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UncneHHoe MoLenMpoBaHme NIMHENHO-YNPYro MUKPOMONSAPHON cpefbl
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MonUTEXHNYECKUIA MHCTUTYT OpJieaHCKoro yHueepcuteTa, OpreaH, ®paHuys

B pamkax TpexMepHol MUKPOMONSPHOA Teopuu BbINOMHEHO YWCNEHHOE MOAENMPOBAHME XPYMKUX
M30TPOMHbIX MAaTEPUasnoB C pasnMyHbIMK pasmepaMmn nop (amopHoe CTEK/0, XpynKas CKaslbHas
rnopofa v [ipa pasNnyHbIX TUMa Nerkoro 6eToHa) C UCMOb30BaHNEM LUVHAPUYECKUX MOZAENei npu
BO3AE/CTBUM OJHOOCHOW C>KMMalOLLEe/ Harpyski. [ns pelleHus 3aaqv npegnonaraeTcs, 4To
nepeas, BTOpas W TPeTbs KOHCTAHTbl MMKpoBpawieHus (a, 5 U y) B ypaBHeHWM GanaHca
Hanps>KeHWi NponopuyoHanbHbl KBaApaTy CpeaHero AvameTpa Mopbl WM Tak HasbiBaemoit
XapakTepHoW AnvHbl. OKasanoch, YTO Takoe AoMylleHne MPUBOAMT K MOCTOSHCTBY MOMSAPHOTO
KoathtpnumeHTa V 1, cnefoBaTenbHO, OH He MOXKET TPaKTOoBaThCA Kak KOHCTaHTa MaTepuana.
3T0 MOXKET CNY>KUTb OCHOBAaHWEM ANS BBEAEHUS [OMONHWUTENbHOV KOHCTaHThI MaTepuana s
TPEXMEPHbIX MUKPOMONsAPHLIX cpef. COOTBETCTBEHHO KOHCTaHTa MUKPOMONSPHOTO CABMTa K
ABNAETCS KOHCTaHTO MaTepuana, YTo NPOTUBOPEUNT HOBEWLLMM pesyfbTaTam. BbinosHeHbl
UMC/IEHHbIE pacyeThbl ANA PasMUHbIX 3HAYEHWIA cTeneHeld cBO6OAbLI N U COOTBETCTBYHOLLMX
o6nacTeil C UENblo WUCCNEeA0BAHUS XapaKTepHbIX OCO6EHHOCTEA KOHCTaHTbl MUKPOMONSAPHOro
casura K. C 1CMonb3oBaHMEM MpPefodKeHHOW MeTOAMKM YCTaHOBNEHA XOpoLuasi CXOAUMOCTb U
COBMECTUMOCTb MOJyUYeHHbIX [AaHHbIX C 3KCMEPUMEHTa/IbHBIMU 15 PAa3HOPOAHBLIX U OAHOPOAHBIX
MaTepuanos C HaHO- M MMUKpOMNopaMu, B TO BpeMsi Kak Ans mop Me3oMacluTaba MosyyeH psag
Henpeo6pasyemblX WM NPepbIBUCTbIX MOMei Hanps>KeHWiA,

Kniouyesble cnosa:. MUKpPOMondapHaa Teopud, YUC/IEHHOe MOAennposaHue, Xpyn-
Kne mMatepunanbl, KOHCTaHTbl MaTepuasna, XapakTepHaa A/nHa.

