УДК 539.3

Колебания круглых трехслойных пластин под действием поверхностных нагрузок различной формы

Э. И. Старовойтов, Д. В. Леоненко, А. В. Яровая

Белорусский государственный университет транспорта, Гомель, Беларусь

Рассмотрены осесимметричные поперечные колебания круглой упругой трехслойной пластины под действием локальных и импульсных поверхностных нагрузок квазисинусоидальной и параболической формы. Для описания кинематики несимметричного по толщине пакета приняты гипотезы ломаной нормали. Заполнитель – легкий. Аналитические решения получены с использованием системы функций Хевисайда и дельта-функции Дирака. Проведен численный анализ полученных решений.

Ключевые слова: упругость, колебания, трехслойные пластины, локальные нагрузки.

Обозначения

ρ_k	-	плотность материала k -го слоя ($k = 1, 2, 3$)
q(r,t)	-	внешняя распределенная нагрузка
q_0	-	интенсивность распределенной нагрузки
$q_n(t)$	-	коэффициенты разложения нагрузки в ряд по собственным функциям
w(r,t)	-	прогиб пластины
$\psi(r,t)$	-	относительный сдвиг в заполнителе
u(r,t)	-	радиальное перемещение срединной плоскости заполнителя
G_k, K_k	-	модули сдвига и объемной деформации
r_0	-	радиус пластины
v _n	-	фундаментальная ортонормированная система собственных функций
d_n	-	нормировочный коэффициент
$T_n(t)$	-	функция времени в разложении в ряд по системе собственных функций
J_n	-	функции Бесселя <i>n</i> -го порядка
I_n	-	модифицированные функции Бесселя <i>n</i> -го порядка
$U_n(x, y)$	-	функция Ломмеля двух переменных
β_n	-	собственные числа
ω_n	-	частоты собственных колебаний
A_n, B_n	-	константы интегрирования
$H_0(x)$	-	функция Хевисайда
$\delta(t)$	-	дельта-функция Дирака
h_k	-	толщина слоя

Введение. Ранее [1, 2] при исследовании вынужденных колебаний упругой круглой несимметричной по толщине трехслойной пластины интенсивность внешней поверхностной нагрузки принималась постоянной по пространству внутри области воздействия (ее форма в произвольный момент

© Э. И. СТАРОВОЙТОВ, Д. В. ЛЕОНЕНКО, А. В. ЯРОВАЯ, 2003 32 ISSN 0556-171X. Проблемы прочности, 2003, № 4 времени была прямоугольной). В данной работе рассматриваются малые осесимметричные поперечные колебания указанной пластины, вызванные локальными поверхностными нагрузками квазисинусоидальной и параболической пространственной формы. Проводится сравнение с ранее полученными результатами.

Постановка задачи. Используется цилиндрическая система координат r, φ, z . Заполнитель считаем легким, т.е. пренебрегаем его работой в тангенциальном направлении. Внешняя вертикальная нагрузка не зависит от координаты $\varphi: q = q(r,t)$. На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев. В этом случае перемещения в пластине u, ψ, w , система собственных ортонормированных функций v_n , частоты колебаний ω_n , представления параметров $q_n(t)$ разложения нагрузки q(r,t) в ряд и функции времени $T_n(t)$ будут определяться соотношениями, приведенными в [1]:

