УДК 539.3

Деформирование упругопластической круговой трехслойной пластины на основании Винклера при термосиловом нагружении

Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко

Белорусский государственный университет транспорта, Гомель, Беларусь

Рассмотрен термосиловой изгиб упругопластической круговой трехслойной пластины с легким заполнителем, находящейся на упругом основании. Для описания кинематики несимметричного по толщине пакета пластины приняты гипотезы ломаной нормали. Реакция основания описывается моделью Винклера. Нагрузка – локальная, симметричная. Получены система уравнений равновесия и ее точное решение в перемещениях. Приведены численные результаты для трехслойной металлополимерной пластины.

Ключевые слова: термоупругость, пластичность, трехслойная пластина, легкий заполнитель, упругое основание.

Обозначения

w(r)	-	прогиб пластины
u(r)	_	продольное перемещение срединной поверхности
		заполнителя
$\psi(r)$	_	относительный сдвиг в заполнителе
h_k	_	толщина k-го слоя, $h_3 = 2c$ (k = 1, 2, 3 – номер слоя)
r_1	_	радиус пластины
<i>a</i> , <i>b</i>	_	внутренний и внешний радиусы кольцевой нагрузки,
		$0 < a < b \le r_1$
$u^{(k)}(r)$	_	продольное перемещение в слоях стержня
$\sigma_{ij}, \epsilon_{ij}$	_	компоненты тензора напряжений и деформаций
δA_e	_	вариация работы внешних сил
δA_i	_	вариация работы внутренних сил упругости
q(r)	_	внешняя распределенная нагрузка
q_R	_	реакция основания
κ_0	_	коэффициент жесткости основания
G_k , K_k	_	модули сдвига и объемной деформации
ber r, bei r, ker r, kei r	_	функции Кельвина нулевого порядка
$\operatorname{ber}_n r$, $\operatorname{bei}_n r$, $\operatorname{ker}_n r$, $\operatorname{kei}_n r$	_	функции Кельвина <i>п</i> -го порядка
H_0	_	функция Хевисайда

Деформирование трехслойных стержней и пластин в терморадиационных полях при статических и динамических нагрузках исследовалось в работах [1–4], трехслойных оболочек – в [5, 6]. Изотермический изгиб трехслойной круговой пластины изучался ранее [7]. В настоящей работе рассмотрен термосиловой изгиб поперечно нагруженной упругопластической круговой трехслойной пластины с легким заполнителем, находящейся на упругом основании.

© Э. И. СТАРОВОЙТОВ, А. В. ЯРОВАЯ, Д. В. ЛЕОНЕНКО, 2007 68 ISSN 0556-171X. Проблемы прочности, 2007, № 5 **Постановка задачи** и ее решение проводятся в цилиндрической системе координат r, φ, z (рис. 1). Для изотропных несущих слоев толщиной h_1 , h_2 приняты гипотезы Кирхгоффа. Несжимаемый по толщине заполнитель ($h_3 = 2c$) легкий, т.е. в нем пренебрегается работа касательных напряжений σ_{rz} в тангенциальном направлении. Деформированная нормаль заполнителя остается прямолинейной, но поворачивается на некоторый дополнительный угол ψ . На границах слоев перемещения непрерывны. На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев.

Рис. 1. Расчетная схема.

Пусть в начальный момент времени на трехслойную круговую пластину, находящуюся на упругом основании, начинают действовать симметричная вертикальная нагрузка $q_0(r)$ и тепловой поток интенсивности q_t , направленный перпендикулярно несущему слою *l*. На границе заданы усилия T_r^0 , H_r^0 , M_r^0 , Q^0 . Задача определения соответствующего температурного поля рассматривалась ранее [2], поэтому полагаем температуру T(z, t)известной.

Ввиду симметрии нагрузки тангенциальные перемещения в слоях отсутствуют: $u_{\varphi}^{(k)} = 0$ (k – номер слоя), а прогиб пластины u(r), относительный сдвиг в заполнителе $\psi(r)$ и радиальное перемещение координатной плоскости w(r) не зависят от координаты φ . Далее эти функции считаются искомыми. Все перемещения и линейные размеры пластины отнесены к ее радиусу r_0 .

