Влияние температуры и скорости нагружения на энергию зарождения и распространения трещин в образцах Шарпи из углеродистых сталей

В. В. Харченко, Е. А. Кондряков, В. Н. Жмака, А. А. Бабуцкий, А. И. Бабуцкий

Институт проблем прочности им. Г. С. Писаренко НАН Украины, Киев, Украина

Проведены ударные испытания образцов Шарпи при различных температурах и скоростях нагружения. По полученным диаграммам изменения усилий определены зависимости энергии зарождения и распространения трещин в углеродистых сталях 45 и Ст. 3 от температуры. Оценено влияние скорости удара в диапазоне 1...4,4 м/с на зависимости ударной вязкости от температуры.

Ключевые слова: углеродистые стали, образец Шарпи, инструментированный копер, ударная вязкость, энергия зарождения и распространения трещины, температура вязкохрупкого перехода.

Введение. Температура вязкохрупкого перехода (ТВХП) является одной из основных характеристик материалов при оценке прочности и надежности конструкций и сооружений. Для ее определения используются различные методы испытаний. Наиболее простой и распространенный — ударные испытания образцов Шарпи. Обычно в результате таких испытаний определяются зависимости ударной вязкости от температуры и путем их обработки — температуры вязкохрупкого перехода [1–3]. При этом следует учитывать, что ударная вязкость — это интегральная характеристика, которая включает в себя энергию деформирования образца, энергию зарождения и распространения трещины.

Использование инструментированных копров позволяет регистрировать диаграммы изменения усилия от времени в процессе испытаний и таким образом получать гораздо больше информации о поведении материала [1, 4–7]. Благодаря применению современных высокоскоростных цифровых систем регистрации значительно увеличиваются возможности ее обработки. Это, в свою очередь, позволяет анализировать разные подходы к определению температуры вязкохрупкого перехода и энергии, затрачиваемой на различных стадиях деформирования и разрушения образцов Шарпи при ударных испытаниях [2].

Цель данной работы заключалась в исследовании поведения углеродистых сталей Ст. 3 и 45 при различных температурах и скоростях нагружения с применением инструментированного вертикального копра.

Методика испытаний и обработки результатов. Ударные испытания сталей проводили на инструментированном вертикальном копре, оснащенном многоканальной системой высокоскоростной регистрации усилий и деформаций (частота дискретизации 20 МГц), а также системой нагрева и охлаждения образцов в диапазоне температур T = -150...400°C [8]. Объектом исследований служили стандартные образцы Шарпи размером $55 \times 10 \times 10$ мм

из стали Ст. 3 и 45 [9, 10]. Скорость удара v_0 варьировали от 1,0 до 4,4 м/с, температуру – от -135 до 315° С.

Известно, что характер разрушения образцов изменяется в зависимости от температуры испытания и скорости деформирования. По полученным диаграммам P(t), имеющим достаточно высокое разрешение по обеим координатам (рис. 1), можно определить энергию, затрачиваемую на разрушение образца, а также разделить ее на энергию до момента образования трещины (зарождения трещины), энергию вязкого и (или) хрупкого распространения трещины [5].

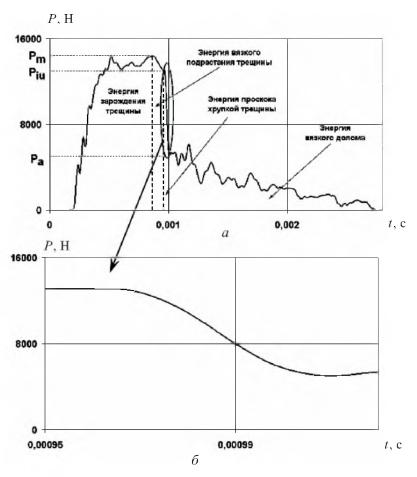


Рис. 1. Характерная диаграмма P(t) для стали 45 в области вязкохрупкого перехода при $v_0=2$ м/с, $T=20^{\circ}\mathrm{C}$ (a) и изменение сигнала во время хрупкого проскока трещины при увеличении масштаба по времени (δ).

Величину составляющих энергии можно определить двумя способами. Первый способ [9] предполагает преобразование зависимости нагрузка P – время t в зависимость нагрузка P – перемещение s. Для этого по известным массе ударника (нагружающего устройства) m, начальной скорости удара v_0 и зависимости P(t) двойным последовательным интегрированием находят изменение скорости ударника v(t) при нагружении образца Шарпи по уравнению

$$v(t) = v_0 - \frac{1}{m} \int_{t_0}^t P(t)dt,$$

затем — зависимость перемещения ударника s от времени t:

$$s(t) = \int_{t_0}^{t} v(t)dt.$$

По полученным зависимостям можно построить расчетную кривую P(s) и определить составляющие энергетических затрат на разрушение. Однако данный способ представляется достаточно трудоемким, так как предполагает двойное интегрирование.