$$u(r,t) = b_1 \sum_{n=0}^{\infty} \varphi_n T_n(t); \quad \psi(r,t) = b_2 \sum_{n=0}^{\infty} \varphi_n T_n(t); \quad w(r,t) = \sum_{n=0}^{\infty} v_n T_n(t);$$
$$v_n(\beta_n,r) \equiv \frac{1}{d_n} \bigg[J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r) \bigg];$$
$$\varphi_n = \frac{\beta_n}{d_n} \bigg[J_1(\beta_n) r - J_1(\beta_n r) + \frac{J_0(\beta_n)}{I_0(\beta_n)} (I_1(\beta_n) r - I_1(\beta_n r)) \bigg];$$
$$\omega_n^2 = \frac{\beta_n^4}{M^4}; \quad q(r,t) = M_0 \sum_{n=0}^{\infty} v_n q_n(t); \quad q_n(t) = \frac{1}{M_0} \int_0^1 q(r,t) v_n r dr;$$
$$T_n(t) = A_n \cos \omega_n t + B_n \sin \omega_n t + \frac{1}{\omega_n} \int_0^t \sin \omega_n (t - \tau) q_n(\tau) d\tau, \quad (1)$$

где параметры M_0, b_1, b_2, d_n вычисляются через жесткостные и геометрические параметры слоев по известным формулам [2]; собственные числа β_n следуют из граничных условий; коэффициенты A_n, B_n определяются начальными условиями движения.

Результаты расчетов. Рассмотрим несколько примеров локального и импульсного внешнего силового воздействия на пластину распределенными нагрузками квазисинусоидальной и параболической формы. Для удобства аналитической записи нагрузки воспользуемся функциями Хевисайда $H_0(x)$ и Дирака $\delta(t)$. Задача, как правило, сводится к отысканию функции времени $T_n(t)$ и параметров $q_n(t)$ разложения в ряд заданной нагрузки. Численный расчет проводился для защемленной по контуру пластины единичного радиуса r_0 , слои которой набраны из материалов Д16Т – фторопласт – Д16Т. Все перемещения и линейные размеры пластины отнесены к r_0 . Соответст-

вующие механические характеристики материалов приведены в [3]. Собственные частоты колебаний ω_n вычислялись по формуле (1) с использованием приведенных в [2, 4] собственных чисел и геометрических параметров слоев $h_1 = h_2 = 0,01$; $h_3 = 2c = 0,05$. Начальные условия предполагались однородными

$$w(r,0) \equiv \dot{w}(r,0) \equiv 0,$$

что позволяет принять нулевые константы интегрирования $A_n = 0$, $B_n = 0$. Анализ сходимости рядов (1) при вычислении перемещений показал, что достаточно удерживать первые 14 слагаемых, так как последующие на результат практически не влияют.

1. На круговую часть поверхности пластины *r* ≤ *b* действует квазисинусоидальная нагрузка (рис. 1):

$$q(r,t) = q_0 \sin\left[\frac{\pi}{2} \left(1 - \left(\frac{r}{b}\right)^2\right)\right] H_0(b-r).$$
 (2)

Подставляя нагрузку (2) в соответствующую формулу (1), получаем интегральное выражение для определения параметров $q_n(t)$:

$$q_n(t) = \frac{q_0(t)}{M_0 d_n} \int_0^b \sin\left[\frac{\pi}{2b^2} (b^2 - r^2)\right] H_0(b - r) \left(J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r)\right) r dr.$$

Вычисление интегралов позволяет искомые разложения выразить через специальные функции [5]:

$$q_{n}(t) = \frac{q_{0}(t)b^{2}}{\pi M_{0}d_{n}} \left[U_{2}(\pi,\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} U_{2}(\pi,i\beta_{n}b) \right];$$

$$T_{n}(t) = \frac{q_{0}b^{2}(1-\cos(\omega_{n}t))}{\pi M_{0}d_{n}\omega_{n}^{2}} \left[U_{2}(\pi,\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} U_{2}(\pi,i\beta_{n}b) \right].$$
(3)

На рис. 2,*а* показано изменение во времени прогиба в центре пластины при воздействии на всю ее внешнюю поверхность (*b* = 1) распределенной нагрузки квазисинусоидальной и прямоугольной формы. Сравнение прогибов *1* и *2*, вычисленных при одинаковой максимальной интенсивности $q_0 = 7 \cdot 10^4$ Па, показывает, что нагрузка прямоугольной формы вызывает больший прогиб. Если для нагрузки квазисинусоидальной и прямоугольной формы принять одинаковую равнодействующую, то (рис. 1)

$$q'_{0} = q_{0} \int_{V} dV \bigg/ \int_{V} \sin \bigg[\frac{\pi}{2} (1 - r^{2}) \bigg] dV = \frac{1}{2} \pi q_{0}.$$
(4)

Рис. 1. Круглая трехслойная пластина под действием нагрузки прямоугольной q_0 и квазисинусоидальной q_0' формы.