С использованием гипотезы прямолинейности нормали заполнителя $2\varepsilon_{rz}^{(3)} = u_{r,z}^{(3)} + w_{yr} = \psi$ после интегрирования получим выражения для радиальных перемещений в слоях $u_r^{(k)}$ через искомые функции:

$$u_r^{(1)} = u + c\psi - zw_{,r} \quad (c \le z \le c + h_1);$$

$$u_r^{(3)} = u + z\psi - zw_{,r} \quad (-c \le z \le c);$$

$$u_r^{(2)} = u - c\psi - zw_{,r} \quad (-c - h_2 \le z \le -c),$$

(1)

где z – координата рассматриваемого волокна (расстояние до срединной плоскости заполнителя); $u + c\psi$ – смещение внешнего несущего слоя вследствие деформации заполнителя; $u - c\psi$ – смещение второго несущего слоя;

запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

Малые деформации в слоях следуют из (1) и соотношений Коши. Предположим, что материалы несущих слоев рассматриваемой круговой трехслойной пластины в процессе деформирования в температурном поле могут проявлять упругопластические свойства. Напряжения и деформации в них связаны неизотермическими соотношениями теории малых упругопластических деформаций [8]. В физически нелинейном заполнителе дополнительно учитывается влияние вида напряженного состояния. В девиаторношаровой форме это будут соотношения:

$$\begin{cases} s_{\alpha}^{(k)} = 2G_{k}(T_{k})(1 - \omega_{k}(\varepsilon_{\mu}^{(k)}, T_{k}))e_{\alpha}^{(k)}, & \alpha = r, \varphi; \\ \sigma^{(k)} = 3K_{k}(T_{k})(\varepsilon^{(k)} - \alpha_{0k}T_{k}), & k = 1, 2; \\ \varphi_{1}(\sigma^{(3)}, T_{3})s_{\alpha\beta}^{(3)} = 2G_{3}(T_{3})(1 - \omega_{3}(\varepsilon_{\mu}^{(3)}, T_{3}))e_{\alpha\beta}^{(3)}, & \alpha, \beta = r, \varphi; \\ s_{rz}^{(3)} = 2G_{3}(T_{3})f^{(3)}(\varepsilon^{(3)}, T_{3})e_{rz}^{(3)}; \\ \varphi_{2}(\sigma^{(3)})\sigma^{(3)} = 3K_{3}(T_{3})(\varepsilon^{(3)} - \alpha_{03}T_{3}), \end{cases}$$
(2)

где $s_{\alpha}^{(k)}$, $e_{\alpha}^{(k)}$ – девиаторы; $\sigma^{(k)}$, $\varepsilon^{(k)}$ – шаровые части тензоров напряжений и деформаций; $G_k(T_k)$, $K_k(T_k)$ – температурно-зависимые модули упругости материалов слоев; α_{0k} – коэффициенты линейного температурного удлинения; $\omega_k(\varepsilon_{\mu}^{(k)}, T_k)$ – функции пластичности материалов несущих слоев и физической нелинейности заполнителя, зависящие от интенсивности деформаций $\varepsilon_{\mu}^{(k)}$ и температуры T_k ; в заполнителе функции нелинейности $\varphi_1(\sigma^{(3)}, T_3)$, $\varphi_2(\sigma^{(3)})$ дополнительно учитывают влияние гидростатического напряжения $\sigma^{(3)}$; k – номер слоя.

С помощью соотношения (2) выделим линейную и температурно-нелинейную составляющие в нормальных компонентах тензора напряжений $\sigma_{\alpha}^{(k)}$:

$$\begin{cases} \sigma_{\alpha}^{(k)} = \sigma_{\alpha e}^{(k)} - \sigma_{\alpha \omega}^{(k)}; & \sigma_{\alpha e}^{(k)} = 2G_k e_{\alpha}^{(k)} + 3K_k \varepsilon^{(k)}; \\ \sigma_{\alpha \omega}^{(k)} = 2G_k \omega^{(k)} e_{\alpha}^{(k)} + 3K_k \alpha_{0k} T_k, & k = 1, 2; \\ \sigma_{\alpha}^{(3)} = \sigma_{\alpha e}^{(3)} - \sigma_{\alpha \omega}^{(3)}; & \sigma_{\alpha e}^{(3)} = 2G_3 e_{\alpha}^{(3)} + 3K_3 \varepsilon^{(3)}; \\ \omega_{\gamma}^{(3)} = \varphi_{\gamma}(\sigma^{(3)}) - 1, & \gamma = 1, 2; \\ \sigma_{\alpha \omega}^{(3)} = 2G_3 \omega^{(3)} e_{\alpha}^{(3)} + 3K_3 \alpha_{03} T + \omega_1^{(3)} s_{\alpha}^{(3)} + \omega_2^{(3)} \sigma^{(3)}, & \alpha = r, \varphi; \\ \sigma_{rz e}^{(3)} = 2G_3 e_{rz}^{(3)}; & \sigma_{rz \omega}^{(3)} = 2G_3 \omega^{(3)} e_{rz}^{(3)} + \omega_{\gamma}^{(3)} s_{rz}^{(3)}. \end{cases}$$
(3)

