Оценка времени распространения фронта разрушения в элементах конструкций

А. Ф. Никитенко

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск, Россия

Исследованы особенности распространения фронта разрушения в элементах конструкций (диски и пластины с переменной толщиной, толстостенные сосуды, нагруженные внутренним давлением). Выполнены верхняя и нижняя оценки относительного времени распространения этого фронта. Сформулированы рекомендации относительно применения полученных результатов в расчетной практике.

Ключевые слова: ползучесть, параметр поврежденности, время начала разрушения, время распространения фронта разрушения.

Характер деформирования и разрушения материала произвольного тела (элемента конструкции), нагруженного внешними температурно-силовыми воздействиями, является двухстадийным [1, 2]. На первой стадии наблюдается накопление повреждений в материале, заканчивается она достижением накопленными повреждениями в точке или в некоторой области тела критического значения, что отвечает началу образования фронта разрушения. Для второй стадии характерно распространение этого фронта до полного разрушения рассматриваемого тела.

Отметим, что в общем случае при решении задачи о распространении фронта разрушения в теле произвольной конфигурации возникают значительные трудности, так как заранее форма фронта и направление его движения неизвестны. По-видимому, поэтому на практике долговечность тела иногда отождествляют со временем начала его разрушения [3], т.е. с продолжительностью первой стадии "скрытого" разрушения. Количество работ, посвященных исследованию движения фронта разрушения в элементах конструкций, весьма ограничено, и следующие из них выводы иногда противоречивы [1, 2, 4–10].

В работе с использованием кинетической теории ползучести исследованы особенности движения фронта разрушения в ряде элементов конструкций в зависимости от характерного геометрического размера, характеристики материала, численное значение которой отражает при соответствующих расчетах выбор варианта кинетической теории ползучести, а также выполнены верхняя и нижняя оценки относительного времени движения фронта разрушения в этих элементах конструкций.

Рассмотрим ползучесть равномерно нагретого диска с одновременным учетом с феноменологических позиций процесса накопления повреждений в материале. Внутренний радиус диска a_0 , наружный b_0 , текущий радиус r, $a_0 \le r \le b_0$, толщина диска h = h(r), причем $h = h_0 r^{-k}$, $k \ge 0$, h_0 – константа.

Полагаем, что в диске реализуется плоское напряженное состояние ($\sigma_z = 0$) при условии несжимаемости ($\eta_{\varphi} + \eta_r + \eta_z = 0$), $\eta_r = dv/dr$, $\eta_{\varphi} = v/r$, где v(r, t) – радиальная скорость перемещения произвольной точки

А. Ф. Никитенко

диска; η_{φ} , η_r , η_z – соответственно окружная, радиальная и осевая компоненты тензора скоростей деформаций ползучести. Ось *z* направлена перпендикулярно плоскости диска, а оси *r*, φ – соответственно радиально и тангенциально.

Напряжения σ_{φ} , σ_r , которые являются главными, в любой момент времени *t* удовлетворяют уравнению равновесия

$$d(hr\sigma_r)/dr - h\sigma_{\varphi} + h\Omega^2 r^2 = 0$$

и граничным условиям:

$$\sigma_r(a_0) = 0; \qquad \sigma_r(b_0) = q,$$

где q – равномерное растягивающее усилие обода диска; $\Omega^2 = \gamma \omega^2$; γ – плотность материала диска; ω – его угловая скорость.

