

МАТЕРІАЛОЗНАВСТВО

УДК 621.762;621.893 **© 2012**

Академик НАН Украины Ю.В. Найдич, А.А. Адамовский

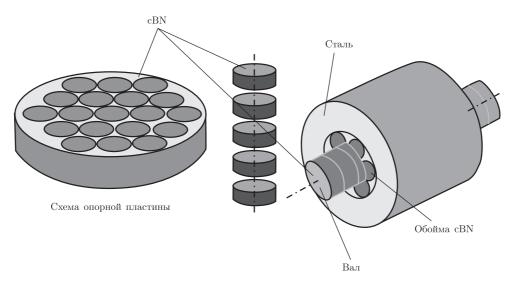
Конструкционный сверхтвердый материал на основе кубического нитрида бора в опорах и узлах сухого трения

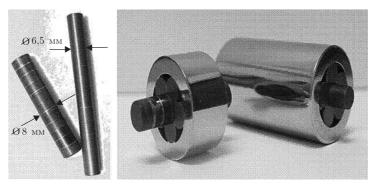
Разработана технология получения изделий — соединения адгезионно активной пайкой ограниченных по размерам отдельных элементов из кубического нитрида бора. Получены цельные изделия конструкционного назначения: валы (оси) диаметром до 10 мм необходимой длины; практически не изнашиваемые без смазки подшипники скольжения типа вал/втулка; подпятники; опорные плиты; направляющие станков и др. с поверхностью трения кубический нитрид бора по кубическому нитриду бора.

Благодаря тому, что алмаз и кубический нитрид бора обладают особо высокими механическими свойствами (твердость, модуль упругости) и превосходят по этим характеристикам все другие известные вещества, они широко используются как инструментальные материалы — абразивные порошки, лезвийные инструменты (резцы различных конструкций, фрезы, фильеры, выглажеватели и др.)

Указанные синтетические материалы производят в сложных аппаратах сверхвысокого давления. Сегодняшняя промышленная технология позволяет получать элементы из алмаза и кубического нитрида бора либо в виде порошков, либо (особенно, для кубического нитрида бора) в виде поликристаллов — цилиндров небольшого размера: $\varnothing \sim 5 \div 8$ мм (лишь в особых аппаратах до 10-15 мм) высотой — 5-6 мм [1]. Присоединение такого элемента к металлическому держателю дает возможность после последующей заточки получить резцы для обработки, скажем, закаленных сталей, чугунов, а также многих других твердых веществ. Учитывая небольшие размеры таких элементов, закрепление их в держателе возможно только с помощью пайки специальными так называемыми адгезионоактивными припоями, отличающимися высокой смачиваемостью по отношению к алмазу или cBN. В Институте проблем материаловедения НАН Украины [2] в результате многолетних исследований разработаны принципы создания адгезионоактивных припоев различных классов и технологические процессы пайки ими неметаллических материалов, в частности, кубического нитрида бора.

Стратегической целью данной работы является разработка технологии соединения, сборки-пайки нескольких отдельных элементов из cBN с получением определенных изделий не-




Рис. 1. Изделия конструкционного назначения, полученные методом пайки поликристаллов cBN

обходимых размеров и формы и таким образом использовать сверхтвердые вещества как конструкционные материалы для изготовления цельных изделий из них различного назначения. Ниже речь будет идти, прежде всего, о кубическом нитриде бора (cBN). Одна из возможных областей применения таких компактных конструкционных изделий из cBN являются узлы трения механизмов машин и приборов, особенно в экстремальных условиях эксплуатации.

Конкретной задачей настоящей работы является изготовление подшипников скольжения: цилиндрических — типа вал/втулка, а также плоских узлов трения, где пары трения составляют сВN/сВN. Хотя коэффициенты трения и механизм самого процесса трения в сочетаниях таких материалов остаются еще малоисследованными, можно полагать, что особо высокая твердость материалов будет способствовать низкой силе трения (отсутствие схватывания), а также малому износу материала в контактных узлах. Возможно также изготовить комбинированные детали, сочетающие сВN и металлические материалы, особенно достаточно твердые (например, сплавы типа ВК — карбид вольфрама/кобальт).

