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W. ¥. 'anueBa, O. I. NMaHoBa6

a OtaeneHve mMawiMHocTpoeHus OKNeHACcKoro yHueepcuteta, OkneHpg, Hoas 3enaHams

6 IHCTUTYT npobnem npoyHoctn HAH YkpauHbl, Knes, YkpanHa

PaccMaTprBalOTCs pafuanbHble Chepuyeckne pPe3oHaHCHble BOJHbI, BO36Y>KAaeMble B TpaHc-
pe3oHaHCHOM pe>kume. MpubandKeHHoe oblige pelleHne BO3MYLLIEHHOTO BOJSIHOBOTO YpaBHEHWs!
NpeAcTaBNseTCS B BUAE, YYMTbHIBAIOLEM He/MHeHble, NPOCTPaHCTBEHHbIE U AUCCUNATUBHbIE
athpekThi. [paHMYHasa 3afaqa CBOAUTCA K BO3MYLLUEHHOMY CMeLLaHHOMY ypaBHeHuo Broprepa-
KopTeBera-fe Bpusa, s KOTOPOr0 MOCTPOEHO HECKOMbKO PeLleHMid. YCTaHOBMEHO, YTO B
HEBA3KOI cpefie B6/M3M pe3oHaHca MOTyT BO3HMKATb yapHble BofHbl. OfHAKO Kak BA3KOCTb, TaK
M NpOCTPaHCTBEHHAA Aucrnepcus B6MM3W pe3oHaHca NpefoTBpallaloT (HOpMUPOBaHWeE YAapHOTo
paspblBa, B pesynbTaTe Yero B Pe3oHATOpPe BMECTO YAApHbIX FeHepuUpyloTCs Mepuoanyeckue
NIOKaNN30BaHHbIE BOMHbI.

One-side travelling nonlinear waves have been the subject of intense studies
for the last decades [1-4]. In finite physical systems both left and right travelling
waves may be excited. Near the resonant frequencies, the amplitudes of these
waves increase. As a result, the balance between nonlinear, dissipative, and
dispersive effects varies together with the excited frequency. Therefore, in the
transresonant frequency band both shock and soliton-like waves may be excited in
resonators. This dynamics was studied in [5-7] for the case of plane resonant
waves in elongated resonators. Here we consider the spatial effect on the
evolution of nonlinear waves in transresonant frequency bands. For simplicity,
spherically symmetric pressure waves excited in a gas or liquid sphere are
discussed. An oscillating monopole is located at the origin. Apparently, these
types of driven resonant-dissipative three-dimensional systems were not
considered earlier.

In accordance with [8], we write an equation of nonlinear acoustics for
spherical waves taking into account only linear and quadratic terms, respectively,
for the velocity potential p:

ao(Prr +2r_1pr)=ptt+ (y -W p tptt + 2P rprt -<Sao2pttt, (D)
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where ao is the speed of sound in an undisturbed medium, y is the polytropic
exponent of gas (Eq. (1) is also valid for fluid [8]), 5 is the so-called “sound
diffusivity.” The subscripts t and r indicate the time and space derivatives,
respectively. We emphasize that Eq. (1) does not take into account the third order
effects and the dissipative term is of the second order [8, 9]. The solution of (1)
can be presented as

P=P1+P2, @)

where P1 and P2 are the first- and the second-order values, respectively.
Substituting Eq. (2) into (1) and equating the values of the same order, we obtain
a system of differential equations for p1 and p 2:

plr+2r 1plr=a02p 1tt, 3)

aO(P2rr +2r 1P 2r)=P 2tt + 2P 1rP It + (y ~ 1)a02P 1tP 1tt - » a02P 1ttt (4)

The solution of (3) is the sum of diverging and converging waves:

Pl=r-1(fl+f2). (5)

Here and hereinafter, f 1=f 1(£) and f 2=1f 2("), where £=ao01-r and
A= a01+ r. With allowance for (5), we rewrite Eg. (4) in the form

aO(P 2rr + 2r-1P 2r)- P 2tt = 2a0r-2(f 2- f 1)(f 2'- f 1)-

2a0r-3[(f2+f1)(f2'-f/)- (fL)2+ (f 2)2]+ 2a0r-4(f2 + f 1)(f2+ f 1)+

+(y- Daor-2(f2+ ') (F2'+ f/') - 5aor-1(f2"+ /"), (6)

where the primes denote a derivative with respect to the argument. The solution to
(6) is
P2=r-1("1 +P2)+05a01r-2[(f1+f 2)2] -