Интегрируя уравнение равновесия с учетом первого граничного условия и $h(r) = h_0 r^{-k}$, получаем

$$\sigma_r = \left(\frac{\Omega^2}{3-k}a_0^{3-k} + \int_a^r \sigma_{\varphi} r^{-k} dr\right) r^{k-1} - \frac{\Omega^2}{3-k}r^2,$$
(1)

с учетом второго граничного условия -

$$\int_{a}^{b} \sigma_{\varphi} r^{-k} dr = Q, \qquad Q = q b_{0}^{1-k} + \frac{\Omega^{2}}{3-k} (b_{0}^{3-k} - a_{0}^{3-k}).$$
(2)

В качестве физических используем расчетные соотношения на основе кинетической теории ползучести Работнова в виде [2, 11]

$$\eta_{ij} = \frac{W}{\sigma_3} \frac{\partial \sigma_3}{\partial \sigma_{ij}}; \qquad W = \frac{B_1 \sigma_3^{n+1}}{\varphi_1(\mu)}, \qquad i, j = 1, 2, 3; \tag{3}$$

$$d\mu/dt = -B_2 \sigma_{*3}^{g+1}/\varphi(\mu), \qquad \mu(x_k, 0) = 1, \qquad \mu(x_k^*, t_*) = 0.$$
(4)

В (3), (4) обозначения общепринятые: η_{ij} , σ_{ij} – компоненты тензоров скоростей деформации ползучести и напряжений; σ_3 , σ_{*3} – эквивалентные напряжения, являющиеся однородными относительно напряжений функциями первой степени; W – удельная мощность рассеяния энергии, $W = \sigma_{ij}\eta_{ij}$; B_1 , n, B_2 , g – характеристики ползучести и длительной прочности материала; μ – параметр, описывающий с феноменологических позиций накопление повреждений в процессе ползучести материала. Время начала разрушения тела (элемента конструкции) обозначено t_* и вычисляется из условия достижения параметром поврежденности в какой-то точке с координатами x_k^* (k = 1, 2, 3) критического значения, равного нулю.

Если $\varphi_1(\mu) = \varphi(\mu)$, то система (3), (4) представляет собой вариант кинетической теории, из которой как частные случаи следуют теория кратковременной ползучести [2, 12], энергетический вариант ползучести и длительной прочности [11, 13], теория упрочнения с различными ее модификациями [11, 14]; если $\varphi(\mu) = 1$, то получаем "упрощенный" вариант кинетической теории ползучести в формулировке Качанова [1, 2]. Следовательно, система уравнений (3), (4) представляет достаточно общий вариант кинетической теории ползучести. В дальнейшем принимаем, что $\varphi_1(\mu) = \mu^{m_1}$,

 $\varphi(\mu) = \mu^m, \ 0 \le m_1 \le m \ [15].$

Для простоты и ясности получаемых результатов выберем в (3), (4) в качестве σ_9 и σ_{*9} максимальное касательное напряжение [1, 2]. Ограничимся, например, случаем, когда в каждой точке диска в любой момент времени вплоть до разрушения $\sigma_{\varphi} > \sigma_r > \sigma_z = 0$. С учетом этого получим $\sigma_9 = \sigma_{*3} = \sigma_{\varphi}/2$, система (3), (4) существенно упрощается и принимает вид

$$\eta_{\varphi} = \overline{B}_1 \sigma_{\varphi}^n / \mu^{m_1}, \qquad \eta_r = 0, \qquad \eta_z = -\overline{B}_1 \sigma_{\varphi}^n / \mu^{m_1}; \tag{5}$$

$$\mu^{m} d\mu / dt = -\overline{B}_{2} \sigma_{\varphi}^{g+1}, \qquad \mu(r, 0) = 1, \qquad \mu(r^{*}, t_{*}) = 0, \tag{6}$$

где $\overline{B}_1 = B_1/2^{n+1}; \ \overline{B}_2 = B_2/2^{g+1}; \ 0 \le m_1 \le m.$

Поскольку $\eta_r = 0$, то dv/dr = 0, откуда следует, что v(r, t) является функцией только времени, т.е. v = c(t). В этом случае

$$\eta_{\varphi} = c(t)/r, \quad \eta_r = 0, \quad \eta_z = -c(t)/r.$$
 (7)

Из сопоставления (5) с (7) получим

$$\sigma_{\varphi}(r,t) = \frac{Q}{J_1} \frac{[\mu(r,t)]^{m_1/n}}{X(t)} r^{-l/n}, \qquad (8)$$