Введем внутренние усилия и моменты в слоях пластины, также выделяя в них линейные и нелинейные части:

Деформирование упругопластической круговой трехслойной пластины ...

$$\begin{cases} T_{\alpha} = T_{\alpha e} - T_{\alpha \omega} = \sum_{k=1}^{3} T_{\alpha e}^{(k)} - \sum_{k=1}^{3} T_{\alpha \omega}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha e}^{(k)} dz - \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha \omega}^{(k)} dz; \\ M_{\alpha} = M_{\alpha e} - M_{\alpha \omega} = \sum_{k=1}^{3} M_{\alpha e}^{(k)} - \sum_{k=1}^{3} M_{\alpha \omega}^{(k)} = \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha e}^{(k)} z dz - \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha \omega}^{(k)} z dz; \quad (4) \\ H_{\alpha e} = M_{\alpha e}^{(3)} + c(T_{\alpha e}^{(1)} - T_{\alpha e}^{(2)}); \\ H_{\alpha \omega} = M_{\alpha \omega}^{(3)} + c(T_{\alpha \omega}^{(1)} - T_{\alpha \omega}^{(2)}), \quad \alpha = r, \varphi. \end{cases}$$

Уравнения равновесия пластины выводятся из вариационного принципа Лагранжа:

$$\delta A - \delta W = 0, \tag{5}$$

где $\delta A = \delta A_1 + \delta A_2$ – вариация суммарной работы внешних нагрузок $q_0(r)$, реакции основания q_R и контурных усилий T_r^0 , H_r^0 , M_r^0 , Q^0 ;

$$\delta A_1 = \iint_S (q_0 - q_R) \delta w r dr d\varphi; \quad \delta A_2 = \int_0^{2\pi} (T_r^0 \delta u + H_r^0 \delta \psi + M_r^0 \delta w_{,r} + Q^0 \delta w) d\varphi;$$

 δW – вариация работы внутренних сил упругости,

$$\delta W = \iint_{S} \left[\sum_{k=1}^{3} \int_{h_{k}} (\sigma_{r}^{(k)} \delta \varepsilon_{r}^{(k)} + \sigma_{\varphi}^{(k)} \delta \varepsilon_{\varphi}^{(k)}) dz \right] r dr d\varphi.$$
(6)

Интеграл распространен по всей срединной поверхности заполнителя S.

Подставим выражения (3) в соотношения (6), (5) и проведем соответствующие преобразования. В результате получим систему уравнений равновесия в усилиях, описывающую термоупругопластическое деформирование круговой трехслойной пластины с легким заполнителем, находящейся на упругом основании (нижний индекс *e* опускаем):

$$\begin{cases} T_{r,r} + \frac{1}{r}(T_r - T_{\varphi}) = p_{\omega}; \\ H_{r,r} + \frac{1}{r}(H_r - H_{\varphi}) = h_{\omega}; \\ M_{r,r} + \frac{1}{r}(2M_{r,r} - M_{\varphi,r}) = -q_0 + q_R + q_{\omega}. \end{cases}$$
(7)

Соответствующие граничные условия в усилиях имеют вид (r = 1)

$$T_{r} = T_{r}^{0} + T_{\omega}; \qquad H_{r} = H_{r}^{0} + H_{\omega}; \qquad M_{r} = M_{r}^{0} + M_{\omega}; M_{r,r} + \frac{1}{r}(M_{r} - M_{\varphi}) = Q^{0} + M_{r\omega,r} + \frac{1}{r}(M_{r\omega} - M_{\varphi\omega}).$$
(8)

ISSN 0556-171Х. Проблемы прочности, 2007, № 5

71

Предполагается, что связь между реакцией основания и прогибом пластины описывается моделью Винклера, согласно которой

$$q_R = \kappa_0 w, \tag{9}$$

где
 κ_0 – коэффициент жесткости упругого основания (коэффициент постели).

Линейные обобщенные внутренние усилия в уравнениях (7) и граничных условиях (8) можно выразить через искомые перемещения с помощью закона Гука и соотношений (4). В результате система нелинейных дифференциальных уравнений равновесия (7) с учетом (9) в перемещениях принимает вид

$$\begin{bmatrix}
L_2(a_1u + a_2\psi - a_3w_r) = p_{\omega}; \\
L_2(a_2u + a_4\psi - a_5w_r) = h_{\omega}; \\
L_3(a_3u + a_5\psi - a_6w_r) - \kappa_0w = -q_0 + q_{\omega},
\end{bmatrix}$$
(10)