Рис. 2. Динамический прогиб пластины при постоянном (*a*) и импульсном (б) воздействии нагрузки квазисинусоидальной (1, 3) и прямоугольной (2) формы.

При квазисинусоидальной нагрузке интенсивностью q'_0 получим прогиб 3, который превышает (по максимуму) прогиб от равновеликой прямоугольной нагрузки примерно на 40%.

Если внешняя квазисинусоидальная нагрузка приложена импульсно внутри круга $r \le b$, то, добавляя в (2) дельта-функцию Дирака $\delta(t)$, имеем

$$q(r,t) = q_1 \delta(t) \sin\left[\frac{\pi}{2} \left(1 - \left(\frac{r}{b}\right)^2\right)\right] H_0(b-r), \quad q_1 = \text{const.}$$
(5)

Параметры разложения нагрузки (5) и функции времени в ряд будут

$$q_{n}(t) = \frac{q_{1}\delta(t)b^{2}}{\pi M_{0}d_{n}} \bigg[U_{2}(\pi,\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} U_{2}(\pi,i\beta_{n}b) \bigg];$$

$$T_{n}(t) = \frac{q_{1}b^{2}\sin(\omega_{n}t)}{\pi M_{0}d_{n}\omega_{n}} \bigg[U_{2}(\pi,\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} U_{2}(\pi,i\beta_{n}b) \bigg].$$
(6)

На рис. 2,6 показано изменение прогиба вдоль радиуса при импульсном воздействии на всю поверхность пластины (b = 1) в момент времени $t = \pi/(2\omega_0)$, где кривые 1, 2 соответствуют прогибам от квазисинусоидального и прямоугольного импульсов с одинаковой по величине амплитудой $q_1 = 10^3$ Па · с. Если интегрально импульсы эквивалентны, то амплитуда квазисинусоидального импульса $q'_0 = 1/2\pi q_1$. Соответствующий прогиб 3 будет на 22% больше прогиба 2.

2. На круговую часть поверхности пластины *r* ≤ *b* действует параболическая выпуклая кверху нагрузка:

$$q(r,t) = q_0 H_0(b-r) \left(1 - \left(\frac{r}{b}\right)^2 \right).$$
(7)

Подставляя (7) в формулу (1) представления параметров разложения нагрузки в ряд, получаем интегральное выражение

$$q_n(t) = \frac{q_0(t)}{M_0 d_n b^2} \int_0^b H_0(b-r) \left(J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r) \right) (b^2 - r^2) r dr,$$

откуда

$$q_{n}(t) = \frac{2q_{0}(t)}{M_{0}d_{n}\beta_{n}^{2}} \left[J_{2}(\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{2}(\beta_{n}b) \right];$$

$$T_{n}(t) = \frac{2q_{0}(1 - \cos(\omega_{n}t))}{M_{0}d_{n}\beta_{n}^{2}\omega_{n}^{2}} \left[J_{2}(\beta_{n}b) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{2}(\beta_{n}b) \right].$$
(8)

На рис. 3,*а* показано изменение во времени прогиба в центре пластины при воздействии на всю ее внешнюю поверхность нагрузки выпуклой параболической и прямоугольной формы с одинаковой равнодействующей. В этом случае амплитуда q'_0 выпуклой параболической нагрузки, рассчитанная по формуле типа (4), в два раза превышает интенсивность принятой прямоугольной нагрузки $q_0 = 70000$ Па. Прогиб соответственно больше в 1,52 раза.

