Компьютерное моделирование процессов упругопластической деформации проволоки при намотке

И. В. Хромов

Севастопольский национальный технический университет, Севастополь, Украина

Предложен алгоритм численного решения задачи об упругопластическом кручении стержня при постоянных значениях продольной силы и крутящего момента с учетом упрочнения материала. Получены расчетные зависимости изгибающего момента, относительного удлинения и кручения стержня от кривизны. Показано, что пластические свойства материала стержня оказывают существенное влияние на результаты расчетов. Приведены трехмерные эпюры нормальных и касательных напряжений на разных этапах нагружения стержня.

Ключевые слова: численное решение, продольная сила, крутящий момент, нагружение.

В механике упругопластического поведения тела нередко рассматриваются процессы сложного нагружения стержня, на который одновременно действуют продольная сила, крутящий и изгибающий моменты. В подобных задачах напряженное состояние материала описывается дифференциальными соотношениями теории пластического течения, которые в общем случае невозможно свести к конечным аналитическим зависимостям [1]. Для решения таких задач необходимо использовать численные методы и прикладные компьютерные программы [2].

В данной работе исследуется процесс упругопластического изгиба стержня при заданных постоянных значениях продольной силы и крутящего момента. Известное аналитическое решение задачи имеет существенные ограничения, так как опирается на приближенный интегральный метод и не учитывает упрочнения материала [3]. Для совершенствования методов проектирования реальных техпроцессов представляет интерес поиск более точного решения.

В дальнейшем будем использовать следующие гипотезы: стержень имеет круглое поперечное сечение, форма и размеры которого при деформации не изменяются; поведение материала в зоне упругих деформаций F_e описывается законом Гука:

$$d\sigma = Ed\varepsilon, \qquad d\tau = Gd\gamma,$$
 (1)

а в зоне пластических деформаций F_p — дифференциальными соотношениями для материала с линейным изотропным упрочнением [3]:

$$d\sigma = E\left(1 - k\frac{\sigma^2}{\sigma_{\rm T}^2}\right)d\varepsilon - Ek\frac{\sigma\tau}{\sigma_{\rm T}^2}d\gamma, \qquad d\tau = \frac{E}{3}\left(1 - k\frac{3\tau^2}{\sigma_{\rm T}^2}\right)d\gamma - Ek\frac{\sigma\tau}{\sigma_{\rm T}^2}d\varepsilon, \quad (2)$$

где E,G — модуль упругости первого и второго рода соответственно; $\sigma_{\scriptscriptstyle \rm T}$ — предел текучести; σ,τ — нормальные и касательные напряжения; ε,γ —

деформации относительного удлинения и сдвига; $k=(1-\lambda)/\widetilde{T}^2$ — функция, зависящая от коэффициента упрочнения λ и приведенной интенсивности касательных напряжений $\widetilde{T}=\frac{1}{\sigma_{\scriptscriptstyle T}}\sqrt{\sigma^2+3\tau^2}$.

Расчетная схема реализации процесса нагружения представлена на рис. 1. Тонкий прямой стержень диаметром d (стальная проволока) на свободном конце нагружается в пределах упругости продольной силой N и крутящим моментом $M_{\rm кp}$. Деформации продольной оси стержня на прямолинейном участке определяются, согласно закону Гука, по следующим формулам:

$$\varepsilon_{01} = \frac{N}{EF}; \qquad \theta_1 = \frac{M_{\text{kp}}}{GI_p}, \tag{3}$$

где ε_{01} , θ_1 – относительные удлинение и угол кручения; F, I_p – площадь и полярный момент инерции поперечного сечения стержня (рис. 1).

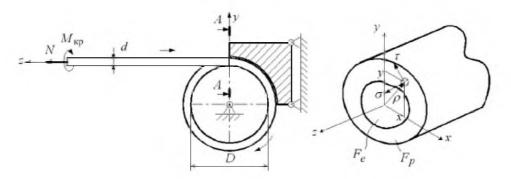


Рис. 1. Расчетная схема процесса нагружения.

Другой конец стержня медленно наматывается на цилиндр диаметром D, и в малой окрестности сечения $A\!-\!A$ подвергается упругопластическому изгибу до кривизны $K_{x2}=2/(D+d)$. Под действием продольной силы N и крутящего момента $M_{\rm kp}$ в указанной зоне стержень будет испытывать дополнительные деформации удлинения ε_{02} и кручения θ_2 . Для определения этих деформаций используем условия равновесия: внутренние продольная сила и крутящий момент на любом этапе изгиба стержня в окрестности поперечного сечения $A\!-\!A$ остаются постоянными, т.е. $dN=dM_{\rm kp}=0$. Используя известные формулы для приращений внутренних усилий упругопластического стержня [3], записываем систему уравнений:

$$dN = G_{11}d\varepsilon_0 + G_{12}d\theta + G_{13}dK_x = 0;$$

$$dM_{\text{KP}} = G_{12}d\varepsilon_0 + G_{22}d\theta + G_{23}dK_x = 0,$$
(4)