где L_2 , L_3 – дифференциальные операторы второго и третьего порядка,

$$L_{2}(g) \equiv \left(\frac{1}{r}(rg)_{,r}\right)_{,r} \equiv g_{,rr} + \frac{g_{,r}}{r} - \frac{g}{r^{2}};$$

$$L_{3}(g) \equiv \frac{1}{r}(rL_{2}(g))_{,r} \equiv g_{,rrr} + \frac{2g_{,rr}}{r} - \frac{g_{,r}}{r^{2}} + \frac{g}{r^{3}}.$$

Коэффициенты a_i в (10) определяются интегральными соотношениями, полученными из зависимостей внутренних усилий от перемещений, так как модули упругости материалов в слоях изменяются по толщине вместе с температурой:

$$a_{1} = \sum_{k=1}^{3} K_{k0}; \qquad a_{2} = c(K_{10} - K_{20}); \qquad a_{3} = \sum_{k=1}^{3} K_{k1};$$

$$a_{4} = K_{32} + c^{2}(K_{10} + K_{20}); \qquad a_{5} = K_{32} + c(K_{11} - K_{21}); \qquad (11)$$

$$a_{6} = \sum_{k=1}^{3} K_{k2}; \qquad K_{km} = \int_{h_{k}} [K_{k}(T_{k}) + \frac{4}{3}G_{k}(T_{k})]z^{m}dz, \qquad m = 0, 1, 2.$$

Нелинейные добавки в правых частях уравнений следующие:

$$p_{\omega} = T_{r\omega,r} + \frac{1}{r} (T_{r\omega} - T_{\varphi\omega});$$

$$h_{\omega} = H_{r\omega,r} + \frac{1}{r} (H_{r\omega} - H_{\varphi\omega});$$

$$q_{\omega} = M_{r\omega,rr} + \frac{1}{r} (2M_{r\omega,r} - M_{\varphi\omega,r}).$$
(12)

Задача отыскания функций u(r), $\psi(r)$, w(r) замыкается присоединением к (10) силовых (8) или кинематических граничных условий. При жесткой заделке контура пластины должны выполняться требования

$$u = \psi = w = w_{,r} = 0,$$
 (13)

при шарнирном опирании –

$$u = \psi = w = M_r = 0. \tag{14}$$

Сформулированная краевая задача является существенно нелинейной, поэтому говорить о ее точном решении не приходится. Рассмотрим процедуру применения метода упругих решений Ильюшина [8] к данной задаче. Для этого перепишем систему (10) в итерационном виде:

$$\begin{cases} L_2(a_1u^n + a_2\psi^n - a_3w_{,r}^n) = p_{\omega}^{n-1}; \\ L_2(a_2u^n + a_4\psi^n - a_5w_{,r}^n) = h_{\omega}^{n-1}; \\ L_3(a_3u^n + a_5\psi^n - a_6w_{,r}^n) - \kappa_0w^n = -q_0 + q_{\omega}^{n-1}, \end{cases}$$
(15)

где n – номер приближения; величины p_{ω}^{n-1} , h_{ω}^{n-1} , q_{ω}^{n-1} называют "дополнительными" внешними нагрузками и на первом шаге полагают равными нулю, в дальнейшем их вычисляют по результатам предыдущего приближения. При этом используют формулы типа (12), в которых все слагаемые имеют верхний индекс n - 1:

$$p_{\omega}^{n-1} = T_{r\omega,r}^{n-1} + \frac{1}{r} (T_{r\omega}^{n-1} - T_{\varphi\omega}^{n-1});$$

$$h_{\omega}^{n-1} = H_{r\omega,r}^{n-1} + \frac{1}{r} (H_{r\omega}^{n-1} - H_{\varphi\omega}^{n-1});$$

$$q_{\omega}^{n-1} = M_{r\omega,rr}^{n-1} + \frac{1}{r} (2M_{r\omega,r}^{n-1} - M_{\omega\omega,r}^{n-1}),$$
(16)

где

$$T_{\alpha\omega}^{n-1} \equiv \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\omega}^{(k)n-1} dz = \sum_{k=1}^{3} \int_{h_{k}} 2G_{k} \omega_{k} (\varepsilon_{\alpha}^{(k)n-1}) e_{\alpha}^{(k)n-1} dz;$$

$$M_{\alpha\omega}^{n-1} \equiv \sum_{k=1}^{3} \int_{h_{k}} \sigma_{\alpha\omega}^{(k)n-1} z dz = \sum_{k=1}^{3} \int_{h_{k}} 2G_{k} \omega_{k} (\varepsilon_{\alpha}^{(k)n-1}) e_{\alpha}^{(k)n-1} z dz;$$

$$H_{\alpha\omega}^{n-1} = M_{\alpha\omega}^{(3)n-1} + c(T_{\alpha\omega}^{(1)n-1} - T_{\alpha\omega}^{(2)n-1}), \quad \alpha = r, \varphi.$$
(17)