где

$$J_1 = \int_a^b r^{-(k+1/n)} dr; \qquad \left[\frac{c(t)}{B_1}\right]^{1/n} = \frac{Q}{J_1} [X(t)]^{-1}. \tag{9}$$

После подстановки (8) в уравнения (6) и (2) следует

$$\int_{1}^{\mu} z^{k_1} dz = -[(m+1)t^0(r)]^{-1} \int_{0}^{t} [X(\tau)]^{-(g+1)} d\tau, \qquad (10)$$

15

где

$$t^{0}(r) = [(m+1)B_{2}(Q/J_{1})^{g+1}r^{-(g+1)/n}]^{-1}; \qquad k_{1} = [mn - m_{1}(g+1)]/n \quad (11)$$

И

$$\int_{a}^{b} \left[\mu(r,t)\right]^{m_{1}/n} r^{-(k+1/n)} dr = J_{1}X(t).$$
(12)

Таким образом, решение задачи, связанной с расчетом напряженнодеформированного состояния диска и времени начала его разрушения, свелось к решению системы уравнений (10), (12). Действительно, зная $\mu(r, t)$ и X(t), вычисляем из (8) σ_{φ} , из (1) – σ_r , из (7) с использованием (9) – η_{φ} и η_z .

В результате интегрирования (10) получим

$$\mu^{m_1/n} = \left\{ 1 - \frac{\nu}{t^0(r)} \int_0^t [X(\tau)]^{-(g+1)} d\tau \right\}^{\beta},$$
(13)

где

$$\beta = \frac{m_1}{n + mn - m_1(g+1)}; \qquad \nu = \frac{n + mn - m_1(g+1)}{n(m+1)}.$$
 (14)

Подставив (13) в (12), получим

$$\int_{a}^{b} \left\{ 1 - \frac{\nu}{t^{0}(r)} \int_{0}^{t} \left[X(\tau) \right]^{-(g+1)} d\tau \right\}^{\beta} r^{-(k+1/n)} dr = J_{1}X(t).$$
(15)

Решение (15) позволяет найти X(t), а затем из (13) – $\mu(r, t)$. Время начала разрушения диска определяем из условия $\mu(r^*, t_*) = 0$. Легко показать, что $r^* = a_0$, т.е. разрушение начинается с внутренней поверхности диска. Чтобы интеграл в левой части равенства (10) имел смысл в случае $\mu = 0$, на характеристики материала необходимо наложить ограничения, которые подробно описаны в [15].

Пусть $m_1 = 0$. Тогда согласно (14) имеем $\beta = 0$, $\nu = 1$, и система (3), (4) представляет собой вариант кинетической теории ползучести в формулировке Качанова. Согласно (15) X(t) = 1, из (8), (1), (7) с учетом второго равенства (9) следует, что напряженно-деформированное состояние является стационарным. Тогда из (13) получим

$$\mu(r, t) = \left[1 - \frac{t}{t_*^0} \left(\frac{a_0}{r}\right)^{(g+1)/n}\right]^{1/(m+1)},$$

где $t_*^0 = [(m+1)B_2(Q/J_1)^{g+1}a_0^{-(g+1)/n}]^{-1}$, т.е. согласно (11) $t_*^0 = t^0(a_0)$ и представляет собой время начала разрушения диска. Очевидно, что $r^* = a_0$.

В расчетной практике принято иногда время начала разрушения отождествлять с временем разрушения тела [3]. Именно поэтому вычисление продолжительности движения фронта разрушения – одна из актуальных для практики задач.

