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The effect o f  the grain size as a basic structural parameter on plastic strain macrolocalization has 
been studied fo r  polycrystalline aluminum. The mathematical form o f  the above dependence has 
been verified. The limiting cases have been defined both fo r  small- and coarse-grain ranges. The 
effect o f  sample dimension on the macrolocalization period has been considered.
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In trod u ction . The plastic deform ation o f  polycrystalline materials is an essential 
and often a defining factor in  m any technological processes. A t present significant 
progress has been  m ade in the physical theory o f  plasticity. A  significant volum e o f  
experim ental data on the distinctive features o f  deform ation and fracture has been  
obtained for polycrystalline alum inum.

Plastic flow  tends to localize at all the stages. The form o f  localization  patterns 
varies from the y ie ld  lim it to fracture depending on the prevailing law  o f  w ork hardening.

Our experim ental investigations suggest that the observed regularities exhibited by  
plastic flow  are the result o f  self-organization o f  the deform ing m edium . A ccording to 
Zuev and D anilov [1 ], the above regularities can be considered as w aves o f  localized  
plastic deform ation.

E xp er im en ta l P roced ure. The uniaxial tension tests w ere perform ed for a w ide 
range o f  m ono- and polycrystals using an Instron-1185 testing m achine w ith  load F  =  
10 kN  and loading rate £ =  3.3-10 6 m/s.

L ocalized  strain zones on the test specim en w ere revealed by the m ethod o f  
double-exposure speckle interferometry [ 1], w hich  y ie ld s distributions o f  plastic strain 
tensor com ponents [ 1].

Out o f  five types o f  deform ation localization  patterns on ly  three are observed on the 
flow  curve o f  polycrystalline aluminum, namely:

•  A t the stage o f  linear w ork hardening a set o f  m obile nuclei o f  localized  plastic 
deform ation originates in the test specim en and m oves in  a regular fashion, thereby  
form ing a running w ave.

•  A t the stage o f  parabolic w ork hardening a set o f  im m obile nuclei o f  deform ation  
localization  em erges in  the test specim en.

•  A t the pre-failure stage localized  plastic deform ation nuclei merge together, 
resulting in necking and v iscou s failure o f  the test specim en.

The distribution patterns o f  plastic strain tensor com ponents are show n £ xx in Fig. 1 
for polycrystalline alum inum both at the linear and the parabolic work hardening stage.

The observed regularities o f  plastic flow  localization  are com m on to all deform ing  
materials [1, 2]. It is found that plastic deform ation tends to localize in  certain zones o f  
the deform ing specim en and is characterized by  m acroscopic scale, i.e ., w avelength  X.

It has been  found that X depends on material parameters, i.e ., length scale, crystal 
lattice geometry, grain size, etc. Therefore, to determine the dependence o f  X on the grain 
size and dim ensions o f  a polycrystalline material is o f  particular interest.
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Fig. 1. Space-time distributions o f the elongation component obtained for polycrystalline aluminum 
having a grain size D =  190 [im: (a) linear stage at e =  4.8-5.6%; (b) parabolic stage at 
e =  8 .0- 8 .8%.

The tests w ere conducted using A 85 aluminum sam ples w hose grain size w as easily  
varied from 0.008 to 10 m m  by the m ethod o f  co llective recrystallization.

G rain  S ize D ep en d en ce  o f  L oca liza tion  W avelen gth  for  P o lycrysta llin e  
A lu m in u m . Figure 2 show s X as a function o f  the grain size D. N um erical processing o f  

the above dependence y ields the fo llow ing equation:

dX /dD  =  aX — bX2 ( 1)

where a  and b  are the positive dim ensional constants [3]. 
The solution to the above equation is as follow s:

X =
1+ C  exp(— aD  ) (2 )

w here X 0 =  a /b , and C  is a non-dim ensional integration constant.

Fig. 2. Wavelength X dependence on the grain size D  for polycrystalline aluminum.

Equation (2) describes, w ith  a sufficient accuracy, a set o f  experim ental X (D ) data 
in  a w ide interval o f  D  values (correlation coefficient R =  0 .98). The curve in Fig. 2 m ay  
be subdivided into three portions [3]: 1) as D  goes up to 0.5 m m , X grow s exponentially  
up to X eaD (Fig. 3a); 2) in the range 0.5 <  D  <  2 .5  m m  the dependence takes on the 

logarithm ic form  (X ln  D ) (Fig. 3b); 3) at D  >  2 .5  m m , X b ecom es constant (X ^  X 0 ~  
15 mm).
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Fig. 3. Limiting cases o f the wavelength dependence on grain size: (a) D  <  0.5 mm; (b) D  >  0.5 mm.

The effect o f  sam ple geom etry (in particular, the sam ple thickness) on the m acro­
localization  period w as exam ined for alum inum sam ples having grain size D  <  0.5 mm. 
It can be seen in Fig. 4, w ith increasing sam ple thickness, X grow s as w ell.

N um erical processing o f  experim ental data y ielded  constants a =  1.1 mm 1 and
_2 _1 _2

b =  0.2 m  for 2X 10X  50-mm sam ples and a =  1.5 mm and b =  0 .2  m  for

5X 10X  50-mm sam ples. Evidently, b  is unaffected by  the sam ple thickness.

Fig. 4. Grain size dependence o f macrolocalization periods on the sample thickness: lines 1 and 2 
correspond to tl =  5 mm and t2 =  2 mm, respectively.

D istin ctive  F eatu res o f  D eform ation  M acro loca liza tion  at th e  P refractu re  Stage.
In order to get a holistic picture o f  deform ation for polycrystalline aluminum, the final 
stage o f  the process, i.e ., the prefracture stage, has been  explored. It w as show n earlier [4] 
that the m ost striking feature o f  the plastic deform ation localization  reveals itse lf at the 
latter stage.

The prefracture stage is a parabolic one, i.e., the stress-strain dependence for this 
stage has the form o  ~  £ n (where n is the parabola exponent). It has been  show n that 

w ith n <  0.5 the localized  deform ation nuclei m ove along the sam ple at a velocity  V  [4],

V (n ) =  V0 (n _  q )2 . (3)

A t the parabolic stage (n »  0 .5) the localized  deform ation nuclei becom e m otionless 
(V =  0), w hile at the linear stage (n =  1) they m ove synchronously w ith different velocities.

The nuclei locations w ere plotted in  the X  ( t ) or X (£ ) coordinates, w here X  is the 
nucleus’ coordinate, t is the deform ation tim e, and £ is the deform ation (Fig. 5).
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Fig. 5. Positions o f localization nuclei vs. time.

It can be seen  from the p lot that w ith  n <  0.4 the n u c le i’s trajectories w ould  form a 
bundle w h ose pole pinpoints the location o f  future fracture.

The velocity  o f  a nucleus can be defined from the slope o f  the straight line. A lso , it 
should be noted that the nuclei m ove w ith different velocities, som e o f  them  disappearing  
altogether.

Thus, one can predict the place o f  future fracture long before the beginning o f  
visib le  necking.
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