- 0.25(y + Da- r-1/ / r-1(f1 + f 2)(f1'+ f 2)d~drj +

+0.25 (5a0-r -1 (MY'+ §/'2). @

Here and above, the functions f1,f2,p1="1"), and ip2="2(") are
unknown and must be found from the initial and boundary conditions of the
corresponding problem [9]. However, it is complicated to solve boundary
problems using (2) due to the integral in (7). To simplify solution (7), let us
replace the multiplier 1/ r under the integral by 1/Rt. As a result, near the
boundary surfaces r = Rt (i=12) and
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P=r 1/ +f 2¢P1+P2)+  olr 2[(/l +f2)2]'"-

-0.25(y+ 1)aolr” 1 r10.57(f 1)+ 0.5E(f 2)2 + f if 2+ f 2f 1+

+0.256a—r-1(f " + f2'). (8)

Solution (8) satisfies Eq. (1) if the expression 0.5a0r-2 (y + )[(f 1+ f 2)2] X
X(1—rR—1) is a value of the third order. Thus Eq. (8) is valid near the surface
r=Rj,where 1—rR4k< 1

In this paper, we examine only periodical oscillations. In this case, the
velocity and the pressure perturbation

P-pro=—P0(Pt+05P2—-05a02P2)+ (2 +2v)a02<Pit 9)
must not contain secular terms (formula (9) defines the pressure if 2 and v are

the shear and dilatational viscosities [8]). The secular terms will be eliminated if
we assume in (8) that

P1=r1 +0.125a—R—A(y + 1)[E(f )2 —2ff 1]-0.256a—~ 1'-c£2,

p2=nr2 +0.125a—R—I(y + 1)fo(f2)2 - 2f2f 2]- 0.256a—V 2'+ «72,

where c¢ is an arbitrary constant, f 1,f 2, Wi= WL(£), and W2 = W2(") are
periodic functions. As a result, near the surface r = Rt, the velocity potential for
steady-state oscillations is given by the expression

p=r-1(f1+f2+ W1+ W2+ 4caort) +

+0.5a—r- 2[1- 0.25rR—\y + 1)][f*+ f 2)2] -

-0.25(y + 1)a—aR—1[(f1)2 - (f 2)2]+ 0.56a8 1(f1'- f2"). (10)

This expression will be used below to solve a boundary problem. We
consider the waves excited by a simple-harmonic source of pressure, which has
radius R1 and is placed in the center of a sphere. It is assumed that the pressure
source region is very small relative to the excited wavelength. The other boundary
of the sphere is free. Therefore, we have

P- Po=—Bcosmt (r=RI1), (11)

P-Po=0 (r=R2). (12)
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First, resonant frequencies are determined. Then, resonant oscillations are
analyzed on the basis of nonlinear relations. Using (9) and (10), we can rewrite
condition (11) as

aorRi(fl+ /2 + + 4cRi) + [L- 0.25(y + D)][(f1+/2 )2 +
+ (/1 +12)(J1'+ [2")]- 0.5RL(y + 1)(Fifi-/2/2") + 0.5<5r2(fi" - /2') +
+0.5[R1(/1 +/2)+/1-/2]2- 05(/1 +/2)2-
-05(/L+/2)2-p -~ (2+2v)(/1'+/2") =p -1BR2coswt, (13)

where /1 =f1(a01- R1), /2 =/ 2(a02+R1), » =7 (a01- R1), and » =

=A"2(a0t+ R1).
Condition (12) may be presented as (13) if in (13) we substitute R2 for R1
and assume B = 0. Then from (12) we can find

f1(aOt- r)=f (a01- r+ R2X f 2(a01+ r)=-f (a01+ r- R2)
W'=-a-1R21(/1)2=0.5(5a-1R2/ " '- 2cR2, "2 =W

Let us consider Eqg. (13) taking into account (14). As the first approximation,
it follows from (13) that

f '(a01- R1+ R2)- f '(a01+ R1- R2)=BR1la-1p-1cosrnt
and
f '(a0t- r+ R2)=

= 0.5BR1a-1p - 1sinwa-1(ao1- r + R2)/sinwa-1(R2- R1). (15)

From (15) we obtain resonant frequencies: QN =nNaO(R2 - Rl)'1
(N =1,2, 3,...). The linear solution (15) is not valid near the frequencies m =
= Qn + ®1, where rn1 is a small value. We assume that rn1= aO(R2- R1)-1 X

Xsinrna- 1(R2 - R1).