Объектом исследования выбран сверхтвердый материал на основе сВN — композит марки 05-ИТ (ТУ 2-035-806-81), полученный в камере сверхвысокого давления. Композит содержит, % (масс): $2 - \mathrm{Cr}$; $0.5 - \mathrm{Zr}$; $< 0.1 - \mathrm{Al}$; остальное — сВN. Для проведения экспериментов использовали поликристаллы заводского производства таких размеров: диаметр — 6.75; высота — 5 мм, шлифованные по цилиндру и торцам. Шероховатость торцевых и цилиндрических поверхностей образцов $R_a = 0.32 - 0.50$ мкм, что соответствует $8^6 - 8^8$ классу шероховатости по ГОСТ 2789 - 73 и ГОСТ 2.309 - 73. Поликристаллы соединяли в изделия вакуумной пайкой. Методика и оборудование приведены в работе [2]. В качестве припоя использовали сплавы Cu-Sn, легированные различными добавками, в частности, Ti [2, 3]. Краевой угол смачивания припоя при температуре пайки ~ 850 °C в вакууме материалов на основе сВN составляет около 20° [4].

Схемы изделий конструкционного назначения представлены на рис. 1. Опорная пластина состоит из корпуса и поликристаллов: в стальной опорной пластине сделаны отверстия, размер которых несколько больше диаметра поликристаллов. Зазор в паре сопряжения отверстие—поликристалл составляет $0.1\,\mathrm{Mm}$, который заполняют припоем в процессе пайки.

ы Подшипники скольжения

Рис. 2. Фотографии натурных образцов изделий конструкционного назначения, полученных методом пайки, из сверхтвердого материала на основе сВN марки композит 05-ИТ

Спаянные поликристаллы и корпус для выравнивания опорной поверхности подвергают шлифовке на плоскошлифовальном станке алмазными кругами с подачей СОЖ в зону резания.

Особый интерес представляют цилиндрические подшипники. Вал собирают из таблеток поликристаллов, на торцы которых наносят припой и в вакууме таблетки припаивают торцами друг к другу. После пайки вал шлифуют с охлаждением на бесцентровошлифовальном станке алмазным кругом до шероховатости поверхности $R_a=0.25\,$ мкм. Втулка состоит из стального корпуса и поликристаллов сВN. В стальном корпусе сделано центральное сквозное отверстие, диаметр которого больше диаметра вала на 1 мм, а в торцах корпуса — кольцевые проточки глубиной по 5 мм каждая. Диаметр проточек рассчитан: после укладки в проточки по пять поликристаллов — зазор между каждым соседним поликристаллом равен 0,1 мм. На поликристаллы в собранном корпусе наносят припой в виде шликера, загружают собранную втулку в вакуумную печь для пайки. Поликристаллы припаиваются друг к другу и к стальному корпусу, после пайки поверхность скольжения втулки обрабатывают алмазными цилиндрическими головками на внутришлифовальном станке. Необходимо обеспечить шероховатость рабочей поверхности втулки не ниже $R_a=0.25\,$ мкм и зазор 0,01 мм в сопряженной паре вал/втулка.

Износ вал—втулка и коэффициент трения исследовали при трении на воздухе без охлаждения. Режим испытания: скорость скольжения — 0.26~m/c; нагрузка — 50~H; износ определяли методом взвешивания с точностью 0.01~mr на аналитических весах второго класса модели ВЛТ-200 (ГОСТ 24104-80).