где G_{kl} — обобщенные интегральные коэффициенты жесткости, определяемые по формулам

$$G_{11} = E \left(F - \int_{F_p} k \frac{\sigma^2}{\sigma_{\tau}^2} dF \right); \quad G_{22} = \frac{E}{3} \left(I_p - \int_{F_p} k \frac{3\tau^2}{\sigma_{\tau}^2} \rho^2 dF \right);$$

$$G_{12} = -E \int_{F_p} k \frac{\sigma\tau}{\sigma_{\tau}^2} \rho dF; \quad G_{13} = -E \int_{F_p} k \frac{\sigma^2}{\sigma_{\tau}^2} y dF; \quad G_{23} = -E \int_{F_p} k \frac{\sigma\tau}{\sigma_{\tau}^2} y \rho dF,$$
(5)

где F_p — зона пластических деформаций в поперечном сечении стержня; y, ρ — координаты рассматриваемой точки поперечного сечения (рис. 1).

Из уравнений (3) получим интегро-дифференциальные уравнения для расчета неизвестных деформаций:

$$\begin{split} \frac{d\varepsilon_0}{dK_x} &= \frac{G_{12}G_{23} - G_{13}G_{22}}{G_{11}G_{22} - G_{12}^2};\\ \frac{d\theta}{dK_x} &= \frac{G_{12}G_{13} - G_{23}G_{11}}{G_{11}G_{22} - G_{12}^2}. \end{split} \tag{6}$$

Эти уравнения, очевидно, не имеют аналитического решения, поскольку правые части представляют собой интегральные функции вида (5), неявно зависящие от параметров деформации ε_0 , θ , K_x . Для решения используем дискретную модель: площадь поперечного сечения стержня разбиваем с помощью прямоугольной сетки на конечное количество одинаковых малых площадок $\Delta F = \Delta x \Delta y$ (рис. 2). Текущее напряженное состояние в центре произвольной площадки с координатами x_i , y_j , ρ_{ij} определяется тремя массивами: σ_{ij} , τ_{ij} , k_{ij} . Процесс упругопластического изгиба также разбиваем на конечное количество этапов m с малым приращением кривизны $\Delta K_x = \frac{K_{x2}}{m}$. Для решения дифференциальных уравнений (2) и (6) используем усовершенствованный метод ломаных Эйлера [4]. Интегральные коэффициенты жесткости (5) рассчитываем по методу прямоугольников [5]. Общий алгоритм численного решения состоит в следующем:

- 1) на основании (1) и (3) определяются начальные значения массивов σ_{ij} , τ_{ij} , k_{ij} ;
- 2) по формулам (5) рассчитываются начальные значения коэффициентов жесткости G_{kl} ;
- 3) проводится цикл расчетов для K_x с шагом ΔK_x , где многократно выполняются:

расчет по формулам (6) приращений деформаций стержня $\Delta \varepsilon_0$ и $\Delta \theta$;

расчет деформаций материала $\Delta \varepsilon = \Delta \varepsilon_0 + \Delta K_x y_j$, $\Delta \gamma = \Delta \theta \rho_{ij}$ и новых значений массивов σ_{ij} , τ_{ij} , k_{ij} по формулам (1) или (2) в зависимости от стадии нагружения (упругая или пластическая);

расчет коэффициентов жесткости G_{kl} ;

расчет внутреннего изгибающего момента по формуле $M_x = \int_{F_p} \sigma y dF$ и

текущих значений деформации стрежня – $\varepsilon_{02} = \varepsilon'_{02} + \Delta \varepsilon_0$, $\theta_2 = \theta'_2 + \Delta \theta$;

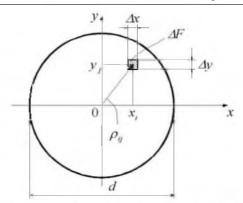


Рис. 2. Схема разбиения поперечного сечения на малые площадки.

возврат к началу цикла, если $\sum \Delta K_x < K_{x2}$, в противном случае расчеты прекращаются.

Описанный алгоритм реализован в рамках созданного нами программного пакета "DEPLAS". Проведена серия численных экспериментов, на основе которых показано, что приемлемая для проектирования относительная погрешность расчетов ($\psi \approx 0.5...1\%$) в данной задаче достигается при шаге разбиения поперечного сечения $\Delta x = \Delta y \leq 0.01D$ и шаге разбиения кривизны $\Delta K_x \leq 0.01K_{\rm T} \leq 0.01\frac{2\sigma_{\rm T}}{ED}$ ($K_{\rm T}$ – кривизна, соответствующая началу пластических деформаций в наружном волокне стрежня).

