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The diagram o f  damage o f  structural steels under bending and contact loading has been 
constructed. The criterion o f  the critical state o f  steels is proposed, which corresponds to the 
formation o f  incipient surface cracks in the rolling friction zone. The methods o f  shortcut 
estimation o f  the damaged state o f  railway rails, which provide prediction o f  their reliability and 
life under service conditions, are proposed. A set o f  experimental studies is made with objectives to 
justify the proposed diagram, criterion and methods.
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Calculation and experimental methods have found wide use in estimating the 
m echanical fatigue resistance o f materials and structural components. The general 
convention is that the endurance limit a _  is calculated in terms o f some 
m echanical characteristics that are determined by simple experimental tests. 
Numerous theoretical and experimental works [1-3] deal w ith study o f the 
interrelation between various m echanical characteristics o f  steels.

Only few works [e.g., 4, 5] discuss the relationships between the contact 
fatigue limit (for pure rolling friction) and the m echanical characteristics o f steels. 
However, such relationships have not gained further generalization, which would 
make it possible to predict both the damaged and the critical states o f steels in 
terms o f the fatigue resistance criterion.

The service defects o f  rails were analyzed in m any works [6 , 7, etc.]. 
However, up to now the substantiated methods o f estimation o f the mechanical 
state and the damage o f rails in operation are practically not available.

Therefore, our aim was to develop the criterion and the methods o f estimation 
o f the damaged state o f structural steels, including railway rails under operating 
conditions.

A  generalized analysis o f  a wide range o f experimental data [1-7], which is 
supplemented w ith the results on steel tests for railway rails and wheels [8] has 
been performed. As a result, the state diagram o f damage o f structural (carbon 
and alloyed) steels has been constructed, which characterized the relations 
between the endurance limits under contact loading (p f ) and bending ( a _ 1) 
conditions, the tensile strength limit (a  b ), Brinell hardness (HB) and Vickers 
hardness (H V ) (Fig. 1). The investigated steels varied by chemical composition 
and structural states obtained by the respective heat treatment. The above-
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Fig. 1. The diagram of damage of structural steels.

mentioned relationships for the ring scheme in Fig. 1 have been experimentally 
determined and are described by the following relations

P f  =  3.12HB, o _ 1 =  0 .5 ab , o b =  3.5HB,
a _ 1 =  1 .6 H V  (o _ 1 <  500 M Pa), ( 1)

o _ 1 =  2.68HV _  0.0025HV2 _  93.3 (o _ 1 >  400 M Pa).

The basic regularity integrally described by the diagram is such: the increase 
in the fatigue resistance o f structural steel attained by different hardening methods 
occurs in accord with the growth o f its hardness (strength). The diagram has one 
specific feature: the dependence o f o _ ^ o b ) is extreme: at o b ~ >  1400 M Pa the 
limit o f  bending hardness o _ 1 m anifest the initial growth w ith increasing steel 
strength, but then has a tendency to decrease. This allows us to propose the 
following set o f interrelated characteristics (Fig. 1, shaded) controlling the 
transition o f structural steels to the critical state:

550 <  o_c) <  650 M Pa,

• 1200< p fc) <  1300 M Pa, (2a)

380 <  H B (c) <  420,
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400 <  H V (c) <  440,
1 (c) (2b)1300 <  obc) <  1500 MPa.

As applied to the behavior o f steel determined under operating conditions, 
the diagram (Fig. 1) m ay have the following interpretation. I f  the hardness 
(strength limit) grows in operation, this testifies that the fatigue resistance 
increases at a time. Such increase represents the process o f steel hardening under 
operating conditions and proceeds until transition into the critical region occurs 
for the dependence o _ i ( H V ) (shaded in Fig. 1). This is the region where the 
surface damage starts. Thus, Fig. 1 can be considered as the state diagram o f steel 
damage in terms o f bending and contact fatigue criteria and (2 ) as the criterion for 
the critical state o f structural steels.