Отметим (об этом говорилось выше), что в общем случае решение задачи о распространении фронта разрушения в теле произвольной конфигурации связано с трудностями, так как заранее место зарождения фронта, его форма и направление движения неизвестны. Определенно можно сказать, что при $t > t_*$ "... в теле образуются две зоны: зона, где $1 > \mu(t) > 0$, и зона, где уже произошло разрушение, и материал потерял способность к сопротивлению" [2]. Граница между разрушенной зоной и неразрушенной представляет собой фронт разрушения и "... движется он таким образом, что на фронте разрушения $\mu = 0$, и усилия со стороны разрушенной зоны к неразрушенной зоне не передаются" [2].

Применительно к рассматриваемой задаче имеем: в момент $t = t_*$ разрушается внутренняя поверхность диска $r = a_0$, фронт разрушения движется в сторону наружной поверхности $r = b_0$, является симметричным и в любой момент времени $t > t_*$ его радиус есть a(t). Очевидно, что $a_0 < a(t) < b_0$, причем $a(t_*) = a_0$, $a(t_{*f}) = b_0$, t_{*f} – время окончательного разрушения диска, и продолжительность распространения фронта разрушения составляет $t_{*f} - t_*$.

Далее соответствующие параметры и функции, связанные с движением фронта разрушения, обозначим нижним индексом f. В частности, в любой момент времени $t > t_*$ получим $J_1(t) \equiv J_{1f}$, $Q(t) \equiv Q_f$ и т.д.; вычисляются они согласно (2) и (9) при замене a_0 на a(t). В неразрушенной зоне, в которой $1 > \mu(t) > 0$, остаются справедливыми уравнения (5)–(7), уравнение равновесия и соответствующие граничные условия. Поэтому напряжения σ_{φ} и σ_r по-прежнему будут определяться по (1) и (8) с учетом вышеотмеченного замечания относительно соответствующих параметров и функций (обратим внимание на то, что в общем случае в связи с движением фронта разрушения граничные условия следует уточнять).

Повторяя приведенные выше оценки, получаем в момент времени *t* вместо (10), (12):

$$\int_{1}^{\mu(t)} z^{k_1} dz = -\int_{0}^{t} \left[(m+1)t^0(r,\tau) \right]^{-1} \left[X(\tau) \right]^{-(g+1)} d\tau;$$
(16)

$$\int_{a(t)}^{b} [\mu(r,t)]^{m_1/n} r^{-(k+1/n)} dr = J_{1f}(t) X(t).$$
(17)

В результате интегрирования (16) получим

$$\left[\mu(r,t)\right]^{m_1/n} = \left\{1 - \nu \int_0^t \left[t^0(r,\tau)\right]^{-1} \left[X(\tau)\right]^{-(g+1)} d\tau\right\}^{\beta}.$$
 (18)

Пусть в момент времени t фронт разрушения проходит через окружность, радиус которой r, т.е. a(t) = r. На линии фронта выполняется равен-

ство $\mu[(a(t), t)] = 0$. Из (18) в результате использования соответствующего выражения для $t^0(r, t)$ следует

$$1 - \overline{\nu}(m+1)\overline{B}_2 \int_0^t \left[Q_f(\tau) / J_{1f}(\tau)\right]^{g+1} a^{-(g+1)/n} \left[X(\tau)\right]^{-(g+1)} d\tau = 0.$$
(19)

С учетом (19) и соответствующего выражения для $t^{0}(r, t)$ для параметра поврежденности из (18) получим

$$[\mu(r,t)]^{m_1/n} = \left\{ 1 - \left[\frac{r}{a(t)} \right]^{-(g+1)/n} \right\}^{\beta}.$$
 (20)

Равенство (17) с учетом (20) окончательно запишем следующим образом:

$$\int_{a(t)}^{b} \left\{ 1 - \left[\frac{r}{a(t)} \right]^{-(g+1)/n} \right\}^{\beta} r^{-(k+1/n)} dr = J_{1f}(t) X(t).$$
(21)

