortion and 
numerical optimization of the total distortion using rectangular cells.  

The  switching  quantization  aims  are  to  improve  the  quality  of  the  signal-to-noise  
ratio  in  the  wide  range  of  the  signal  average  power  (i.e.  variance)  or  to  decrease  the  
sample rate. The switching quantization is adaptive quantization for memoryless 
sources and it is aplicable only if adaptation is performed on the basis of the signal 
average power, what was just done in this paper. As an input source, we will consider 
memoryless Laplacian source. 

 
Basic notes on VQ 

The conceptual notion of VQ is illustrated in Fig. 1(b). These blocks of samples are 
represented by code vectors and stored in a codebook — a process called encoding. A 
block diagram of the encoder is shown in Fig. 2. The encoder e  performs a mapping 
from k-dimensional space kR  to the index set I , and the decoder D  maps the index set 
I  into the finite subset C , which is the codebook. The codebook has a positive integer 
number of code vectors (denoted by iy ) that defines the codebook size, denoted by N. 
The bit rate R associated with the VQ depends on N and the vector dimension k. Since 
the bit rate is the number of bits per sample, 
 

kNR /)(log 2= .         (1) 
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In contravention to basic scalar quantization which is fixed-rate, for VQ is natural 
to have fractional bit rates such as ½, ¾, etc. The decoding process is very simple and 
requires only a table (codebook) lookup, but the encoding procedure is complex and in-
volves finding a best matching code vector, using a distortion measure as a criterion. 
The most common distortion measure is mean squared error, given by: 
 

å
=

-=--=
k

l

t lylxyxyxyxd
1

2])[][()()(),( ,         (2) 

 
where ][lx  and ][ly  are the elements of the vector x  and y , respectively. 

 

 
Fig. 2. Block diagram of a VQ encoder and decoder 

 
It is convenient to view the operation of a vector quantizer geometrically, using our 

intuition for the case of two- or three-dimensional space. Thus, a 2-dimensional quan-
tizer assigns any input point in the plane to one of a particular set of N points or loca-
tions in the plane. The plane is divided into N partition cells, as shown in the Fig. 3(a), 
and the dots represent code vectors, one in each cell. A unique partitioning of the space 
is defined by the encoding procedure, and optimized for a given input source, to give 
the best performance. Now consider the quantizing of our fictional input source with 
scalar quantization at an equivalent bit rate. The cells implying the use of a scalar quan-
tizer for the input source are shown in Fig. 3(b). Notice that each cell is should to be 
rectangular, and some cells are forced to be placed in regions where the input source 
may not be significantly populated. These observations lead to two immediately recog-
nizable advantages of VQ over scalar quantization. First, VQ provides greater freedom 
to  control  the  shapes  of  the  cells  to  achieve  more  efficient  tilings  of  the  space.  This  
property is often called cell shape gain. Second, VQ allows a greater number of cells to 
be concentrated in the regions where the source has the greatest density, which reduces 
the average distortion. 
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Fig. 3. Illustration of the partition cell associated with VQ and scalar quantization:  

a) partition cells for a 2D VQ; b) partition cells corresponding to scalar quantization 
 
Piecewise uniform vector quantizer design 

Joint pdf function of two independent, identically distributed Laplace random 
variables (x1 , x2 ) with zero mean is given with the following expression 
 

( )
( )
s

s

212

2212,1 2
1,

xx

exxf
+

-
= .         (3) 

 
After applying the Helmert transformation [9, 10] 

 

( )212
1 xxr += , ( )212

1 xxu -=        (4) 

 
we get the probability density function 
 

s

s

r

eurf
2

22
1),(

-
= .          (5) 

  
In the two-dimensional ru system the pdf function given by equation (5) represents 

a square line. The square surface (0, maxr )  representing  dynamic  range  of  a  two-
dimensional quantizer, can be partitioned into L concentric domains as shown in Fig. 4. 
In the case of nonuniform vector quantization, these concentric domains are of unequal 
width. The number of output points in each domain is denoted by iN , where 

å =
=

L

i iNN
1

 represents the total number of output points. Every concentric domain can 

be further partitioned into iL  concentric subdomains of equal width. Every subdomain 
is divided into four regions each containing jip ,  rectangular cells. An output point is 
placed in the centre of each cell. Coordinates of the k-th output point in j-th subregion of 
the i-th region in the ru coordinate system are ( )kjiji um ,,, € , . 

(a) (b)
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Fig. 4. Two-dimensional space partitioning 

 
The initial expression for granular distortion is 
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The otput point coordinates are given by the equations 
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Rectangular cell dimensions are: 

 

iii rr -=D +1 , 
i

i
i L

D
=D¢  and 

ji
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,

1,, ++
=D ;        (8) 

 
iiji jrr D×+=, , Li ,,0 K= , iLj ,,0 K= .         (9) 

 
The range of the quantizer is maxr . To determine the boundary values of every 

concentric domain, denoted as ir , for the case of nonuniform vector quantization we 
perform the segmentation and linearization of the optimal compress function, given by 
the following expresion 
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The method for linearization of compression function, named the first derivate 

segmentation, was selected based on the analysis performed in [11]. The principle used 
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in this method is to do a uniform segmentation of the first derivate of compression func-
tion, and find corresponding ir  points by substituting uniformly distributed h¢  values in 
the inverse first derivate function. 