Figure 1 yields another important practical conclusion: the increase in steel 
hardness by more than =  400 H V  is ineffective for systems that are operating 
under cyclic conditions, when bending and contact stresses are excited 
simultaneously and in the only (dangerous) region, i.e., in contact mechanical 
fatigue.

Since the m echanical state o f steel can be estimated by the total set o f the 
considered m echanical characteristics presented in Eq.(2) and by any o f them, for 
practical purposes it is recom m ended to use the methods o f estimation o f the 
m echanical state o f steel that are based on m easuring o f Vickers hardness. The 
hardness was investigated for the railway rails o f  the M insk city subway. The 
objects o f  investigation were railroad rail pieces: 1) new ones that have not been 
in use; 2) rails after operation time correponding to 300 mln ton gross, i.e., 
norm ative tonnage that characterizes the total operating time o f rails. Afterthe 
latter is achieved, the rails should be replaced irrespective o f the fact whether their 
serviceability is exhausted or not; 3) after operating time o f 210 m ln ton gross. 
The scheme o f m easuring the Vickers hardness H V  at the rolling surface o f a rail 
is shown in Fig. 2. Over the surface section 40 X 90 mm in size 2500 points were 
marked, at each o f which the Vickers hardness was determined.

For the used rails it is established that the surface layer o f metal in a wheel 
rolling over a rail is deformed unevenly -  the specific regions (Fig. 2) determined 
by a sharp change in the hardness distribution fields are revealed. These zones are 
nonuniform  both in width and length o f the rail head.

Figure 3 shows the obtained data analyzed using the state diagram o f damage 
o f structural steels (Fig. 1). The solid vertical straight line stands for the initial 
state (before operation H V  =  261). The dotted lines correspond to characteristic 
deformation zones I, II, and I I I  after operating tim e o f 300 mln ton gross. It is 
seen that in zone II I  (H V  =  320) the critical state is far short o f being attained, 
whereas that o f the m etal surface layer in zone I I  (H V  =  410) is consistent with 
the start o f  the critical state. But in zone I  criterion (1) for the critical state is 
exceeded (H V  =  480 >  H V (c)). However it should be noted that this zone 
occupies a small section o f the rolling surface (up to 8%); hence, it can be 
assumed that the used rails did not exhaust their serviceability.

Such a conclusion has been supported by conducting com prehensive 
experim ental studies o f the m icrostructure o f rail steel before and after use, by
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Fig. 2. Typical distribution of hardness H V  over the rolling surface of the rail head after operating 
time of 300 (a) and 210 (b) mln ton gross [(1) mean hardness before use; (2) hardness distribution 
after use].

analyzing the statistics o f rail failures, as well as by studying the anisotropy and 
the character o f  distribution o f material properties at the rolling surface o f rails.

The metallographic analysis o f the samples o f the rails before and after use 
allows estimation o f the damaged state o f rail steel at the rolling surface in terms 
o f the abundant defects and deformation level. The microstructure o f  rail steel for 
a new rail is shown in Fig. 3 in the left lower corner; for the largest deformation 
region -  zone I  for a rail after having been used -  in Fig. 3 in the upper right 
corner. In the both cases the structure o f  the core o f the samples is characterized 
by the presence o f sorbite-like perlite, as well as o f separate zones o f fine-plate 
perlite. A n embrilltled layer is seen in the surface layer o f zone I  o f the rail 
sample w ith operating tim e o f 300 mln ton gross. The density o f  dislocations in 
this layer is approximately 8-10 times higher than that in the bulk material. The 
application o f the methods o f m etallographic analysis in this zone has permitted 
revealing inclined cracks (Fig. 4a-c) formed under operating conditions. 
Moreover, some internal cracks are observed, which are not exposed along the 
surface and are oriented m ainly parallel to the surface (Fig. 4d). The depth of 
occurrence o f cracks varies from 17 to 210 /im , the length -  from 25 to 2000 ^m .
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Fig. 3. Diagram of the mechanical state of rail steel after operating time of 300 mln ton gross.