Для установления закономерности движения фронта разрушения a = a(t) продифференцируем выражение (19) по t, используя в самом общем случае правило дифференцирования интеграла по параметру (t используется в качестве параметра). Исключив в полученном выражении с помощью (19) интегральный член, после простых операций придем к выражению

$$a^{-1+(g+1)/n}\frac{da}{dt} = \frac{\nu n(m+1)}{g+1}B_2[Q_f(t)]^{g+1}[J_{1f}(t)X(t)]^{-(g+1)}.$$

Интегрируя последнее с использованием (21), окончательно запишем

$$I(a) = \frac{\nu n(m+1)}{g+1} B_2 \int_{l_*}^{l} d\tau,$$
(22)

где

$$I(a) = \int_{a}^{b} a^{-1 + (g+1)/n} [Q_{f}(a)]^{-(g+1)} \left\{ \int_{a}^{b} \left[1 - \left(\frac{r}{a}\right)^{-(g+1)/n} \right]^{\beta} r^{-(k+1/n)} dr \right\}^{g+1} da;$$
(23)

$$Q_f(a) = qb_0^{1-k} + \frac{\Omega^2}{3-k}(b_0^{3-k} - a^{3-k}).$$
(24)

Уравнение (22) позволяет описывать временное изменение a = a(t). Об особенностях движения фронта разрушения можно судить по графику в 18 *ISSN 0556-171X. Проблемы прочности, 2007, № 6* системе координат, где по оси абсцисс отложено $\tau = (t - t_*)/t_*$, по оси ординат – $\beta_f = b_0/a(t)$, где β_f – "толщина" неразрушенной части диска в процессе движения фронта. В момент начала движения величина $\beta_f = \beta_1$ ($\beta_1 = b_0/a_0$) и со временем она убывает до единицы, что соответствует окончательному разрушению материала диска. С методической точки зрения при решении уравнения (22) целесообразно в (23) перейти к новым переменным интегрирования $y(t) = a(t)/a_0$ и $\rho(t) = r/a(t)$. Очевидно, что $y(t_*) = 1$, $y(t_*f) = \beta_1$, и поэтому $1 \le y(t) \le \beta_1$; $\rho(t) = 1$ при r = a(t) и $\rho(t) = \beta_1/y(t)$ при $r = b_0$.

На практике иногда в качестве прикидочной оценки относительного времени движения фронта разрушения можно использовать величину $(t_{*f} - t_*)/t_*^0$. Действительно, из (22)–(24) получим

$$\frac{t_{*f} - t_{*}}{t_{*}^{0}} = \frac{g + 1}{\nu n} \left(\frac{n - 1}{n} - k\right)^{g + 1} f(\beta_{1}) I(\beta_{1}),$$
(25)

где

$$\begin{split} I(\beta_1) &= \int_{1}^{\beta_1} y^{-1-(k-1)(g+1)} [q\beta_1^{1-k} + \kappa(\beta_1^{3-k} - y^{3-k})]^{-(g+1)} \times \\ &\times \left[\int_{1}^{\beta_1/y} \rho^{-(k+1/n)} (1 - \rho^{-(g+1)/n})^\beta \, d\rho \right]^{g+1} dy; \\ f(\beta_1) &= \left[\frac{q\beta_1^{1-k} + \kappa(\beta_1^{3-k} - 1)}{\beta_1^{-k+(n-1)/n} - 1} \right]^{g+1}; \qquad \kappa = \frac{a_0^2 \Omega^2}{3-k}. \end{split}$$

Соотношения (22)–(25) использовались для следующих элементов конструкций: в частности, для диска постоянной толщины при k = 0, диска гиперболического профиля, внешний контур которого свободен от растягивающей нагрузки, при q = 0, а также для кольцевой пластины гиперболического профиля, находящейся под действием равномерно распределенной растягивающей нагрузки на внешнем контуре, при $\kappa = 0$ и кольцевой пластины постоянной толщины при $\kappa = 0$ и k = 0.

Аналогичные результаты применительно к перечисленным выше элементам конструкций, получаемые с использованием "упрощенного" варианта кинетической теории ползучести в формулировке Качанова, следуют из (22)–(25), если положить $m_1 = 0$.