The total number of output points is 
 

å
=

=
L

i
iNN

1
,         (11) 

 
where iN  is the number of output points in the i-th domain. We can also write: 
 
 

 
   (12) 

 
 
Equation (12) can be written as 
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where )(iDg  is 
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After integration over u and reordering equation (14) becomes 
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From equation (7) it follows that jijiji mrr ,,1, 2=++ . When we substitute this in 

equation (15) we get 
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We will now assume that ( )s/2exp r-  is constant over iD . In that case we can 

substitute ( )s/2exp r-  with ( )s/2exp , jim- . Equation (16) can be now written as: 
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where ( )jimP ,  denotes the probability 
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Function ( )jimf ,  is defined as 
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By using the Langrangian multipliers we can obtain the optimum number of cells 

in one region jip , , which yields the minimum granular distortion defined by the 
equation (17). Because we are designing an optimal quantizer for one value of variance 

0s , in calculating jip ,  we will use 0s  instead of s . We will start from the following 
equation 
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After differentiating J with respect to jip , , and equalizing the derivate with zero we 
get 
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From the preceding equation we can write the following: 
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If we substitute jip ,  from equation (22) in equation (12) 
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we can eliminate l  by substituting 
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in equation (22): 
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where ( )jimg ,0  denotes the function 
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If we multiply numerator and denominator with iD ,  we can approximate the sum 

by the integral 
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By substituting jip ,  from equation (27) in equation (17) we get 
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After approximating the sum by the integral, we can rewrite (28) as 
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The functions ( )iI0¢ , )(iI ¢  and ( )iI  are defined as: 
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After differentiating Dg from equation (29) with respect to Li, and for 0s , we 

obtain the optimum number subdomains in i-th domain 
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where )(0 iI  is defined as 
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Substituting the expression for Li from equation (31) in equation (29), Dg(i) 

becomes 
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The optimum number of output points in the ith subdomain is obtained using 

Lagrangian multipliers 
 

  
  (34) 

 
 
After differentiating (33) with respect to Ni, and for 0s  we get: 
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Using the condition (11) we can eliminate l  from the equation (35) 
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Finally, after substituting the expression for optimum number of output points from 

equation (36) into equation (33) we can write 
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Now, we can calculate the optimum granular distortion of uniform piecewise vector 

quantizer as 
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We can calculate the overload distortion as 
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After some calculation, we get 
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From equations (31) and (33), we can calculate the total distortion for one dimen-

sion as 
 

)(
2
1

og DDD += .         (41) 

 
Numerical results 

The  results  are  shown  in  Fig.  5  for  two  values  of  0s  (two different quantizers): 
0dB and –10dB, and for bit rate of R = 7,5. For comparison, dash-dotted lines show 
SQNR for scalar quantization for R = 8, for a compression function given with 
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where n  is a compression factor, with a critical value for 0s  
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Fig. 5. SQNR for scalar (bit rate = 8) and 
vector (bit rate = 7,5) quantization with 

two optimal quantizers designed for  
different values of 0s  

 
 
SQNR is a signal-to-quantization noise ratio, given with: 
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We can see from this figure that there is a 0,5 bits gain in the case of vector quanti-

zation. In Fig. 6 we have changed bitrate to R = 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. SQNR for scalar and vector (bit 
rate = 4) quantization with two optimal 

quantizers designed for different  
values of 0s  
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In Table, as an illustration of the previous analysis, the number of rectangular cells 

in each of four regions in a particular subdomain, denoted as jip , , is given. The optimal 
number of subdomains in every domain ( ioptL ) is calculated for L = 4 concentric do-
mains and bit rate R = 4, giving the value 2. 
 

Number of rectangular cells for R = 4 
L = 4 jip ,  

1 2 3 4 
1 1 6 9 13  
2 3 7 11 13 

 
 
For nonstationary inputs a logical scheme is switched quantization; this consists in 

providing a bank of B fixed quantizers, and switching among them  as appropriate, in 
response to changing input statistics. This scheme is used for two designed quantizers, 
as shown in Fig. 7. 

 

 
Fig. 7. Block diagram of switched quantization 

 
Conclusion 

The optimization of two-dimensional Laplace source piecewise nonuniform vector 
quantization is carried out. A simple expression for granular distortion, a number of 
subdomains and а number of output points in closed form is obtained. The results ob-
tained by using two vector quantizers optimized for two different values of s  (vari-
ance) demonstrate the significant performance gain over the uniform scalar quantiza-
tion, giving a 0,5 bits/sample gain. Memoryless Laplacian source is used, considering 
the  possible  application  of  this  quantizer.  The  transform coefficients  of  DCT (discrete  
cosine transform) encoding of speech or imagery are often modeled as Laplacian, ex-
cept for the DC coefficient of imagery. By using switched quantization, with two quan-
tizers in this case, necessary rate is decreased by 0,5 bits per sample, with compliance of 
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the appropriate standard. With a larger set of quantizers we could increase this sample 
rate even more, thus giving a better compression quality with higher SQNR.  
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