In addition, the similar studies o f  the rails w ith operating time o f 210 mln ton 
gross are carried out. In this case, the m etallographic analysis has revealed no 
operation damages similar to those shown in Fig. 4.

The analysis o f  the data plotted in Figs. 1-4 leads to the general conclusion 
that in operation there occurs spontaneous strengthening o f m aterial at the rolling 
surface o f a rail. According to our data, the strength level estim ated by the 
hardness growth increases with operating time in all zones and especially in 
zone I  (up to 1.5-2.0 times) In the latter case, approximately twofold increase in 
the strength level is followed by transition to the strength reduction due to 
development o f microcracks. It can be assumed that the critical state according to
(1) also corresponds to the above transition.

Thus, it has been confirmed by the metallographic analysis that the proposed 
diagram o f the mechanical state o f steels permits one to correctly estimate the 
damaged state o f rail steels under operating conditions as well as to predict the 
onset o f  the critical state.

The statistics and the character o f  operation failures characterize the reliability 
and serviceability o f railway rails. The accumulated specific failures o f rails 
(pieces/km) -  the failures pertained to the length o f the railway section were used 
as the param eter for the serviceability o f rails under operating conditions. 
Figure 5 presents the statistical results on rail failures in the line o f the M insk city 
subway, whose length is 18.99 km, for 21 years o f operation after operating time 
o f 315 m ln ton gross.
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Fig. 4. Incipient fatigue cracks found in zone I  (operating time of 300 mln ton gross).
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Fig. 5. Collected specific failures of rails vs. operating time.

As follows from the above data, for the rate o f rail failures, w hich is over the 
recent years, on the average, 0.28 pieces/km, and for the m ean density o f freight 
traffic, which is 22  m ln ton gross in the line per year, the attained rate o f failures 
o f 5 pieces/km the rail tonnage will be ~ 410 m ln ton gross, i.e., the rails can 
opeerate approximately for 4 years.

The perform ed studies o f the structure and the failure rate o f rails form a 
sound base for the serviceability prediction o f rails in terms o f criterion (2).
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To examine the m aterial properties at the rolling surface o f a rail, the shortcut 
nondestructive control m ethod has been used to study the anisotropy factor. The 
ratio d x /d y  o f  the diagonals o f pyram id imprints in the longitudinal and 
transverse directions is proposed to be used as the anisotropy factor. It is found 
that the value o f the anisotropy factor K a  =  d x /d y  for material in the initial state 
varies from 0.944 to 1.050, on the average, accounting for 0.997. Thus, it can be 
stated that before operation the rail m aterial is practically isotropic.

The value o f the anisotropy coefficient K A for each o f the characteristic 
deformation zones is different. Thus, for zone I  it is, on the average, 0.965; for 
zone I I -  0.978; for zone I I I -  0.982. In addition, for all characteristic deformation 
zones it appears that usually d x  <  d y . A ll this points to the development (in the 
process o f  operation) o f the deformation anisotropy o f the material properties; this 
regularity is known and is established by the non-destructive control methods in 
the tensile or shock viscosity tests o f the samples cut in the longitudinal and 
transverse directions.

The anisotropy o f the material properties at the rolling surface o f the rail 
head is indicative o f  the fact that as (2) forecasts, in zone I  w ith the hardness 
values higher than the critical ones the initial layer-by-layer damages o f m aterial 
are expected to form. Such defects were seen in the analysis o f the m icro­
deformations o f the rails, whose operating time was 300 m ln ton gross (Fig. 4). 
Moreover, this supports the proposed criterion and the methods o f estimating the 
damaged state o f  railw ay rails.

The general conclusion is that the perform ed comprehensive experimental 
investigations have substantiated the proposed diagram and the criterion o f the 
critical state o f steels, as well as the methods o f estimating the damaged state of 
rails under operating conditions.
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