Согласно второму способу, предложенному в работе [11], энергия деформирования и разрушения образцов Шарпи определяется по формуле

$$A(t_1, t_2) = \frac{1}{m} \left[q(t_1) - \frac{1}{2} \Delta q(t_1, t_2) \right] \Delta q(t_1, t_2),$$

где q(t) = mv(t); m — масса ударника; v — скорость ударника.

Таким образом, для вычисления работы на отрезке времени от t_1 до t_2 требуется определить запас количества движения к началу интервала времени t_1 и изменение Δq на этом интервале. Вычисления значений энергии деформирования и разрушения образцов проводились именно этим способом.

Анализ результатов испытаний. Характерные диаграммы изменения усилия во времени представлены на рис. 2, 3. При испытаниях сталей 45 и Ст. 3 при температурах ниже 50° С наблюдался хрупкий проскок трещины. Видно, что величина усилия P_a , при котором наблюдаются остановка хрупкой трещины и последующий вязкий долом образца, монотонно уменьшается до нуля с понижением температуры испытаний. Также монотонно увеличивается зона хрупкого разрушения, прослеживаемая на изломе образцов.

На основании анализа диаграмм усилия можно предложить следующий простой способ определения верхней и нижней температурной границы зоны вязкохрупкого перехода (ЗВХП) в углеродистых сталях. Исчезновение на диаграмме P(t) резкого уменьшения (скачка) усилия ($P_{iu}-P_a=0$) при повышении температуры испытаний свидетельствует о верхней границе ЗВХП, уменьшение усилия до нуля ($P_a=0$) при понижении температуры – о нижней границе.

Высокая чувствительность цифровой системы регистрации сигнала позволяет растянуть масштаб сигнала по времени в области хрупкого распространения трещины (рис. $1,\delta$). Проведенные оценки показывают, что длительность хрупкого проскока t=15...35 мкс. Это дает возможность с достаточной точностью оценить среднюю скорость распространения хрупкой трещины $v_{\rm тp}$ (длину трещины можно определить по излому разрушенного образца). Для стали 45 $v_{\rm тp}$ изменяется в диапазоне 150...400 м/с, для стали Ст. 3 наблюдается аналогичная картина. Из рис. $1,\delta$ видно, что снижение

нагрузки при распространении хрупкой трещины происходит достаточно плавно, без резких скачков. Также можно оценить скорость развития вязкого разрушения — скорость такой трещины составляет 1...20 м/с. Такие величины скоростей согласуются с оценкой, полученной по результатам испытаний корабельной стали [12].

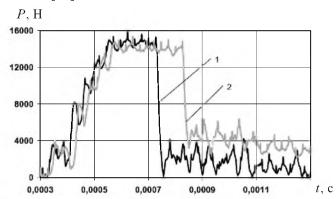


Рис. 2. Диаграммы P(t) для стали 45 при скорости нагружения 2 м/с: $I-T=10^{\circ}\mathrm{C};\ 2-T=20^{\circ}\mathrm{C}.$

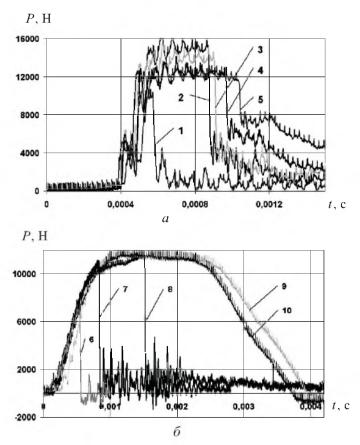


Рис. 3. Диаграммы P(t) для стали Ст. 3 при скорости нагружения 4,4 (a) и 1 м/с (б): $I-T=-5^{\circ}\mathrm{C};\ 2-T=20^{\circ}\mathrm{C};\ 3-T=30^{\circ}\mathrm{C};\ 4-T=40^{\circ}\mathrm{C};\ 5-T=50^{\circ}\mathrm{C};\ 6-T=-20^{\circ}\mathrm{C};\ 7-T=0^{\circ}\mathrm{C};\ 8-T=10^{\circ}\mathrm{C};\ 9-T=20^{\circ}\mathrm{C};\ 10-T=55^{\circ}\mathrm{C}.$

На рис. 4 показаны зависимости полной энергии деформирования и разрушения от температуры при различных скоростях деформирования образцов Шарпи из стали 45. В таблице приведены значения составляющих энергии. Видно, что зависимость энергии от температуры в ЗВХП слабочувствительна к скорости удара, и ЗВХП находится в диапазоне температур -20...50°C.