Notation

ui - small displacements

pi - mMmicrorotations

eijk - Permutation tensor

(0i - rotation fields (macrorotation)
oq - Stress tensor

kij - curvature tensor

ma - couple stress tensor

ya " small strain tensor
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£ij - symmetric part of small strain tensor yj
ij - antisymmetric part of small strain tensor yj
53 - Kronecker delta
X', u', k - material constants
X - first Lame’s constant
U - second Lame’s constant
k - micropolar shear constant
a - first microrotation constant
i - second microrotation constant
y - third microrotation constant
tt - surface traction
Qt - surface couple
nt - unit outward vector normal to the surface S
W - polar ratio
N - coupling number
t - characteristic length for torsion
b - characteristic length for bending
! - first characteristic length scale
2 - second characteristic length scale
- third characteristic length scale
G - characteristic length or average pore diameter

- field equations
i - boundary condition settings
00 - applied compressive loading

Introduction. After the work of Cosserat’s brothers [1], the micropolar
theory has been followed and completed by other authors [2-13]. This theory has
been evolved into the micromorphic theory later. The micromorphic materials
contain the “stress moments” and “body moments,” and they are affected by the
spin inertia [3-6]. Thus, there are three constitutive equations, which are stress
tensor, microstress tensor, and first stress moment ones, with 18 material
constants.

The general micromorphic theory is usually complicated for the mathematical
analyses and applications. Eringen has introduced the antisymmetric (skew
symmetric) properties for first stress moment and microrotation for the
simplification of that theory [3-6]. Such a simplified theory enables one to treat
physically realistic problems and make completely feasible the mathematical
applications. The assumptions introduced by Eringen lead to a micropolar theory
in which two constitutive equations (stress and couple stress) with 6 material
constants can be found.

A further simplified micropolar theory can be obtained assuming that
macrorotations are the same as microrotations, which is named “couple stress
theory” [7-9]. The concept of micropolar theory involves the microstructures into
the continuum media (Fig. 1).
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Fig. 1 Modeling of heterogeneous materials with microstructure [14] (a), components of stress and
couple stress tensors for micropolar solids (b), microrotation compared to macrorotation (c).

This theory can explain and analyze more efficiently the diagonal fracture
plane under compressive loading for heterogeneous materials, e.g., sand, soil, and
high porous rock, than the classical continuum theory [15-18]. It is noteworthy,
that the other theories can also provide the microrotations of particles and their
localizations on the shear bands via the 2D numerical methods [19, 20].
Unfortunately, the direct measurements of microrotation of particles are not
achievable with high accuracy but we can measure the displacements in the
diagonal fracture plane by means of stereophotometric method [21].

The micropolar theory can be also used as a generalized continuum theory in
which microstructure detail can be averaged out by the “characteristic length
scale” [22-24]. This last parameter can be considered as the smallest homogeneous
region in heterogonous media and it is frequently used to model the damage
phenomenon in concrete [25, 26].

The main problem of the micropolar theory is to determine “precisely” the
material constants using experiments, which is not always easy to achieve. Lakes
[10- 12] proposed an experimental procedure to find out four supplementary
material constants (k, a, 0,and y) for micropolar media but it is difficult and not
achievable for all heterogeneous materials in reality. The choice of the material
constants remains not enough precise and clear due to the difficulty of experiments
and some assumptions in the proposed relations [27-29].
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The goal of this paper is to improve our last numerical study in micropolar
theory [30] and to investigate the characteristic length scale based on the pore size
influence on the mechanical behavior using the developed analytical relations for
the 3D micropolar theory. The analytical estimations are used to evaluate the
material constants using the strain-energy density positive definiteness postulate.
Moreover, the results are compared to the classical continuum media or Cauchy’s
media with the identical loading, geometry and mechanical properties. Indeed, the
strain-energy density value is considered the same for micropolar and Cauchy
cases. The above-mentioned analysis should be applicable to both heterogeneous
and homogeneous materials in a unified methodology. To pursue this objective,
four different brittle materials are considered. The first material is an amorphous
material with very low porosity and nanoscale pore size (glass [31]), second
material is a heterogeneous material with high porosity and the microscale pore
size (sedimentary rock [32]), and the two last materials are porous and lightweight
concretes [33] with different porosities and the mesoscale pores. The mentioned
elastic brittle materials are analyzed in order to evaluate the average pore size as
the characteristic length scale in micropolar theory, and the findings are compared
to the Cauchy’s theory results. Finally, the numerical results clarify the material
constant nature of micropolar theory and average pore size effect for three-
dimensional models and its role in the mechanical behavior of the considered
materials. It is important to state that the three-dimensional micropolar models
require six material constants, while the two-dimensional micropolar models need
only four material constants. Accordingly, the three-dimensional numerical
analyses are always more complicated than the two-dimensional models, which
are commonly used to elucidate and delineate the shear localization phenomenon.