Фотографии натурных образцов цилиндрических подшипников скольжения представлены на рис. 2. Валы диаметром 8 и 6,5 мм сопряжены с втулками из композита 05-ИТ, между которыми выдержан зазор 0,01 мм. Валы ($\emptyset 8$ и $\emptyset 6,5$ мм) поддерживают две втулки шириной по 5 мм каждая, впаянные в торцевые выточки стального корпуса. Испытания подшипников скольжения провели в течение 50 час с перерывами: 1 день — 8 час; последующие 6 дней — по 7 час. Суммарный пробег подшипников составил 46,8 км, суммарный износ втулки — 20,0 мг, вала — 10. Средний износ на 1 км пробега втулки — 0,43, вала — 0,21 мг/км. Коэффициенты трения различных материалов — металлов, керамики, сверхтвердых материалов, а также сочетания материалов для сравнения приведены в табл. 1. Как видно, коэффициенты сухого трения чистых металлов на воздухе очень высокие (f = 0,51-1,44). Сверхтвердые материалы выделяются среди металлов и неметал-

лов низкими коэффициентами сухого трения, приведенными в табл. 1. Это обусловлено тем, что они имеют повышенные модули упругости, как минимум в 2–3 раза по сравнению даже с керамикой на основе $\mathrm{Al_2O_3}$. В зоне контакта сверхтвердые материалы не подвергаются пластической деформации и обладают пониженным коэффициентом трения по сравнению с остальными материалами. Известно [8], что пластическая деформация материалов в зоне трения приводит к значительному повышению коэффициента трения пары. Коэффициент трения сверхтвердых материалов ниже металлов и оксидных керамик на порядок; коэффициент трения пары сВN-сВN меньше всех приведенных в табл. 1 величин и составляет, по нашим данным, f=0,04. Отметим, что для пары алмаза по алмазу f=0,1. Испытания [7] проводились при скольжении острия алмаза по поверхности куба [100] плоскости алмаза. Радиус закругления алмазного острия 130 мкм. С учутом малого износа и особо низкого коэффициента трения сверхтвердые материалы на основе сВN являются наиболее перспективными для их использования в узлах сухого трения.

Важным вопросом при изготовлении конструкционного изделия из сверхтвердых материалов методом сборки-пайки отдельных его элементов является прочность паяных швов. В наших исследованиях достигнутая прочность на изгиб паяного вала из таблеток композита СТМ на основе кубического нитрида бора марки 05-ИТ составила $\sigma_{\rm u}=280~{\rm M}\Pi {\rm a}.$ Полученная величина не является предельной. В Институте проблем материаловедения НАН Украины, используя различные припои и методы формирования макрокомпозитов, варьируя также конструкционные особенности соединения (ширина паяного зазора, форма изделия, другие параметры паяного шва), для сочетания одноименных материалов (${\rm Si}_3{\rm N}_4/{\rm Si}_3{\rm N}_4$) получим прочность шва 750–800 МПа, что соответствует 95% прочности самого соединяемого материала. Следовательно, можно утверждать, что имеется значительный резерв повышения прочности конструкционных изделий из сВN. В этом направлении и предполагается продолжить настоящие исследования. При этом, конечно, должна быть учтена и прочность самого соединяемого материала.

Таким образом, можно сделать следующие выводы.

1. Разработаны и изготовлены изделия конструкционного назначения из сверхтвердого материала на основе кубического нитрида бора — подшипник скольжения вал — втулка

- <i>Порядила Т.</i> Коэффициенты сухого трения различных пар материалов рег. 9	Таблина 1	Коэффициенты сухого трения различных пар материалов [5-7.	91
---	-----------	---	------	----