Отметим, что структура формул (22)–(25) сохраняется также для других элементов конструкций. Например, для толстостенных сосудов (труба, сфера), нагруженных внутренним давлением *p*, соотношения (22), (23) принимают вид

$$I(a) = \frac{\nu nc}{(g+1)(1+s)} \int_{t_*}^t d\tau,$$
 (26)

ISSN 0556-171Х. Проблемы прочности, 2007, № 6

19

где

$$I(a) = \int_{a}^{b} a^{-1+(1+s)(g+1)/n} \left\{ \int_{a}^{b} \left[1 - \left(\frac{r}{a}\right)^{-(1+s)(g+1)/n} \right]^{\beta} r^{-1+(1+s)/n} dr \right\}^{g+1} da; \quad (27)$$
$$= (m+1)B_2 \left(\frac{\lambda_1 p}{s}\right)^{g+1}, \text{ причем для трубы имеем } s = 1, \ \lambda_1 = 3/2, \text{ для сферы -}$$

 $s=2, \lambda_1=1.$

Фронт разрушения, как и для диска, симметричный, движется от внутренней поверхности $r = a_0$ в сторону наружной $r = b_0$, и в любой момент времени $t > t_*$ его радиус a(t). Если при $0 < t \le t_*$ граничные условия были $\sigma_r(a_0, t) = -p$, $\sigma_r(b_0, t) = 0$, то при $t > t_*$ они, сохраняя прежнюю структуру, уточняются и записываются в виде $\sigma_r(a(t), t) = -p$, $\sigma_r(b_0, t) =$ = 0. В качестве σ_0 и σ_{*0} в рассматриваемой задаче используется интенсивность напряжений σ_i : для трубы $\sigma_i = \sqrt{3}(\sigma_{\varphi} - \sigma_r)/2$, для сферы $\sigma_i =$ $= (\sigma_{\varphi} - \sigma_r)$.

= $(\sigma_{\varphi} - \sigma_r)$. На рисунке представлены результаты решения уравнения (26) для трубы и сферы при $m_1 = 0$; 5 и 10. В начальный момент времени $t > t_*$ фронт разрушения движется достаточно медленно, в дальнейшем резко ускорясь независимо от характеристики материала m_1 и толщины стенки сосуда β_1 . В табл. 1, 2 приведены значения $\tau_* = (t_{*f} - t_*)/t_*$ при разных β_1 и m_1 для трубы и сферы.

Изменение толщины стенки трубы (*a*) и сферы (б) в процессе движения фронта разрушения при $m_1 = 0$ (1), 5 (2) и 10 (3).

Анализ результатов показал, что относительное время движения фронта разрушения колеблется в зависимости от толщины стенки сосуда и характеристики материала m_1 в интервале от сотых долей процента до нескольких десятков (этот же вывод справедлив для диска, если проанализировать аналогичные результаты).

Оценки	<i>m</i> ₁ , равное							
времени	0	3	5	7	10	13		
C/A	0,302	0,176	0,105	0,050	0,0067	0,000017	1,2	
$ au_*$	0,053	0,036	0,025	0,014	0,0280	0,000015		
C/B	0,053	0,036	0,024	0,014	0,0028	0,000015		
C/A	0,573	0,394	0,276	0,166	0,042	0,00085	1,5	
$ au_*$	0,121	0,094	0,073	0,051	0,018	0,00075		
C/B	0,121	0,093	0,072	0,050	0,018	0,00075		
C/A	0,824	0,625	0,480	0,331	0,123	0,008	2	
$ au_*$	0,214	0,178	0,149	0,115	0,057	0,007		
C/B	0,214	0,177	0,147	0,113	0,056	0,007		
C/A	1,008	0,885	0,727	0,553	0,270	0,040	3	
$ au_*$	0,357	0,311	0,273	0,227	0,135	0,035		
C/B	0,357	0,309	0,270	0,223	0,135	0,035		
C/A	1,254	1,051	0,890	0,704	0,385	0,079	4	
$ au_*$	0,467	0,415	0,372	0,318	0,212	0,071		
C/B	0,467	0,412	0,367	0,312	0,206	0,070		