Таким образом, на каждом шаге приближения имеем линейную задачу теории упругости с известными дополнительными "внешними" нагрузками, которые вычисляются по формулам (16), (17). В третьем уравнении системы (15) с помощью первых двух обнуляем коэффициенты перед искомыми

функциями u^n и ψ^n . После двукратного интегрирования этих уравнений система преобразуется к виду

$$\begin{cases} u^{n} = b_{1}w_{r}^{n} - \frac{1}{a_{1}a_{4} - a_{2}^{2}} \frac{1}{r} \int r \int (a_{2}h_{\omega}^{n-1} - a_{4}p_{\omega}^{n-1}) dr dr + C_{1}^{n}r + \frac{C_{2}^{n}}{r}; \\ \psi^{n} = b_{2}w_{r}^{n} + \frac{1}{a_{1}a_{4} - a_{2}^{2}} \frac{1}{r} \int r \int (a_{1}h_{\omega}^{n-1} - a_{2}p_{\omega}^{n-1}) dr dr + C_{3}^{n}r + \frac{C_{4}^{n}}{r}; \\ L_{3}(w_{r}^{n}) + \kappa^{4}w_{r}^{n} = q + f_{\omega}^{n-1}, \end{cases}$$
(18)

где C_1^n , C_2^n , C_3^n , C_4^n – константы интегрирования на *n*-м шаге;

$$\begin{aligned} \kappa^4 &= \kappa_0 D; \qquad q = q_0 D; \qquad b_1 = \frac{a_3 a_4 - a_2 a_5}{a_1 a_4 - a_2^2}; \qquad b_2 = \frac{a_1 a_5 - a_2 a_3}{a_1 a_4 - a_2^2}; \\ f_{\omega}^{n-1} &= -Dq_{\omega}^{n-1} + D_1 \frac{1}{r} (rp_{\omega}^{n-1})_{,r} + D_2 \frac{1}{r} (rh_{\omega}^{n-1})_{,r}; \\ D &= \frac{a_1 (a_1 a_4 - a_2^2)}{(a_1 a_6 - a_3^2)(a_1 a_4 - a_2^2) - (a_1 a_5 - a_2 a_3)^2}; \\ D_1 &= \frac{a_1 (a_3 a_4 - a_2 a_5)}{(a_1 a_6 - a_3^2)(a_1 a_4 - a_2^2) - (a_1 a_5 - a_2 a_3)^2}; \\ D_2 &= \frac{a_1 (a_1 a_5 - a_2 a_3)}{(a_1 a_6 - a_3^2)(a_1 a_4 - a_2^2) - (a_1 a_5 - a_2 a_3)^2}. \end{aligned}$$

Третье уравнение в (18) в развернутом виде запишем так:

$$w_{jrrr}^{n} + \frac{2}{r} w_{,rrr}^{n} - \frac{1}{r^{2}} w_{,rr}^{n} + \frac{1}{r^{3}} w_{,r}^{n} + \kappa^{4} w^{n} = q + f_{\omega}^{n-1}.$$
 (19)

Общее решение (19) можно представить в виде

$$w^{m} = C_{5}^{m} \operatorname{ber}(\kappa r) + C_{6}^{m} \operatorname{bei}(\kappa r) + C_{7}^{m} \operatorname{ker}(\kappa r) + C_{8}^{m} \operatorname{kei}(\kappa r) + w_{0}^{n}(r), \quad (20)$$

где ber(κr), bei(κr), ker(κr), kei(κr) – функции Кельвина нулевого порядка; $w_0^n(r)$ – частное решение уравнения (19).

Функция ker(x) и ее первая производная в нуле не ограничены (ker $0 = \infty$, ker' $0 = \infty$). Поскольку прогиб и его первая производная в центре пластины должны быть конечными, в решении (20) для сплошной круговой

пластины следует положить $C_7^n = C_8^n = 0$. Частное решение в этом случае можно принять с использованием ядра Коши:

$$w_0^n(r) = \int_0^r K(r, s)[q(s) + f_\omega^{n-1}(s)]ds,$$
(21)

где

$$K(r, s) = C_1(s)\varphi_1(r) + C_2(s)\varphi_2(r) + C_3(s)\varphi_3(r) + C_4(s)\varphi_4(r);$$

 $\varphi_1(r) = \operatorname{ber}(\kappa r); \quad \varphi_2(r) = \operatorname{bei}(\kappa r); \quad \varphi_3(r) = \operatorname{ker}(\kappa r); \quad \varphi_4(r) = \operatorname{kei}(\kappa r).$

Функции $C_n(s)$ определяются по соотношениям:

$$C_1(s) = \frac{W_1(s)}{W(s)}; \qquad C_2(s) = \frac{W_2(s)}{W(s)}; \qquad C_3(s) = \frac{W_3(s)}{W(s)}; \qquad C_4(s) = \frac{W_4(s)}{W(s)},$$

где

Частное решение (21) и ядро Коши удовлетворяют условиям [9]:

$$w_0(0) = w'_0(0) = w''_0(0) = w'''_0(0) = 0;$$

$$K(s, s) = K'(s, s) = K''(s, s) = 0, \qquad K'''(s, s) = 1,$$
(22)

штрихи обозначают производные по *r*.