1 Mathematical Formulation of Micropolar Solids. For a linear elastic
anisotropic micropolar solid, a strain-energy density function w can be expressed
as a polynomial in function of yj and kj based on the expansion power series
theory [34],

1
W(Y j, kij)= Ao+ Aijytj + Bijkij + Cijkiyjkki + 2 D ijkiyijy ki +

1
+ 2 Eijklk ijk ki for i,j,k,1 12,3, (1)

where yj is the small strain tensor, which composes the symmetric £ij- and
antisymmetric parts j3j ,and kj is the curvature tensor. In the absence of initial
stress and couple stress (Ao = Ay = B j = 0) and the hypothesis of centrosymmetry
coefficient of micropolar media (CjkiO0), we can find the following constitutive
equations:

----- =D jkyK,
for ij,k,1=1,2,3, 2
w  dk., E uklkkl,
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where the fourth order stiffness tensors D~i and E ~ have the symmetry
properties.

Using the above-mentioned property and isotropy of the fourth order stiffness
tensors, the constitutive equations in Eq. (2) can be rewritten as follows [34]:

\°ij = XYKK5ij + (P + K)Yij + (P —K)Yij,

I\mij = X kkkdsj- +( +k)Kkj-+ (p —k )Kj-, for hjok=123. 233

The kinematic relation in micropolar media is
Yij = £y + fiij = uj,i - ekij<Pk for uj,k=121,2*" 4
kj=Pji for i,j =1,2,3, (5)

where ekij is the permutation tensor,

gij=1(uij + uji ®  Pij = eijk(mk- Pk) for hj,k=1223  (6)

where £y, , ui,and p k are symmetric part of Yij or small strain tensor,
antisymmetric part of Yij, displacement fields and the microrotation fields,
respectively. The classical macrorotations mk can be described as follows:

1
mi 2 eijkuk, for i,j,k 12,3 7)

It is assumed that the rotation field (macrorotation) is kinematically
independent from the displacement field and Pi is distinct from the material
rotation. Within framework of the micropolar continuum theory, not only forces
but also moments can be transmitted across the surface of a material element.
The kinematical considerations for micropolar and Cauchy’s theory are identical
for small displacement but micropolar theory has three additional dependent
variables (p t) in respect to the Cauchy’s one (ut).

According to the microrotations in the micropolar theory, the gradient of the
rotation vector can be added and defined as the curvature tensor Kt which is
related by a constitutive relation to the couple stress tensor m§ . With substitution
ofthe equations (4) and (5) into the equation (3), the constitutive equations can be
rewritten as

i kl = X rr"kSI + (2p + k)~kl + Kekim(mm —p m),

. a for k,I,mr=123, (8)
[mkl = aPr,r&kl + fiPk,l +YP |k, w

where 5kl is the Kronecker symbol, X and p are the classical Lame’s constants,
K,a, ,and y are new material constants introduced in micropolar theory. The
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positive definiteness of the strain-energy density requires some restrictions on the
micropolar constants,

Va> 0, 3A+ 2fA> 0, fi> 0, 3a+ 2fi> 0,
[« + k>0, /3+y>0, k>0, y>0 9)

In the absence of body forces and body couples, the equilibrium equations of
the micropolar theory are given as

0,
[mjij = eijkOjk ,

N for  ij. k=123 (10)