Таблица 1 Оценки относительного времени движения фронта разрушения при β_1 и m_1 для трубы

Таблица 2

Оценки относительного времени движения фронта разрушения при eta_1 и m_1 для сферы

Оценки	<i>m</i> ₁ , равное							
времени	0	3	5	7	10	13		
C/A	0,758	0,562	0,423	0,282	0,097	0,005	1,5	
$ au_*$	0,186	0,152	0,125	0,095	0,044	0,004		
C/B	0,186	0,151	0,124	0,093	0,043	0,004		
C/A	0,758	0,562	0,423	0,282	0,097	0,005	2	
$ au_*$	0,336	0,291	0,254	0,209	0,126	0,030		
C/B	0,336	0,289	0,251	0,206	0,122	0,029		
C/A	1,247	1,044	0,883	0,698	0,380	0,077	2,5	
$ au_*$	0,462	0,411	0,367	0,314	0,208	0,069		
C/B	0,462	0,408	0,363	0,308	0,203	0,068		

Прикидочная оценка относительного времени движения фронта разрушения, следующая из (26), (27), в какой-то мере аналогична (25). Действительно,

$$\frac{t_{*f} - t_{*}}{t_{*}^{0}} = \frac{(g+1)(1+s)}{n\nu} f(\beta_{1})I(\beta_{1}),$$
(28)

где

$$I(\beta_1) = \int_{1}^{\beta_1} y^{-1} \left[\int_{1}^{\beta_1/y} \rho^{-1 - (1+s)/n} (1 - \rho^{-(1+s)(g+1)/n})^{\beta} d\rho \right]^{g+1} dy;$$

ISSN 0556-171Х. Проблемы прочности, 2007, № 6

21

$$f(\beta_1) = \left(\frac{1+s}{n}\right)^{g+1} \left[\frac{\hat{\beta}_1^{(1+s)/n}}{\hat{\beta}_1^{(1+s)/n} - 1}\right]^{g+1}.$$

Представляется целесообразным получить верхнюю и нижнюю оценки относительного времени движения фронта разрушения в элементах конструкций. В работе [16] получены верхняя и нижняя оценки времени начала разрушения произвольного тела:

$$A \le \frac{t_*}{t_*^0} \le B, \quad A = \frac{1 - (1 - \lambda)^{g+2}}{\lambda \overline{\nu}(g+2)}, \quad B = \frac{1 - (1 - \lambda)^{1/\overline{\nu}}}{\lambda}, \quad \lambda = t_*^0 / \overline{t}^0, \quad \overline{\beta} < 1, \quad (29)$$

где t^0 – результат использования теоремы о среднем:

$$\int_{V} (W^{0}/t^{0}) dV = (1/t^{0}) \int_{V} W^{0} dV;$$

 W^0 – мощность диссипируемой энергии в предположении установившейся ползучести материала. В случае $\beta > 1$ границы A и B в (29) меняются местами [16].

На основе (29) совместно с (25) или (28) окончательно получим

$$\frac{C}{B} \le \frac{t_{*f} - t_{*}}{t_{*}} \le \frac{C}{A},$$
(30)

где C – правая часть (25) при расчете дисков гиперболического профиля или правая часть (28) при расчете толстостенных сосудов давления. В табл. 1, 2 расчетные значения относительного времени движения фронта разрушения в сосудах высокого давления отвечают случаю $\beta < 1$ и сопоставляются с его нижней и верхней оценками в соответствии с неравенствами (30).

Заключение. Время начала разрушения элементов конструкций и относительное время распространения фронта разрушения существенно зависят от их геометрических размеров и характеристики материала m_1 , численное значение которой отражает выбор соответствующего варианта кинетической теории ползучести.