Если рассматриваемая параболическая нагрузка приложена импульсно внутри круга $r \leq a$, то, добавляя в (7) дельта-функцию Дирака $\delta(t)$, получаем

$$q(r,t) = q_1 \delta(t) H_0(a-r) \left(1 - \left(\frac{r}{a}\right)^2 \right), \quad q_1 = \text{const.}$$
 (9)

Тогда

$$q_{n}(t) = \frac{2q_{1}\delta(t)}{M_{0}d_{n}\beta_{n}^{2}} \bigg[J_{2}(\beta_{n}a) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{2}(\beta_{n}a) \bigg];$$

$$T_{n}(t) = \frac{2q_{1}\sin(\omega_{n}t)}{M_{0}d_{n}\beta_{n}^{2}\omega_{n}} \bigg[J_{2}(\beta_{n}a) - \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} I_{2}(\beta_{n}a) \bigg].$$
(10)

Рис. 3. Динамический прогиб пластины при постоянном (*a*) и импульсном (б) воздействии нагрузки выпуклой параболической (1) и прямоугольной (2) формы. (3 – импульс прямоугольной формы интенсивностью $q_1 = 700$ Па; 4 – квазисинусоидальный импульс с амплитудой $q'_1 = 1/2\pi q_1$; 5 – выпуклый параболический импульс с амплитудой $q''_1 = 2q_1$.)

Рис. 3,6 иллюстрирует изменение во времени прогиба в центре круглой трехслойной пластины, вызванного импульсной поверхностной нагрузкой одинаковой мощности. Нагрузка распределена по кругу радиуса a = 0,5. Видно, что величина прогиба 5 по сравнению с 3 и 4 больше.

3. На круговую часть поверхности пластины, ограниченную окружностью радиуса r = a, действует параболическая вогнутая нагрузка (рис. 4). Тогда

$$q(r,t) = q_0 H_0(a-r) \left(1 - \left(\frac{r}{a}\right)\right)^2,$$
(11)

откуда

$$q_n(t) = \frac{q_0(t)}{M_0 d_n a^2} \int_0^a H_0(a-r) \left(J_0(\beta_n r) - \frac{J_0(\beta_n)}{I_0(\beta_n)} I_0(\beta_n r) \right) (a-r)^2 r dr.$$

После вычисления определенного интеграла получим

$$q_{n}(t) = \frac{4q_{0}(t)}{M_{0}d_{n}\beta_{n}^{3}a} \left[\sum_{n=1}^{\infty} J_{2n+1}(\beta_{n}a) + \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} \sum_{n=1}^{\infty} (-1)^{n} I_{2n+1}(\beta_{n}a) \right];$$

$$T_{n}(t) = \frac{4q_{0}(t)(1 - \cos(\omega_{n}t))}{M_{0}d_{n}\beta_{n}^{3}a\omega_{n}^{2}} \left[\sum_{n=1}^{\infty} J_{2n+1}(\beta_{n}a) + \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} \sum_{n=1}^{\infty} (-1)^{n} I_{2n+1}(\beta_{n}a) \right].$$
(12)

На рис. 5 показано изменение во времени прогиба при воздействии на всю внешнюю поверхность пластины распределенной нагрузки вогнутой параболической и прямоугольной формы с одинаковой равнодействующей $(q_0 = 7 \cdot 10^4 \text{ Па}, q'_0 = 6q_0)$. Величина прогиба от параболической вогнутой нагрузки в 2,07 раза больше, чем от прямоугольной. Аналогичный результат наблюдается и для относительного сдвига в заполнителе.

Рис. 4. Круглая трехслойная пластина под действием нагрузки прямоугольной q_0 и вогнутой параболической q'_0 формы.