The Eq. (10) implies that the Cauchy stress tensor o~ is not necessarily
symmetric and its antisymmetric part is determined by the divergence of the
couple stress tensor . According to the minimum total potential energy
principal, the relation between the variational elastic strain-energy density and the
potential energy function of the body having volume v and surface s for
micropolar is denoted by

| ff (Oij&Yij + mijdkj)dV = ff (ttdu{ + Qtdp t)ds for i j =1,2,3, (11)
Vv s

where ti is the surface traction and Qi is the surface couple, and they can be
denoted as follows:

tt = Ojtnj and Qi = mjtnj for i,j =12, 3, (12)

where nj is the unit outward vector normal to the surface S. Alternatively, the
variational elastic strain-energy density for Cauchy’s media can be described as

H 1 (0ijo£ij)dV = HS (tiGui)ds for Ni=12,3 (13)

It is noteworthy, that for the same geometrical configuration and loading
application, the micropolar normal stress components are smaller than those found
by the Cauchy ones- Accordingly, the micropolar shear stress components are
greater than those found by the Cauchy ones- The comparison of several terms in
Egs- (11) and (13) can substantiate these differences under equality of right hand
sides of Egs- (11) and (13):

micropolar media Cauchy's media
| | | (oijoYij + mijékisz | | | (ouom;‘W for "j =1,23 (14)
v v
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Therefore, due to the micropolar theory assumptions, the shear stress
components variations control couple stress tensor mj .

2. Analytical Evaluation of the Material Constants in Micropolar Theory

and Characteristic Length. The four supplementary material constants for three-
dimensional analysis, k, a, 8, and y can be expressed by the four new terms, W,
N, It,and Ib,the polar ratio, coupling number, characteristic length for torsion
and bending according to Lakes [10-13, 35] (Table 1).

Table 1
Material Constants in Micropolar Theory [10-13, 35]
Material constants Engineering constants Continuum mechanics constants
) (2ri+ k)(32+ 2fi + k) 1 VE
Young’s modulus 2+ 2a+ K (1+v)(1—2)
2a+tk
Shear modulus G =20 a= (1—=2NZG
2 1—N
L _ 1 _ E
Poisson’s ratio V= e 9at K G = 2(1+v)
Characteristic length © 2N2G
for rotation = K=1_8%
Characteristic length | = // 7 \(1)'5 >
for bending b~ "2(2a+k)) -
Coupling number - EK }PE 0<N <1 /8= 2G (2 —2lb)
2(A+K))
i w= PIY | 0<w< 15
Polar ratio Tat Bty y = 430

When k, a, 8, and y vanish, the solid body becomes classically elastic. In
Table 1, k = 0 signifies that the coupling number, N becomes zero and the shear
modulus (a) is identical to the classical continuum theory (G). The mentioned
case corresponds to a decoupling of the rotational and translational degrees of
freedom [10-12]. However, the recent work [2] highlights that the value k, is not
a material constant, it can be set to zero.

If k ~ <»,the classical elastic constants E, G,and v are no more meaningful
and the characteristic lengths (It, Ib) become zero and coupling number N is
equal to one. This case is well known as “couple stress theory” [3, 7-9]. The
latter case deals with that material is incompressible, i.e., the microrotation is
assumed equal to the macrorotation throughout material body.

The first three material constants are analyzed and the graphical results
concerning the relationship between the coupling number and the Poisson’s ratios
are illustrated in Fig. 2 [30].

The first Lame’s material constant (2) over shear modulus (G) versus
Poisson’s ratio is illustrated using auxiliary axis. As shown in Fig. 2, Poisson’s ratio
varies between —land 0.5. The value of Poisson’s ratio changes between 0 and
0.5 for the classical materials except to some special materials. For the a/G and
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Fig. 2. Nondimensional micropolar isotropic elastic linear media material constants variation: fi/G
and /G variations versus coupling number, O<N <1 and L/G versus Poisson’s ratio,
-1< v< 05 [30].

k/G ratios, we find out high positive and negative values when the coupling
number reaches its maximum value (N = 1)