Значения общей энергии деформирования и разрушения и ее составляющих в зависимости от скорости нагружения и температуры испытания для стали 45

№ образца	v_0 , m/c	T, °C	E_t , Дж	E_i , Дж	E_b , Дж	E_d , Дж
203	2,0	-135	1,38	1,25	0,12	_
206	2,0	-90	1,90	1,75	0,16	_
205	2,0	-50	2,75	2,62	0,13	_
212	2,0	-20	5,59	5,36	0,22	_
204	2,0	0	9,80	7,11	0,29	2,40
215	2,0	10	15,92	9,72	0,36	5,85
231	2,0	10	10,26	6,33	0,40	3,54
207	2,0	20	23,15	9,84	0,41	12,89
232	2,0	20	17,26	6,64	0,40	10,22
233	2,0	40	20,75	7,28	0,38	13,08
223	2,0	44	23,19	8,86	0,38	13,94
224	2,0	100	28,32	9,98	_	18,34
230	2,0	155	25,26	9,15	_	16,11
211	4,4	-50	3,15	2,41	0,73	_
214	4,4	-20	4,34	3,33	0,61	0,39
209	4,4	0	6,86	5,77	0,82	0,26
217	4,4	10	11,56	5,90	1,08	4,57
222	4,4	20	15,61	7,98	0,86	6,77
234	4,4	20	14,29	6,94	0,91	6,44
225	4,4	43	24,32	7,55	0,90	15,87
235	4,4	50	31,91	9,58	0,76	21,57
226	4,4	100	33,54	10,14	_	23,40
236	4,4	150	31,46	9,62	_	21,84

Примечание. E_t — общая энергия деформирования и разрушения; E_i — энергия зарождения трещины; E_b — энергия хрупкого разрушения; E_d — энергия вязкого разрушения.

Были проведены также испытания при более низких скоростях нагружения: $v_0 = 1$ и 1,4 м/с. Согласно рис. 5 полная энергия разрушения слабо зависит от скорости удара в диапазоне 1...4,4 м/с.

Аналогичные зависимости полной энергии разрушения от температуры были получены для стали Ст. 3, для которой ТВХП находится в интервале $0...50^{\circ}$ С.

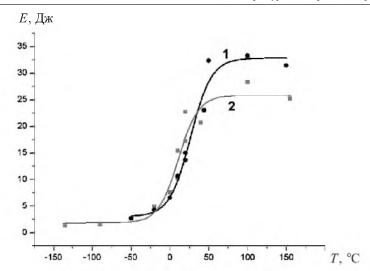


Рис. 4. Зависимости полной энергии деформирования и разрушения от температуры при различных скоростях деформирования образцов Шарпи из стали 45: $I-v_0=4,4$ м/c; $2-v_0=2$ м/c.

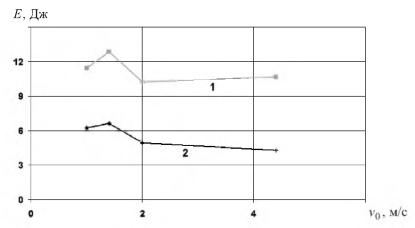


Рис. 5. Изменение полной энергии разрушения стали 45 в зависимости от скорости нагружения при $T=10^{\circ}$ C (I) и -20° C (2).

На рис. 6 представлены зависимости всех составляющих энергии деформирования и разрушения образцов Шарпи из стали 45 от температуры испытания для скоростей нагружения $v_0 = 2$ и 4,4 м/с. Видно, что большая часть энергии расходуется на вязкое разрушение, тогда как энергия, затрачиваемая на хрупкое разрушение, является незначительной.

Аналогичные зависимости составляющих энергии разрушения от температуры получены для стали Ст. 3.

Заключение. Ударные испытания образцов Шарпи с использованием инструментированного вертикального копра позволили получить зависимости энергии зарождения и распространения трещин в углеродистых сталях от температуры при скоростях нагружения в диапазоне 1...4,4 м/с.

Предложен способ определения нижней и верхней температурной границы ЗВХП в сталях.