В результате для сплошной круговой пластины искомое итерационное решение принимает вид

$$u^{n} = b_{1}w_{,r}^{n} - \frac{1}{a_{1}a_{4} - a_{2}^{2}} \frac{2}{r} \int r \int (a_{2}h_{\omega}^{n-1} - a_{4}p_{\omega}^{n-1})drdr + C_{1}^{n}r + \frac{C_{2}^{n}}{r}; \quad (23a)$$

ISSN 0556-171Х. Проблемы прочности, 2007, № 5

75

Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко

$$\psi^{n} = b_{2}w_{,r}^{n} + \frac{1}{a_{1}a_{4} - a_{2}^{2}} \frac{1}{r} \int r \int (a_{1}h_{\omega}^{n-1} - a_{2}p_{\omega}^{n-1})drdr + C_{3}^{n}r + \frac{C_{4}^{n}}{r};$$

$$w^{n} = C_{5}^{n} \operatorname{ber}(\kappa r) + C_{6}^{n} \operatorname{bei}(\kappa r) + w_{0}^{n}(r),$$
(236)

где C_2^n и C_4^n определяются из условия непрерывности решения в центре пластины,

$$C_{2}^{n} = \frac{1}{a_{1}a_{4} - a_{2}^{2}} \int r \int (a_{2}h_{\omega}^{n-1} - a_{4}p_{\omega}^{n-1})drdr\Big|_{r=0};$$

$$C_{4}^{n} = -\frac{1}{a_{1}a_{4} - a_{2}^{2}} \int r \int (a_{1}h_{\omega}^{n-1} - a_{2}p_{\omega}^{n-1})drdr\Big|_{r=0}.$$

Константы интегрирования C_1 , C_3 , C_5 , C_6 определяются из условий закрепления контура рассматриваемой трехслойной пластины, находящейся на упругом основании.

При *жесткой заделке контура пластины* решение (23) должно удовлетворять условиям (13). В результате получим

$$C_{1}^{n} = \int r \int (a_{2}h_{\omega}^{n-1} - a_{4}p_{\omega}^{n-1})drdr\Big|_{r=1} - C_{2}^{n};$$

$$C_{3}^{n} = -\int r \int (a_{1}h_{\omega}^{n-1} - a_{2}p_{\omega}^{n-1})drdr\Big|_{r=1} - C_{4}^{n};$$

$$C_{5}^{n} = \frac{w_{0}^{n}(1)\mathrm{bei}\kappa - b_{4}w_{0}^{n}(1)}{b_{4}\mathrm{ber}\kappa - b_{3}\mathrm{bei}\kappa}; \qquad C_{6}^{n} = \frac{w_{0}^{n}(1)\mathrm{ber}\kappa - b_{3}w_{0}^{n}(1)}{b_{3}\mathrm{bei}\kappa - b_{4}\mathrm{ber}\kappa},$$
(24)

где

$$b_3 = \frac{\kappa\sqrt{2}}{2} [\operatorname{ber}_1 \kappa + \operatorname{bei}_1 \kappa]; \qquad b_4 = \frac{\kappa\sqrt{2}}{2} [-\operatorname{ber}_1 \kappa + \operatorname{bei}_1 \kappa]$$

Если контур пластины шарнирно оперт, то константы интегрирования определяются из (14).

Таким образом, общее решение (23) с частным решением (21) и константами интегрирования (24) описывает термоупругопластическое деформирование круговой трехслойной пластины с легким заполнителем и жестко заделанным контуром, находящейся на упругом основании.

Численный расчет проводили для защемленной по контуру круговой трехслойной пластины с легким заполнителем, находящейся на упругом основании. Слои пластины набраны из материалов Д16Т-фторопласт-Д16Т. Интенсивность поверхностной нагрузки $q_0 = -1$ МПа, теплового потока $q_t = 5000 \text{ Дж/(м}^2 \cdot \text{с})$. Относительные толщины слоев $h_1 = h_2 = 0,04$, $h_3 = 0,4$.