In Fig. 3, the material constants for rotational aspects are deemed in
conjunction with the torsion over bending characteristic length ratio (It/1j) and

polar ratio W. As demonstrated in Fig. 3, yjlG I~ is entirely constant and equal
to two and fillGIb varies very slightly in function of the two characteristic
lengths ratio. However, a/2GIb depends not only on the characteristic length
ratio but also on the polar ratio W: the a/2GIb value is more important if the

polar ratio becomes less than 1, otherwise, the last value remains constant.
Moreover, the polar ratio cannot exceed the value of 1.5 due to the thermo-
dynamical laws [10]. Using the estimation of characteristic length based on the
homogenization approach by Bigoni [36], the material constants can be calculated
and the polar ratio W does not affect the micro- and macrorotations for 3D
micropolar theory simulations [30]. However, the problem is that the last obtained

values cannot satisfy the definition of positive strain energy [Eq. (9)]. In this
paper, we attempt to apply a more simplified and efficient methodology in which
we can use the average pore diameter as characteristic length 1g. Furthermore,
the mentioned graphical analysis (Fig. 3) permits us to use the characteristic
length Ig which can efficiently simplify the micropolar constants (a, P, vy, It,
and 1b). There are two distinct sets of moduli: n, 2, and k which relate the

traditional stresses and strains and have a dimension of force per unit area, and a,
P, and y which relate to the higher-order couple-stresses and torsion, with a
dimension of force. Due to the dimensional difference between the two sets of
moduli, at least three intrinsic characteristic lengths can be defined for an isotropic
elastic micropolar material. These characteristic lengths can be denoted as [8, 18]:
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11= (vin)1/2, 12=(Pin)1/2, 13 = (aln )1/2, (15)
and the characteristic length 1G can be expressed as
I1= 12 =13 = Ig = average pore diameter. (16)

The constitutive equation [Eqg. (8)] can be rewritten including the characteristic
length Ig [Egs. (15) and (16)] in following form:

[°kl = rr&kl + (2n + K)EKl + Kekim(mm ~ p mX
| 12 f A 7 A f k, I r=1,2, 3. (17
i ='T'(p r.r&h %kl % p 1k or k,I,mr=123 (17)

The above definition [Eqg. (17)] will be applied in the numerical simulation
comparing between micropolar theory and Cauchy’s approach on the brittle
isotropic materials with different pore size in the next section.

4.0
3.5
3.0
2.5

2.0
CNXI 15

a 1o
<N 0.5

0
rixi -0.5
a‘ -1.0 B coo
<N .15 2cft ooococ 00000000
CO. .20 J000C0D00000DOOOCOOOO. _ VV:OZ
N S 25

2G It 2G1:

- y=0.3
a 3o . _
N. 35 a/l2Grb: a y=0.8

40 * v|/=1.0

4.5 ® V|/:1.5

5.0

01 02 03 04 05 06 07 OS 09 10
hih

Fig. 3. Nondimensional micropolar isotropic elastic linear media material constants variation:
al2Glb, B/ 2Glb,and y/ 2GI% variations versus torsion over bending characteristic length ratio for
different polar ratios, 0< 15 [30].

3. Numerical Simulation of the Micropolar Theory. We study four elastic
brittle materials as glass material, high porous rock and two porous lightweight
concretes with the same pore sizes and different modulus of elasticity with the
same geometry subjected to the identical compressive loading. The geometry
(r =20mm and h = 80mm in Fig. 4) is chosen according to the AFNOR standard
for the uniaxial compression experiments. The mechanical properties of these
materials are summarized in Table 2.
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Table 2
Material Constants of the Considered Brittle Materials
Material E, \% G, Coupling Polar
GPa m number N ratio V
(see Table 1)  (see Table 1)

ML Glass materials [31] 0 02 1-109 O<N <1 23
M2 Brittle rocks [37] 1 02 wsh 0<N <1 23
M3 Lightweight concrete 1 [33] 34 02  1-10-3 O<N <1 23
M4 Lightweight concrete 2 [33] 24 02  1-10-3 O<N <1 23