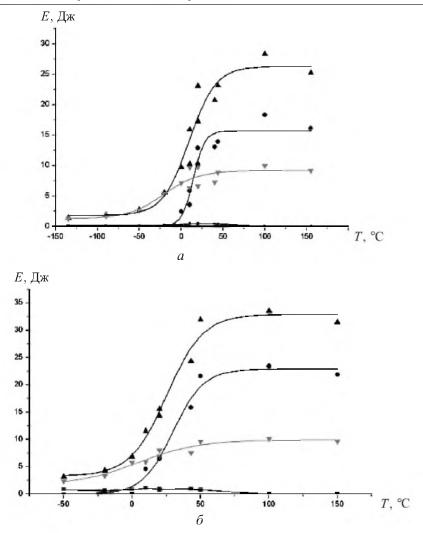


Рис. 6. Зависимости энергии зарождения трещины E_i (\blacktriangledown), энергии вязкого разрушения E_d (\blacksquare), энергии хрупкого разрушения E_b (\blacksquare) и общей энергии деформирования и разрушения E_t (\blacktriangle) от температуры при $v_0=2$ м/с (a) и $v_0=4,4$ м/с (b) для стали 45.

Показано, что скорость распространения трещины в образцах Шарпи из углеродистых сталей при вязком разрушении составляет примерно $1...20\,$ м/с, при хрупком $-100...400\,$ м/с.

Резюме

Проведено ударні випробування зразків типу Шарпі при різних температурах та швидкостях навантаження. За допомогою отриманих діаграм зміни зусиль визначено залежності енергії зародження та розповсюдження тріщин у вуглецевих сталях 45 і Ст. 3 від температури. Оцінено вплив швидкості удару в діапазоні 1...4,4 м/с на залежності ударної в'язкості від температури.

- 1. Makhutov N. A., Morozov E. M., and Matvienko Yu. G. The history and the development of the impact test in Russia // Proc. Charpy Centenary Conf. (Poitiers, France, 2–5 Oct., 2001). Poitiers, 2001. P. 557 566.
- 2. *Proceedings* Charpy Centenary Conference (Poitiers, France, 2–5 Oct., 2001). Poitiers, 2001. Vol. 1, 2. 861 p.
- 3. *Красовский А. Я.*, *Кашталян Ю. А.*, *Красико В. Н.* Исследование трещиностойкости корпусных сталей при статическом и динамическом нагружении с учетом эффекта масштаба испытуемых образцов. Киев, 1982. 63 с. (Препр. / АН УССР. Ин-т пробл. прочности.)
- 4. *Tanguy B.*, *Piques R.*, *and Pineau A.* Experimental analysis of Charpy V-notch specimens // Proc. Charpy Centenary Conf. (Poitiers, France, 2–5 Oct., 2001). Poitiers, 2001. P. 425 432.
- 5. Gallo C., Alvarez J. A., Gutierrez-Solana F., and Polanco J. A. Predicting crack arrest behavior of structural steels using small-scale material characterisation tests // Proc. Charpy Centenary Conf. (Poitiers, France, 2–5 Oct., 2001). Poitiers, 2001. P. 661 668.
- 6. Значковский О. Я., Новиков И. В. Испытания на ударный изгиб при низких температурах с записью диаграмм деформирования // Пробл. прочности. -1972. -№ 12. C. 55 57.
- 7. Стрижало В. А., Значковский О. Я., Новогрудский Л. С. Особенности распространения трещин в конструкционных сплавах при температурах до 4,2 К // Там же. -1997. № 6. C. 36 40.
- 8. *Кондряков Е. А.*, *Жмака В. Н.*, *Харченко В. В. и др.* Система измерения деформаций и усилий при динамических испытаниях // Там же. 2005. № 3. С. 140 146.
- 9. *ISO 14556*. Steel Charpy V-Notch Pendulum Impact Test Instrumented Test Method. 05.01.2005.
- 10. *ГОСТ 9454-78*. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. Введ. 01.01.79.
- 11. *Бакши О. А.*, *Пинчук И. О.*, *Кукин А. Г. и др.* Измерительное устройство для определения критериев хрупкости материалов по методу тензометрирования процесса разрушения образца ударным изгибом // Приборы для исследования физических свойств материалов. Киев: Наук. думка, 1974. С. 200 206.
- 12. *Domazet Z.*, *Raic J.*, *and Papic J.* Introduction of instrumented testing in shipyards // Proc. Charpy Centenary Conf. (Poitiers, France, 2–5 Oct., 2001). Poitiers, 2001. P. 683 689.

Поступила 19. 06. 06