Верхнюю и нижнюю оценки времени начала разрушения (29) элементов конструкций и относительного времени движения фронта разрушения (30) в них рекомендуется использовать в расчетной практике.

Работа выполнена в рамках программы INTAS, грант № 03-51-6046.

Резюме

Досліджено особливості розповсюдження фронту руйнування в елементах конструкцій (диски та пластини зі змінною товщиною, товстостінні посуди-

ни, що навантажені внутрішнім тиском). Виконано верхню і нижню оцінки відносного часу розповсюдження цього фронту. Наведено рекомендації щодо застосування отриманих результатів у розрахунковій практиці.

- 1. Качанов Л. М. Теория ползучести. М.: Физматгиз, 1960. 546 с.
- 2. *Работнов Ю. Н.* Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- 3. *Работнов Ю. Н.* Влияние концентрации напряжений на длительную прочность // Инж. журн. Механика твердого тела. 1967. № 3. С. 36 41.
- Качанов Л. М. Время разрушения в условиях ползучести // Проблемы механики сплошной среды (Сборник к 70-летию Н. И. Мусхелишвили).
 – М.: Изд-во АН СССР, 1961. – С. 186 – 201.
- Качанов Л. М. Некоторые вопросы разрушения в условиях ползучести // Ползучесть и длительная прочность: Тр. Всесоюз. сов. по теории расчетов на ползучесть и длительную прочность. – Новосибирск: СО АН СССР, 1963. – С. 3 – 14.
- 6. *Хейхерст.* Определение времени до разрушения для вращающихся дисков в условиях ползучести с использованием уравнений повреждаемости при двухосном напряженном состоянии // Прикл. механика. 1973. № 4. С. 88 95.
- 7. *Хейхерст.* Перераспределение напряжений и разрушение при ползучести равномерно растягиваемых тонких пластин с круглым отверстием // Там же. – № 1. – С. 253 – 260.
- Budden P. J. The sensitivity of the creep rupture of a pressurized cylinder to variations in the multiaxial rupture surface // Int. J. Mech. Sci. – 1985. – 27, No. 1/2. – P. 83 – 95.
- 9. Бойл Дж., Спенс Дж. Анализ напряжений в конструкциях при ползучести: Пер. с англ. М.: Мир, 1986. 360 с.
- Логинов О. А. Распространение фронта разрушения в толстостенной трубе в условиях ползучести // Надежность и прочность машиностроительных конструкций. – Куйбышев: Куйбыш. политехн. ин-т, 1988. – С. 61 – 67.
- 11. *Никитенко А.* Ф. Ползучесть и длительная прочность металлических материалов. Новосибирск: Новосиб. гос. архит.-строит. ун-т, 1997. 278 с.
- 12. Работнов Ю. Н., Милейко С. Т. Кратковременная ползучесть. М.: Наука, 1970. 222 с.
- Соснин О. В., Горев Б. В., Никитенко А. Ф. Энергетический вариант теории ползучести. – Новосибирск: Ин-т гидродинамики им. М. А. Лаврентьева, 1986. – 96 с.
- 14. Закономерности ползучести и длительной прочности. Справочник / Под ред. С. А. Шестерикова. М.: Машиностроение, 1983. 101 с.

А. Ф. Никитенко

- 15. Никитенко А. Ф., Любашевская И. В. Кинетическая теория ползучести и расчет элементов конструкций на длительную прочность. Сообщ. 1. Напряженно-деформированное состояние неравномерно нагретых толстостенных труб // Пробл. прочности. 2005. № 5. С. 30 44.
- 16. Никитенко А. Ф., Любашевская И. В. Кинетическая теория ползучести и расчет элементов конструкций на длительную прочность. Сообщ. 3. Верхняя и нижняя оценки времени начала разрушения неравномерно нагретых элементов конструкций // Там же. – 2006. – № 1. – С. 32 – 40.

Поступила 19. 02. 2007