The constitutive equations of micropolar theory [Eg- (8)], kinematic relation
[Eqs- (4)-(6)] can be introduced into the two equilibrium equations [Eg- (10)] to
find out the so called “micropolar Navier’s equation” excluding body force and
body couple effects for the static state [Eg- (18)].

for i,j,k,I,mr=12123

Using characteristic length IG [Egs. (15) and (16)], we can rewrite the
equilibrium equations as

A(ukkiaij) K
- + (ukjj + uj kj)+ 2 - (ukjj + uj kj)+

um,l
Kejkr © 2 Pr
+ =0,
] 2 A
Q16 (p kk®ij + pjii + p iji )+ (ukjj + ujkj)+ 2- (ukjj + ujkj)+ (19)
um,l
Ke jkr Pr
+ = 0,

for i,j,k,I,mr=123

where ut are small displacements and <pi are the microrotations, X, n and K
are the material constants in conjunction with the modulus of elasticity and shear
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0 0
Fig. 4. Geometrical configuration and boundary condition for a quarter cylindrical models.

2
modulus (engineering material constants in Table 2), and 1G signifies the state of

the microstructure and pore size. In order to obtain the numerical solutions via
micropolar theory for the above-mentioned materials, we solve the obtained
partial differential equations (PDEs) of micropolar elasticity [Eq. (19)] for the
cylindrical specimens under compressive loading by means of the corresponding
boundary conditions [Eq. (20)]. The applied compressive stress is assumed to be
equal to oo =5 MPa. The coupling number is varied from 0 to 0.7 for chosen
materials (M1, M2, M3, and M4). The appropriate boundary conditions are
presented in Eqg. (20).

In Fig. 4, the geometrical configuration and boundary conditions are
illustrated. The Q symbol indicates the field equations for selected continuum
media [Eqg. (19)].

The } symbols deal with the applied boundary conditions [Eq. (20)]. Due
to the symmetry of geometry and loading, a quarter of cylindrical model and the
required symmetrical boundary conditions are analyzed. This makes possible to
obtain a higher mesh density for numerical calculations and more precise
numerical Gauss integrations around the stress concentration zones. In Eq. 20,
3Q1 and 2 deal with the fixed end and forced end, respectively. Indeed, we
fix one end including displacements and microrotations and apply compressive
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loading as an inward stress vector (00). Hence, dQj represents the Dirichlet
boundary condition and 2 signifies the Neumann boundary condition. In
Eqg. (20), 3 and 4 deal with the x2 - x3 symmetry plane and x1- x3
symmetry plane, respectively. In the next section, Eq. (19) for the brittle materials
(M1, M2, M3, and M4) will be solved using these boundary conditions [Eq. (20)].
The impact of coupling number N on the numerical models will be also
investigated.
4. Numerical Simulation Results and Discussion. As illustrated in Fig. 2,

the coupling number values N larger than 1/V2 lead to the negative values for u.

According to the Eqg. (9), the negative values are not feasible due to the positive
definiteness of strain-energy density. Consequently, the coupling number values
between 0 and 1/V2 should be considered. Furthermore, the numerical calculations

for N =0 and N = i/n/2 vyield the divergency of solution.

The numerical studies are restricted to 01< N < 0.7 in order to avoid the
above-mentioned disadvantages. The compressive stress distribution and micro-
rotation are calculated with the help of numerical solution with assumptions
described in the previous section. The stress components (o 33, 031) for the
selected cylindrical geometry using micropolar and Cauchy media assumptions
are shown in Fig. 5 for M2. The axial and shear stress distribution are similar to
the Cauchy’s one: it can be observed the stress concentration and microrotation
concentration at the bottom and near the bottom due to the boundary conditions,
respectively. As expected from the above results, less normal stress in longitudinal
direction (0 33) for micropolar media (Fig. 5a) is found out while the shear stress
components are increased compared to the Cauchy’s media (Fig. 5d and 5e).
These facts can be explained using the equality of the strain-energy density
concept [Eq. (14)]. In fact, the strain-energy densities for two cases are identical.
The coupling number N was changed to observe the axial and shear stress
distribution variation in this model for different characteristic length scales. The
numerical results are described in Fig. 6.