Для рассматриваемой пластины теплотой, расходуемой на нагревание внешнего металлического слоя, пренебрегаем (в силу малой теплоемкости). Его температура принимается равной температуре заполнителя в месте

склейки: $T^{(1)} = T^{(3)}(c, t)$. Вся теплота, воспринимаемая пластиной за время t, расходуется на нагревание полимерного заполнителя. Температура второго несущего слоя также принимается равной температуре заполнителя в месте склейки: $T^{(2)} = T^{(3)}(-c, t)$. Температурное поле в заполнителе определено в [2]. При тепловом потоке $q_t = 5000 \text{ Дж/(м}^2 \cdot c)$ температура во внешнем слое достигает $T_1 = 597$ К в момент времени $t_0 = 60$ мин, что соответствует достаточному разогреву дюралюминия, но меньше температуры плавления заполнителя – фторопласта. Во втором слое – температура постоянна.

Для описания зависимости модулей упругости материалов несущих слоев (металлов) от температуры используется формула, предложенная Беллом [2]:

$$\{G(T), K(T), E(T)\} = \{G(0), K(0), E(0)\}\varphi(T); \\ \varphi(T) = \begin{cases} 1, & 0 < T/T_{\text{III}} \le 0,06; \\ 1,03(1 - T/(2T_{\text{IIII}})), & 0,06 < T/T_{\text{IIII}} \le 0,57, \end{cases}$$
(25)

где $T_{\rm пл}$ – температура плавления материала; G(0), K(0), E(0) – значения модулей при так называемой нулевой температуре. Например, зная величину модуля сдвига G_0 при некоторой температуре T_0 , получаем $G(0) = G_0/\varphi(T_0)$. При более высоких температурах $T/T_{\rm пл} > 0,57$ возможно малое отклонение поведения материала от линейного закона (25).

Зависимость параметров упругости полимерных материалов (заполнителя) от температуры имеет вид

$$\{G(T), K(T)\} = \{G_0, K_0\} / \varphi_1(T); \qquad \varphi_1(T) = (1 + B(\Delta T / T_{\text{III}})^{\gamma} \operatorname{sgn} \Delta T),$$

где $\Delta T = T - T_0$; T_0 – начальная температура; G_0 , K_0 – значения параметров при температуре T_0 ; B, γ – параметры материала заполнителя, получаемые экспериментально.

Функции пластичности материалов несущих слоев и физической нелинейности заполнителя, зависящие от интенсивности деформаций $\varepsilon_{\rm H}^{(k)}$, температуры T_k и гидростатического напряжения $\sigma^{(3)}$, принимаются в виде

$$\omega_{k}(\varepsilon_{\pi}^{k}, T_{k}) = \begin{cases} 0, & \varepsilon_{\pi}^{k} \leq \varepsilon_{\pi}^{k}; \\ A_{1k} \left(1 - \frac{\varepsilon_{\pi0}^{k}}{\varepsilon_{\pi}^{k} + \varepsilon_{\pi0}^{k} - \varepsilon_{\pi}^{k}} \right)^{\alpha_{1k}}, & \varepsilon_{\pi}^{k} > \varepsilon_{\pi}^{k}; \\ \varepsilon_{\pi}^{k}(T) = \frac{\sigma_{\pi}^{k}(T_{k})}{E_{k}(T_{k})}; & \sigma_{\pi}^{k} = \sigma_{\pi0}^{k} \exp\left\{ \kappa_{k} \left(\frac{1}{T_{k}} - \frac{1}{T_{k0}} \right) \right\}; \\ \varphi_{1}(\sigma^{(3)}, T_{3}) = (1 - A_{2} |\sigma|^{\alpha_{2}})(1 + B(\Delta T_{3}/T_{3\min})^{\gamma} \operatorname{sgn} \Delta T_{3}); \\ \varphi_{2}(\sigma^{(3)}) = \begin{cases} 1, & p \geq p_{0}; \\ A_{3} |\sigma|^{\alpha_{3}}, & p < p_{0}, \end{cases} \end{cases}$$
(26)

Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко

где A_{1k} , α_{1k} , E_k , κ_k , A_2 , α_2 , A_3 , α_3 – константы материалов слоев, получаемые экспериментально; $\varepsilon_{\rm T}^k$ – предел текучести материала по деформациям при температуре T_k ; $\varepsilon_{\rm T0}^{(k)}$ – предел текучести при начальной температуре; p_0 – минимальное давление, при котором закрываются все внутренние дефекты в материале заполнителя.

