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MogennpoBaHue W OLEeHKA BAUSHUSA PeTEHLUMOHHOro napamMeTpa
cABura Ha noBefileHNe KOHCTPYKLMNOHHbIX 3/1EMEHTOB 13 XKene306eToHa
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a YHusepcuteT uMm. Mynyga Mammepu, Tusn-Ysy, Amkup

6 YHuBepcuteT KOHOro KeuHcneHga, TyBymba, ABcTpanus

LN NoMyyeHnst NOMHbIX PELLIEHNIA C LEbo ONMCaHWUS PaBHOBECUS >Kene306e TOHHOW KOHCTPYKUMK
Heob6XoaAVMMO MCMOo/b30BaTh YPABHEHWs, XapakTepusytlouime (U3nMUeckue CBOKCTBa MaTepuana.
M3yueHo noBefgHMe >Kene3o6eTOHHbIX 371EMEHTOB C Y4eTOM M3MEHeHWUsi PeTEeHLIMOHHOTO mnapa-
MeTpa cfgura (MHOXKeCTBEHHO GIOKUPOBKIM) U NNOTHOCTY CeTKW. MoCTyNMpoBasoch, YTo 6eTOH
ABNAETCS YNpyronaacTUYeCKUM MaTepuanoM, s KOTOpPoro CrpaseaivBbl KpUTepUii paspyLueHuns
[Opykepa-Mparepa 1 3aKOH acCOLIMMPOBAHHOMO TeYeHUsl, TOrda Kak CTabHble 3MeMeHThl apma-
Typbl Npeanonaranncs ynpyro-naeansHo-NNacTUYHbIMK. ToNyYeHHbIe pe3ynbTaThbl YNCIEHHbIX pac-
UeTOB CPAaBHMBANNCL C MPUBEAEHHLIMU B IMTEPATYPHbLIX UCTOUYHUKAX.

KntoueBble cnosa: MoJe/IMpoBaHne, apMUPOBaHHbI 6eTOH, pacTpecKMBaHue, peTeH-
LUMOHHbIN MapameTp cABura.

Introduction. The intact concrete is supposed to be isotropic and linear
elastic, while the Rankine criterion is used to detect the crack initiation. In an
initially intact integration point, the principal stresses and their directions are
evaluated. If the maximum principal stress exceeds the tensile strength, a crack
appears in the plane perpendicular to the direction of this stress and the concrete
becomes anisotropic [1]. The shearing retention parameter characterizes shear
behavior of an element of volume of cracked reinforced concrete. The reduction
factor i of the initial rigidity modulus G is used, in order to take into account a
certain redistribution of the shear stress in the cracking plane (agregate interlock)
[2]. The best fit values to be adopted depend on the type of the problem, but the
best fit results are obtained if the parameter i values are within the range from 0.3
to 0.5 [2]. In the reinforcement zone, the dowel action can be superimposed with
the effect of aggregate interlock, thus conferring a certain rigidity of additional
shearing on the crack. The shear retention parameter also depends on the crack
opening, and the assessment of its evolution during the loading process becomes
complicated if the latter is alternate. In the version of the model used in this work,
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various values of i were adopted in order to suitably simulate the reinforced
concrete structures [3].

Compression Model Behavior. A linear elastic model is used for the
reversible part of the strain and an approach based on plasticity with isotropic work
hardening is employed for the irreversible part of the strain. The total strain rate is
thus broken up into an elastic strain rate dee and a plastic strain rate deC

associated to the compression [4, 5],

de = dee + dep (1)

or
=Dedee=De(de- dep), (2)

where D  elastic matrix defined by Hooke’s law.

The model requires the definition of a load surface which characterizes the
plastic criterion, plastic flow rule, work-hardening rule, and collapse condition.
The load function for the concrete under a biaxial stress state is generally supposed
to depend on two invariants of the stress tensor. A load function of the Drucker-
Prager type, which depends on the first invariant of the stress tensor 11 and the
second invariant of the deviatoric stress tensor J 2, was thus adopted [4]:

CJJ2 + DI,
F=2~JJKV -'= a- (3)
The experiment has shown that dependence of the load function in 11 and J 2

gives quite satisfactory results and, moreover, such form simplifies calculation.
The constants C and D are given as follows:

c = V3@n=l, @)
U
u—1
D=V - e>
fb
fx= f (6)

where f ¢ is compressive strength and f bc is biaxial compressive strength.

For u we adopt the value of 1.16, according to the experimental results of
Kupfer et al. [6, 7].