На рис. З представлены расчетные зависимости изгибающего момента M_x , относительного удлинения ε_{02} и кручения θ_2 стержня от кривизны K_{x2} для различных значений коэффициента упрочнения λ . Расчет выполнялся при следующих исходных данных: d=0,4 мм; $\sigma_{\rm T}=1800$ МПа; $E=2\cdot10^5$ МПа (стальная проволока); N=45 H; $M_{\rm Kp}=0,0013$ H·м; D=14,4 мм.

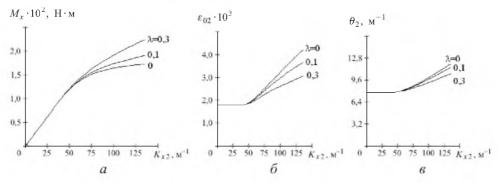


Рис. 3. Расчетные зависимости изгибающего момента M_x (a), относительного удлинения ε_{02} (δ) и кручения стержня θ_2 (s) от кривизны при различных значениях λ .

Разработанный пакет программ позволяет также осуществлять трехмерный визуальный анализ напряженного состояния стержня на любом этапе нагружения. На рис. 4 показаны этпоры нормальных σ и касательных

au напряжений в конце второго этапа нагружения (упругопластический изгиб при $N={
m const},\ M_{
m kp}={
m const}$ и $\lambda=0,1$). Как видно из рис. 4,6, при изгибе стержня в пластической зоне поперечного сечения за счет больших нормальных напряжений σ уменьшаются касательные напряжения τ , этнора которых приобретает нелинейный характер. Рис. 5 иллюстрирует этноры нормальных σ и касательных τ напряжений в стержне после снятия всех нагрузок (упругая разгрузка).

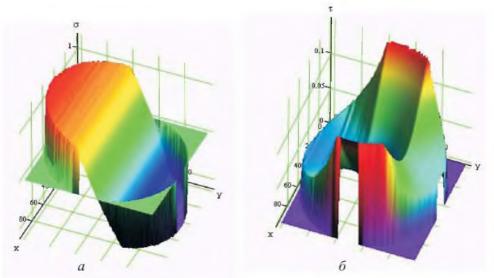


Рис. 4. Эпюры нормальных σ (*a*) и касательных τ (*б*) напряжений после упругопластического

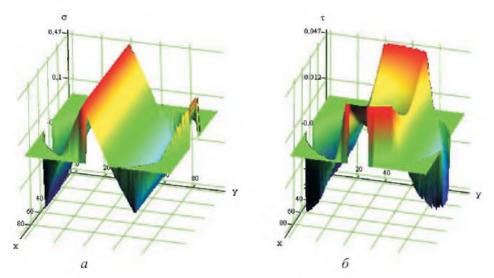


Рис. 5. Эпюры нормальных σ (*a*) и касательных τ (*б*) напряжений после снятия всех нагрузок.

Таким образом, выбранные методы и вновь созданные программные средства позволяют эффективно и достаточно точно моделировать изменение внутренних усилий при произвольном нагружении круглого упруго-

пластического стержня. Учет упрочнения материала, а также использование локального метода по сравнению с интегральным вносят существенные уточнения (10...20% и более) в расчетные зависимости и могут применяться для совершенствования методов проектирования технологических процессов.

Резюме

Запропоновано алгоритм числового розв'язку задачі про пружно-пластичне крутіння стрижня при постійних значеннях поздовжньої сили та скручувального моменту з урахуванням зміцнення матеріалу. Отримано розрахункові залежності згинального моменту, відносного подовження і крутіння стрижня від кривини. Показано, що пластичні властивості матеріалу стрижня мають суттєвий вплив на результати розрахунків. Наведено тривимірні епюри нормальних і дотичних напружень на різних етапах навантаження стрижня.

- 1. *Качанов Л. М.* Основы теории пластичности. М.: Наука, 1969. 420 с.
- 2. *Ветров А. П., Хромов В. Г.* Напряженно-деформированное состояние в упругопластической стадии нагружения // Изв. вузов. 1977. № 4. С. 14 18.
- 3. *Хромов В. Г.* Механика процесса холодной упругопластической деформации стержня. Киев.: УМК ВО, 1990. 50 с.
- 4. *Демидович Б. П., Марон И. А., Шувалова Э. 3.* Численные методы анализа. М.: Гос. изд-во физ.-мат. лит., 1962. 368 с.
- 5. *Хромов И. В.* Исследование точности метода прямоугольников в прикладных расчетах интегральных характеристик упругопластического стержня // Моделирование и исследование сложных систем. М., 2001. С. 85 89.

Поступила 29. 12. 2002