Low shear stress value is obtained near the bottom of specimen or fixed end
as expected. The couple stress values are found to be low because the couple
stress tensor depends on shear stress due to the equilibrium equations [Eq. (10)]
and consequently, low couple stress values can be extracted. In particular, the
displacement and microrotation fields are emphasized. The stress and displacement
are compared to the Cauchy’s stress theory results for the purpose of evaluating
and verifying the validity of the numerical calculations. The numerical results
imply that N is related to the micropolar effects, and higher values of coupling
number N intensify the shear stress impact on the stress distribution of the model
considered here. The shear stress increase can be observed as a function of the
coupling number value as shown in Fig. 6.

It is necessary to mention that coupling number variations imply different
materials, i.e., we study different materials. The three-dimensional micropolar
analysis assumptions result in six material constants. As previously discussed, the
application of Eq. (15) reduces these material constants to four material constants
(X ft, Kk, and 1G). According to the presented relations in Table 1, it can be
concluded that k cannot be determined without one assumption about coupling
number N.
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Fig. 5 Typical stress distribution for M2 in MPa and microrotation distribution in degree for
applied compressive loading (00 =5 MPa): (a) micropolar results, 033 (N = 0.7); (b) micropolar
results, 03! (N =0.7); (c) micropolar results, €2 (N =0.7); (d) Cauchy results, Cg3; (e) Cauchy
results, CaL.

The numerical results of the micro- and macrorotation values on M1 (glass)
an M2 (rock) are depicted using various coupling numbers N in Fig. 7. Hence,
we take into account the convergent solutions for Ml and M2, which contain
nano- and microscale pores. As illustrated in Fig. 7, the microrotation and
macrorotations have the same behavior.

It can be also concluded that the micro- and macrorotation values are
dependent on the pore size, i.e., the MI (glass, 1G = 1nm) is less depended on
micro- and macrorotation than M2 (rock, 1G = 5~m). Furthermore, the coupling
number increase results in the micropolar shear constant (c) increase.
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Fig. 6. Presentation of the effect of the coupling number on the axial and shear stress variation in
micropolar theory.
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Fig. 7. Effect of the microrotation on the coupling number value N for ML and M2 materials and
variation of micropolar shear constant (K).

According to the obtained results, the micropolar theory application to the
porous materials including the characteristic length (IG) is restricted to the nano-
and microscale, not mesoscale. It is necessary to emphasize that the divergency of
solution or converged discontinuous stress fields for M3 and M4 can be obtained.

The numerical result for M3 is shown in Fig. 8 (coupling number is equal to
0.5). In fact, we obtained the axial and shear stress which are the same for both
M3 and M4, and discontinuous stress distribution from N = 0.1 to 0.5. However,
the stress and shear stress distribution is continuous when N = 0.7 but these
values are the same for both M3 and M4. Hence, for the mesoscale pores, another
parameter is required and the solutions are not correct and/or not convergent.
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Consequently, such numerical divergences arise from the lack of voids’ impacts on
the utilized mathematical formulation. To overcome these numerical discrepancies,
the pore size and voids should be considered and implemented together [37].

Fig. 8 Typical discontinuous stress distribution for lightweight concrete M3 (N = 05).

Conclusions. The 3D simulations based on the micropolar theory have been
performed on different elastic isotropic brittle materials. The characteristic length
(1G) is considered as the average pore diameter and it is used to obtain a, 0, and
y. This assumption leads to a constant polar ratio (W= 2/3), so it cannot be
accounted for as material constant. By taking advantage of the numerically
feasible upper and lower bounds for coupling number (0.1< N < 0.7), it was
found that the coupling number promote the micropolar effects relative to the
Cauchy’s media. As pointed out before, the micropolar shear constant (k) depends
on the coupling number (Fig. 7). Thus, it is concluded that this value is a material
constant. This result is contrary to the recent work [2]. It is believed that the
characteristic length scale assumption [Eq. (16)] causes the above conclusion. The
comparison material constants, which are extracted in the present paper and [2]
substantiates that the presence of a non-material constant is unavoidable. This
parameter can be the polar ratio (W = 2/3) due to the applied postulates for the
characteristic length scales [Eq. (16)], whereas it can be considered as the micro-
polar shear constant k, if we take into account the three stress-based material
constants [2].