Рис. 5. Динамический прогиб пластины при воздействии постоянной распределенной нагрузки вогнутой параболической (1) и прямоугольной (2) формы. Рис. 6. Динамический прогиб пластины при импульсном воздействии: 1, 2 – вогнутый параболический и прямоугольный импульсы с амплитудой $q_1 = 10^3$ Па · с, 3, 4, 5 – импульсы с одинаковой равнодействующей (3 – квазисинусоидальный импульс с амплитудой $q_1'' = 2q_1$; 5 – вогнутый параболический импульс с амплитудой $q_1''' = 6q_1$).

Если вогнутая параболическая нагрузка приложена импульсно внутри круга *r* ≤ *a*, то, добавляя в (11) дельта-функцию Дирака, получаем

$$q(r,t) = q_1 \delta(t) H_0(a-r) \left(1 - \left(\frac{r}{a}\right)\right)^2, \quad q_1 = \text{const.}$$
(13)

Параметры разложения нагрузки (13) и функции времени в ряд по системе собственных ортонормированных функций принимают вид

$$q_{n}(t) = \frac{4q_{1}\delta(t)}{M_{0}d_{n}\beta_{n}^{3}a} \left[\sum_{n=1}^{\infty} J_{2n+1}(\beta_{n}a) + \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} \sum_{n=1}^{\infty} (-1)^{n} I_{2n+1}(\beta_{n}a) \right];$$

$$T_{n}(t) = \frac{4q_{1}\sin(\omega_{n}t)}{M_{0}d_{n}\beta_{n}^{3}a\omega_{n}} \left[\sum_{n=1}^{\infty} J_{2n+1}(\beta_{n}a) + \frac{J_{0}(\beta_{n})}{I_{0}(\beta_{n})} \sum_{n=1}^{\infty} (-1)^{n} I_{2n+1}(\beta_{n}a) \right].$$
(14)

Рис. 6 иллюстрирует изменение прогиба вдоль радиуса при воздействии внешних импульсных нагрузок различной формы на поверхность пластины в момент времени $t = \pi/2\omega_0$. Видно, что прогиб от параболического вогнутого импульса наибольший.

Заключение. Исследованы вынужденные колебания круглых трехслойных пластин с легким заполнителем, находящихся под действием локальных поверхностных осесимметричных нагрузок квазисинусоидальной, прямоугольной и параболической формы, как постоянных во времени, так и импульсных. Проведено сравнение полученных численных результатов. Показано, что с точки зрения прочности при одинаковой равнодействующей параболические вогнутые нагрузки являются наиболее опасными, а прямоугольные – наименее.

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь.

Резюме

Розглянуто вісесиметричні поперечні коливання круглої пружної тришарової пластини під дією локального й імпульсного поверхневого навантаження квазисинусоїдної та параболічної форми. Для опису кінематики несиметричного по товщині пакета прийнято гіпотези ламаної нормалі. Заповнювач – легкий. Аналітичний розв'язок отримано з використанням системи функцій Хевісайда і дельта-функції Дірака. Проведено числовий аналіз отриманих розв'язків.

- 1. Горшков А. Г., Старовойтов Э. И., Яровая А. В. Колебания круглой линейно-вязкоупругой трехслойной пластинки // Пробл. прочности. 2001. № 3. С. 100 107.
- 2. Старовойтов Э. И., Леоненко Д. В., Яровая А. В. Колебания круговых трехслойных пластин под действием распределенных локальных нагрузок // Там же. 2002. № 5. С. 70 79.
- 3. *Старовойтов Э. И.* К описанию термомеханических свойств некоторых конструкционных материалов // Там же. 1988. № 4. С. 11 15.
- 4. Старовойтов Э. И. Основы теории упругости, пластичности и вязкоупругости. – Гомель: Изд-во гос. ун-та транспорта, 2001. – 344 с.
- 5. *Янке Е., Эмде Ф., Леш Ф.* Специальные функции. М.: Наука, 1979. 342 с.

Поступила 11. 09. 2002