Материал пары трения	Коэффициент сухого трения, f	Источник			
Среда — воздух					
Металлы					
Cu–Fe	0,51				
Cu–Sn	1,44	[5]			
Часовые камни					
Рубин — $У10A(HRC56)$	$0,\!35$				
Сапфир — сапфир	$0,\!29$	[7]			
$ m Kepamuka~(Al_2O_3)$					
ЦМ- $332 -$ ЦМ- 332	0,885	[6]			
Сверхтвердые материалы					
Алмаз — алмаз	0,1	[7]			
Износ (I^*) и коэффициент (f) трения пары					
Эльбор-P — XB Γ (HRC 61–63)	$I^* = 100-130 \text{ MKM/KM}; f = 1,25-1,68$	[9]			
Композит: 05-ИТ — 05-ИТ, вал — втулка $I^* = 0.64 \text{ мг/км}; f = 0.04$ [Наши					

и некоторые другие изделия. Установлено, что в паре вал — втулка из cBN коэффициент сухого трения f=0.04.

- 2. Подшипник скольжения вал втулка испытан на воздухе без смазки. Установлено, что предложенная пара трения обладает меньшим коэффициентом трения и большей износостойкостью по сравнению с ранее известными материалами пар трения.
- 3. Материалы на основе кубического нитрида бора являются наиболее перспективными из ныне известных для разработки подшипников, опор скольжения и других изделий, работающих при высоких нагрузках без смазки в зоне контакта.
 - 1. *Синтетические* сверхтвердые материалы: В 3-х т. Т. 1. Синтез сверхтвердых материалов / Под ред. Н. В. Новикова и др. Киев: Наук. думка, 1986. 280 с.
 - 2. *Поверхностные* свойства расплавов и твердых тел и их использование в материаловедении / Под ред. Ю. В. Найдича. Киев: Наук. думка, 1991. 280 с.
 - 3. Найдич Ю. В., Колесниченко Г. А., Костюк Б. Д. и др. Способ пайки твердосплавных материалов. А.с. SU № 536905. Бюл. № 44. 1976.
 - 4. Адамовский А. А., Зюкин Н. С., Евдокимов В. А. Пайка сверхтвердых композиционных материалов на основе нитрида бора для изделий инструментального и конструкционного назначения // Адгезия расплавов и пайка материалов. 2008. Вып. 41. С. 91—97.
 - 5. Крагельский И.В., Виноградова И.Э. Коэффициенты трения. Москва: Машгиз, 1962. 220 с.
 - 6. Воронков Б. Д. Подшипники сухого трения. Ленинград: Машиностроение, 1979. 224 с.

 - 8. Крагельский И. В., Щедров В. С. Развитие науки о трении. Москва: Изд. АН СССР, 1956. 235 с.
 - 9. Карюк Г. Г., Колесниченко Л. Ф., Юга А. И. и др. Фрикционные свойства материалов на основе плотных модификаций нитрида бора // Порошк. металлургия. − 1984. − № 9. − С. 82–87.

Институт проблем материаловедения им. И. Н. Францевича НАН Украины, Киев Поступило в редакцию 29.07.2011

Академік НАН України Ю.В. Найдіч, А.А. Адамовський

Конструкційний надтвердий матеріал на основі кубічного нітриду бору в опорах і вузлах сухого тертя

Розроблено технологію одержання виробів — з'єднання адгезійно активним паянням обмежених за розміром окремих елементів з кубічного нітриду бору. Одержано цільні вироби конструкційного призначення: вали (осі) діаметром до 10 мм необхідної довжини; підшипники ковзання типу вал/втулка, які практично не зношуються без змазки; підп'ятники; опорні плити; напрямляючі верстатів та інші з поверхнею тертя кубічний нітрид бору по кубічному нітриду бору.

Academician of the NAS of Ukraine Yu. V. Naidich, A. A. Adamovskiy

Constructional superhard material based on cubic boron nitride in supports and dry friction units

The fabrication technology of articles formed by the active brazing of size-limited separate boron nitride elements is developed. Solid articles of construction appointment are obtained: shafts (axles) to 10 mm in diameter of a necessary length; practically wear-free bearings without lubricant of the shaft/bush type; saddles; baseplates; machine tools rails, etc., with the cubic boron nitride on cubic boron nitride friction surface.