Traction Model Behavior. The two-dimensional behavior of the concrete is
based on the Rankine criterion for traction [8]. The evolution of cracking state is
taken into account by setting to zero the elastic modulus according to the cracked
direction and by the redistribution of the corresponding stresses. The use of a
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shearing parameter function of the crack opening in the elasticity matrix of the
cracked element makes it possible to simulate the aggregates interlock. Bonds
between the concrete and the steel reinforcement are considered to be perfect. The
cracked concrete is treated like an orthotropic material, whose orthotropic axes are
parallel and normal to the crack direction [9]. The Poisson ratio effect is negligible
because of the lack of interaction between the two orthogonal directions after
cracking, and the elastic modulus of the concrete normal to the crack direction is
reduced to zero.

The total stresses after cracking are given in respect to the axes of local
coordinates (n, t) by

an Eb 0 O £n £n
at ~ 0 0 0 ®™ . =|[Dclm <t )
Xnt 0 0 bG_ y nt y nt.

where Eb is elastic modulus of the concrete, ft is shear retention parameter of the
concrete (0< ft< 1), G is shear modulus ofthe concrete, and [Dc] is elastic matrix
of the cracked element in the local coordinates (n, t).

The shear modulus is reduced by shear retention parameter which lies
between 0 and 1. In various applications, the value of ft is taken equal to 0, when
the crack is open, and equal to 1, when the crack is close. This implies that there is
no agregate interlock when the crack is open and a perfect healing when the crack
is closed. In order to transform the concrete stresses from local coordinate to global
coordinate system (Fig. 1), the following procedure is used

[D]= [PIT[Dc][PI] (8)
where
c S cs
[P1= 52 c 2 —CS 9)
-2¢cs 2cs c2—s2
where

c = cos”™, s = sin

[P] is transformation matrix, [D] is elastic matrix after cracking in the global
coordinate (X, Y), and ~ is angle between the crack direction and O X axis.
The residual stress vector after cracking is given by the following relation:

025 2c 3s

2 2
{a0}= [I]- c¢s 2c¢s3 a (10)
c3s cs~ 2c2s2 "xy)

where {a0} is stress vector adjusted after cracking and [I] is identity matrix of
order 3x 3.
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Fig. 1 Representation of smeared crack.

The incremental relation (stress vs strain) in the cracked concrete is given as
follows:
[da}= [Dc]{d£}. (11)

The total released stresses after cracking will be distributed in the adjacent
elements (Fig. 2). The total variation of the stresses will be te following:

{Aa} = {da} - {ao}= [Dc]{d£}~ {a0} (12)

where [Dc] is elastic matrix of the cracked concrete and {o 0} indicates released
stresses after cracking of the concrete.

Fig. 2. Stress-strain model of the cracked concrete.

Nonlinear Calculation Procedure. The calculation stages are the following:

(i) introduction of the necessary data for a mesh generation;

(ii) introduction of the boundary conditions;

(iii) mesh generation by taking into account the longitudinal and vertical
reinforcements;

(iv) applying a load increment Af) ;

(v) start of the iterative (Newton-Raphson) procedure;

(vi) evaluation of the residual stress vector {o 0} and the residual force vector

{fo};
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(vii) calculation of the norm of the residual force vector {f 0}:

1) if the norm of {f0} is less than the tolerance level, convergence is
checked. If the final loading is not reached, apply a new load increment, and repeat
the procedure from the step (4);

2) if the norm of {f0} is greater than the tolerance leel, convergence is not
checked and if the iteration limit is not reached, repeat the procedure from the step
(5);

3) if the maximum iteration is reached, which corresponds to the horizontal
stage of the stress-strain curve, and then the load thus found corresponds to the
ultimate load;

(viii) posting of the results.

Validation and Numerical Application Examples. The model developed for
the plane stress calculation of the reinforced concrete structural elements by the
finite element method is applied to the study of reinforced concrete panel [9] and a
beam [8], where dimensions, reinforcement, and the loading are given in Tables 1
and 2 and illustrated in Figs. 3 and 7, respectively. For reasons of symmetry, only
half of the panel and the beam are modeled. Figures 4, 5, 8, and 9 present the
response of the elements (panel and beam) in term of the diagram relating the
midspan vertical displacements with the applied forces and compare the numerical
results with the experimental results. The general pace of the numerical results
agrees rather well with the experiment. The refinement of the mesh, as awaited,
leads to a more flexible response which approaches the experiment well. In order
to appreciate the influence of the shear parameter y3 a simulation with various
values was carried out. The load-displacement curves obtained are represented (see
Figs. 4, 5, 8, and 9) at the same time as the experimental curve. It is noted that the
ultimate load is better approached by the values of between 0.3 and 0.5.