В качестве заполнителя часто используются полимерные материалы. Механизм их объемного поведения при положительных средних напряжениях σ качественно и количественно отличается от такового при всестороннем сжатии. Надежные соответствующие опытные данные в настоящее время отсутствуют. Поэтому функция нелинейности φ_2 определена только в области $\sigma < 0$. Все термомеханические характеристики используемых материалов, входящие в (25), (26), приведены в [2].

Числовое исследование решения (18)–(24) для пластины с основанием средней жесткости ($\kappa_0 = 100 \text{ МПа/м}$) показало быструю сходимость метода упругих решений (рис. 2). Максимальное отличие перемещений в четвертом приближении, принятом за искомое решение, от предыдущих составляет менее 1%. Интенсивность поверхностной нагрузки принималась $q_0 = -20 \text{ МПа}$.

Рис. 2. Сходимость метода упругих решений для пластины с основанием средней жесткости: *a* – прогиб; *б* – сдвиг (*1* – изотермический изгиб упругой пластины; *2* – термоупругий изгиб; *3*, *4* – номера кривых, соответствующие номеру итерации).

Сходимость метода для пластины с основанием малой жесткости в подобных условиях осталась прежней. В случае основания большой жесткости прогибы малы, поэтому уже второе приближение является достаточным.

На рис. 3 показаны перемещения в рассматриваемой пластине. Учет физически нелинейного термосилового деформирования материалов слоев приводит к увеличению упругого расчетного прогиба на 12,5%. Если принять материалы несущих слоев более пластичными, то эта разница составит 17%.

Распределение областей физической нелинейности в вертикальном сечении трехслойной пластины иллюстрирует рис. 4 (темные зоны). Заполнитель на 82% деформируется нелинейно. В несущих слоях зоны пластичности занимают до 25% объема материала. Области физической нелинейности в пластине, пределы текучести материалов которой уменьшены в два раза, представлены на рис. 5. Их площадь несколько увеличилась по сравнению с предыдущим случаем.

Рис. 3. Перемещения в пластине с основанием средней жесткости: *a* – прогиб; *б* – сдвиг (*1* – упругий изгиб; *2* – термоупругий; *3* – термоупругопластический; *4* – термоупругопластический, если пределы текучести материалов слоев уменьшены в два раза).

Рис. 4. Распределение областей физической нелинейности в поперечном сечении трехслойной пластины.

Рис. 5. Области физической нелинейности в поперечном сечении трехслойной пластины, пределы текучести материалов слоев которой уменьшены в два раза.

Приведенное общее решение (21), (23) можно использовать для исследования любого случая изгиба симметричной термосиловой нагрузкой трехслойной круговой пластины с легким заполнителем на упругом основании.

Резюме

Розглянуто термосиловий згин непорушної пружно-пластичної круглої тришарової пластини з легким заповнювачем на пружній основі. Для опису кінематики несиметричного по товщині пакста пластини прийнято гіпотези ломаної нормалі. Реакція основи описується моделлю Вінклера. Навантаження – локальне, симетричне. Отримано систему рівнянь рівноваги та її точний розв'язок у переміщеннях. Приведено числові результати для тришарової металополімерної пластини.

1. Старовойтов Э. И., Яровая А. В., Леоненко Д. В. Локальные и импульсные нагружения трехслойных элементов конструкций. – Гомель: Бел. гос. ун-т транспорта, 2003. – 367 с.

- Э. И. Старовойтов, А. В. Яровая, Д. В. Леоненко
- 2. Горшков А. Г., Старовойтов Э. И., Яровая А. В. Механика слоистых вязкоупругопластических элементов конструкций. М.: Физматлит, 2005. 576 с.
- 3. Старовойтов Э. И., Леоненко Д. В., Яровая А. В. Колебания круговых трехслойных пластин под действием распределенных локальных нагрузок // Пробл. прочности. 2002. № 5. С. 70 79.
- 4. Старовойтов Э. И., Леоненко Д. В., Яровая А. В. Колебания круглых трехслойных пластин под действием поверхностных нагрузок различных форм // Там же. 2003. № 4. С. 32 39.
- 5. Cheng Zhenqiang, Jemah A. K., and Williams F. W. Theory for multilayered anisotropic plates with weakened interfaces // Trans. ASME. J. Appl. Mech. 1996. 63, No. 4. P. 1019 1026.
- 6. *Ebsioglu J. K.* On the theory on sandwich panels in the reference state // Int. J. Eng. Sci. 1966. No. 6. P. 166 194.
- 7. *Яровая А. В.* Изгиб трехслойной круговой пластины на упругом основании // Пробл. прочности. 2005. № 6. С. 68 78.
- Ильюшин А. А. Пластичность. Ч. 1. Упругопластические деформации. М.: Гостехиздат, 1948. – 376 с.
- 9. *Камке* Э. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976. 576 с.

Поступила 25. 04. 2006