According to the numerical results obtained and comparison between
Cauchy’s theory and micropolar theory, it can be inferred that the linear elastic
isotropic micropolar theory is able to handle the heterogeneous materials including
nano- and microscale pores, whereas it results in some physical and numerical
drawbacks for the heterogeneous materials with mesoscale pores, e.g., lightweight
concretes. Therefore, for the analysis of these kinds of materials (mesoscale
pores), it is necessary to take into consideration the voids’ impact on the
numerical models. For such a methodology, the time-rate constitutive laws and
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voids’ ratio variations as a time-dependent parameter should be simultaneously
taken into account, so that strain localizations, rupture planes and shear band
thickness can be numerically extracted via micropolar theory including plasticity
aspects.

Peswome

Y pamkax TpUBUMIPHOT MIKpPOMOIAPHOT Teopii BUKOHAHO YMC/I0BE MOJE/N0BaHHA
KPUXKUX i30TPONHUX MaTepianis i3 pisHUMKU posmipamu nop (amopHe CKno,
KpUXKa CKanbHa nopoga i ABa Pi3HUX TUMWU Nerkoro 6eToHy) 3a [JOMOMOroK
UUNTHAPWUYHOT Mogeni npu AiT OJHOBICHOrO CTUCKa/IbHOIO HaBaHTaXeHHsA. [na
PO3B’A3KY 3afiavyi NPUMNYCKAETbCA, WO Meplla, Apyra i TpeTa KOHCTaHTU MiKpo-
obepTaHHA (a, i 1 Y)Yy piBHAHHI 6anaHCy HanpyXeHb NponopuioHanbHi KBagpa-
Ty CepefHbOro fiameTpa nopu abo Tak 3BaHOT XapakTepHOi f0BXWHU. MoKasaHo,
WO Take MPUMYLLEHHA NPUBOAUTL A0 CTaNOCTi NONAPHOro KoediuieHta W i
BiMOBIAHO BiH He MOXe TpaKTyBaTuUCA AK KOHCTaHTa Martepiany. Lie Mmoxe
CnyrysaTu OCHOBOIO A/ BBefleHHA [OAATKOBOI KOHCTaHTW maTepiany And Tpu-
BUMIPHUX MIiKpPOMNONApHUX cepefoBully. BignoBigHO KOHCTaHTa MiKpOMOAApHOro
3CYBY K € KOHCTaHTOW Martepiany, WO CynepeynTb HOBMUM pesynbratam. Buko-
HaHO YMCNOBI PO3pPaxyHKM AS1A Pi3HMX 3HA4YeHb CTEMEHeR BinbHOCTI N i Bigno-
BIAHWX 0bnacTeil 3 METO AOCNIIKEHHA XapaKTepHUX 0CO6MBOCTEN KOHCTaHTW
MIKpOMOJIAPHOr0 3CyBY K. I3 BMKOPUCTAHHAM 3anpornoHOBaHOT METOAMKU yCTa-
HOBJIEHO XOpOLWY 36DKHICTb Ta CYMICHICTb OTPUMAHMX [aHWX 3 €KCMepUMEH-
TalbHUMW 4018 Pi3HOPigHUX | OAHOPIAHUX MaTepianis i3 HaHO- i Mikponopamu, B
TON 4yac AK Ans nop mesomacwTtaba OTpPMMaHO pAfg MepepuByacTMx abo Henepe-
TBOPKOBAHMUX MOMIB HaNpPyXeHb.
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