Table 1 Table 2
Reinforced Concrete Panel [9] Reinforced Concrete Beam [§]
Mechanical property  Concrete Steel Mechanical property  Concrete Steel
E (MPa) 20,400 192,000 E (MPa) 30,000 207,000
Vv 0.2 0.3 \% 0.2 0.3
Fc (MPa) 26.7 - Fc (MPa) 56 -
Ft (MPa) 34 - Ft (MPa) 6 -
Fy (MPa) - 360 Fy (MPa) - 320

In order to study the influence of the mesh refinement on the finite element
solution, test simulations were carried out with two different meshes: The simulation
results are also presented. Figures 6 and 10 show the midspan displacements of the
elements for a load of 90 kN for values of shear parameter ranging from 0 to
1.0. It is noted that for the value of ranging between 0.3 and 0.5, displacements
are almost constant and agree well with the experimental value of 1.6235 mm for
the panel and 3.7125 mm for the beam. So one can conclude that the best choice of
the shear parameter considerably affects the response of the reinforced concrete
structural elements.
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Fig. 3. Geometry, loading, and panel reinforcements. (Dimensions in cm.)

Displacement {mm) Displacement (mm)
Fig. 4 Fig. 5

Fig. 4. Load vs displacement at panel midspan for the different values of 5 (panel of 20 elements).
Fig. 5. Load vs displacement at panel midspan for the different values of 5 (panel of 77 elements).

Influence of Mesh Density. In finite element modeling, a finer mesh typically
results in a more accurate solution. However, as a mesh is made finer, the
computation time increases. In order to get a mesh that provides a satisfactory
balance between accuracy and computing resources, one way is to perform a mesh
convergence study as follows:

1. Create a mesh using the fewest, reasonable number of elements and analyze
the model.

2. Recreate the mesh with a denser element distribution, re-analyze it and
compare the results to those of the previous mesh.

3. Keep increasing the mesh density and reanalyzing the model until the
results converge satisfactorily.
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Shear parameter p

Fig. 6. Displacement at panel midspan for the different values of 5.

Fig. 7. Geometry, loading, and beam reinforcements. (Dimensions in cm.)

Displacement (mm) Displacement (

Fig. 8 Fig. 9

Fig. 8. Load vs displacement at the beam midspan for the different values of 5 (panel of 28 elements).
Fig. 9. Load vs displacement at the beam midspan for the different values of 5 (panel of 60 elements).
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Shear parameter |

Fig. 10. Displacement at beam midspan for the different values of 5.

This type of mesh convergence study provides an accurate solution with a
mesh that is sufficiently dense and not overly demanding of computing resources.

Figures 11 and 12 describe the midspan displacement versus the number of
elements for the reinforced concrete panel and beam, respectively. The results
converge towards the objective value for a grid of 50 elements.

Fig. 11 Fig. 12

Fig. 11. Midspan displacement vs number of elements reinforced concrete panel.
Fig. 12. Midspan displacement vs number of elements reinforced concrete beam.

This can be explained by the fact that the isoparametric quadrilateral element
used for modeling, reconstitute correctly the deformation required by the beam
theory in general.

Conclusions. We present a numerical calculation model for evaluation of the
response of the reinforced concrete elements under the action of static loads in the
elastoplastic field. The results of digital simulation agree well with the
experimental results. It is also noted that the best choice of a shear retention
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parameter play a significant role in the total response of the structure. The value of
fl ranging between 0.3 and 0.5 (Fig. 6 and 10) give a better result. The shear
parameter used in this model is constant and ranges between 0 and 1.0.

For the future research an improvement can be obtained by introducing a
shear retention parameter fl, which varies in function of the opening and the
closing of the crack, into the model.

Pe3tome

[Ona oTpuMaHHSA NOBHMUX PO3B’A3KiB i3 METOK Onucy piBHOBarM 3ani3obeTOHHOT
KOHCTPYKLiT HeobxigHO BMKOPWUCTATU PIBHAHHA, WO XapaKTepu3yTb Qi3nyHi
BNaCTUBOCTI MaTepianis. BuBuanacqd nosefiHKa 3ani306eTOHHUX efleMeHTIB 3 ypa-
XYBaHHAM 3MiHW peTeHLWinHOro napameTpa 3cyBYy (MHOXWHHOrO 6GNOKyBaHHS) i
WinbHOCTI CiTKM. MocTynoBanoch, Wo 6eTOH ABAAE COO0H MPY>XHO-NAACTUYHUIA
mMaTtepian, 414 AKOro npaBAuBI KpuTepi pyiiHyBaHHS [pykepa-lNparepa Ta 3akoH
acouinoBaHoi Teuwii, B TOW 4yac AK CTanbHi €feMEHTW apmaTypu npunyckKanucs
NPYXHOo-ifeanbHO-NNacTUYHUMKU. OTpUMaHi pesynbTaT YMCNOBUX PO3PaxyHKiB
NopiBHIOBANNCA 3 HaBeAeHUMU Y NiTepaTypHUX [LKepenax.
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