Let us consider resonant frequencies. First, the function f '(ao1+ R1- R2)
is expanded in Taylor’s series at r = R1:

f '(a01+ R1- R2)=f"'- 2®-1®1(R2- ROf" + 2®-2®2(R2 - R1)2f '"'-
(16)

It was suggested that
f '(a01- R1+ R2- 2Nna0o/w)="f '(a01- R1+R2)="f"
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Then using expansions (16) and (13), we obtain the following basic equation:
a0RiR2w-1® /" - RiR2[a0®-2®2(R2 - Ri) +0.5(51/+ (f")2=
= p-BR2R2(R2- R1)-1(c0s21/2®t- 0.5) + 2a0R IR 2c. (17)

Equation (17) is the perturbed compound Burgers-Korteweg-de Vries
equation written for a travelling wave. This equation has a nonlinear term that
tends to produce “discontinuity” in this wave. The term f ' dissipates through the
viscous-like effect. This term disappears at resonance. The second term, which is
generated due to the viscosity of the medium, disperses the wave. Due to this
term, solitary waves may be excited. We write the solution of (17) for the case
c=0.25a-1p - BR1(R2- R1)-1 as f '=VEO(r)cosr. Here O(r) is an

1 2 1
unknown function and £=Bp0 R2R1(R2- R1)™ ,and r = ®t/2. As a result,
Eqg. (17) becomes

0.5wIRIR2(O'- Otanr)- 0.25a-1®2R1R2(R2- R1+ 0.55®2a0®-2) X
x (0" - 20"tanr - O)= VE(1- O 2)costr. (18)

Here O'=dO/dr.

Transresonantprocess. Far from the resonance, when the first term in (17) is
dominant, the acoustic solution (15) follows from (17). Near resonance, this term
reduces together with ®1. At the same time, the influence of the nonlinear and
second terms in (17) increases. To simplify the problem, let us assume that the
nonlinear term begins to distort the acoustic solution, while the dispersive effect is
still small. In this case, we seek an approximate solution of (18) as the sum
O=00+0 1, where O0>> 0 1. The quantity O o0 takes into account the
nonlinear and first terms in (18), while 0 1 corrects O 0. We seek a solution,
which is valid near the points where [sinr|<<1. By equating the terms of the
same order in (18), we obtain two differential equations:

00 =2jgq (1- O 2)cosr, (19)

47/q O 00 1cosr, (20)

where -Jg = 4e (®IRIR2) 1. Equation (19) is locally satisfied if O0=
= tanh(2”~/q sinr) [8]. The approximate solution of (20) is
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O 1= qglsech2(2”[gsinr)cosr,
where

. 11 2 1 2
gqi = 8" 1O q'5 (R2_R1+’10® al »I" ).

For the travelling waves
f '[a01x (R2 _ r)]=

= VE[tanh(”*/g sinp )cosp + glsechz2(2~[gsinp)cos2 p], (21)

where p =»t/2 + [®a_1(R2 _r)_nN]/2. This solution indicates that the

finite-amplitude travelling waves become steeper when the excitation frequency
approaches the resonant frequency. According to (21), shock waves may be
excited near resonance in an inviscid medium. For the latter case, if »1 = 0, we
have the solution with discontinuities [7]. However, both the viscosity and spatial
dispersion begin to be important near resonance and can prevent the formation of
a shock wave [5-13]. It follows from (21) that a soliton-like wave can generate
near resonance. The amplitude of the soliton-like wave increases when »1 ~ 0
because Eq. (20) and solution (21) are not valid very close to resonance.

Near resonance, the influence of the first term in (18) decreases.
Accordingly, the influence of the second term increases. At resonance, Eq. (18)
transforms to the Korteweg-de Vries type equation

O" _20'tanr—0O =q_1(1_ 0O 2)cosr, (22)

where q0=_ -80» 2£_05a_2R1IR2. Let 0 =Jasech2(ysinM _1Ir)+ C]cosr,

where A y,and C are constant values. We have written the solution localized
near the points where |sinM _ r|<< 1(M =1,2,3 ...). This solution satisfies

approximately Eq. (22) if A=6qoy2M _2, y2=0.5M2(1_qg_1C), and C* =

= 4(q0+ Vq0 +3/4)/3. If |q0|<< 1 then Cx~ 1 y2~_05q_1™ 2, and
A ™ 3. For the latter case,

f "= VE{l 3sech2[M (sinM _1r _ R)/~_2qg0]}cos2r.
For the travelling waves,
f '[a01x (R2 _ r)]= VE{1_3sech2[M(sinM _1p)/yl_2q0]}cos2 p. (23)

If M = 1 expression (23) defines oscillations at r _ R1 at the frequency »t.
Solution (23) also describes subharmonic oscillations if M =2, 3 ... . Since this
solution must satisfy expansion (16), subharmonic waves corresponding to M >1
may be excited only near the frequencies » = MQ n mFor example, the case
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M =2 may be realized only for even resonance. Thus, solution (23) defines the
spectrum (M = 2, 3 ...) of subharmonic localized waves.

The case M = 1 corresponds to solution (22). For this case, near resonance
we assume 0 =00+ 0 1, where O0>> 0 1. The quantity OO0 takes into
account the nonlinear and the second terms in (18), while 0 1 corrects O 0. Then
for travelling waves one can find

f '(aot+ r)= VE{[3sech2(sinp/y]l2q0)- 1Jcosp +

+Q tanh(sinp J q )}cosp. (24)
Here

Q = 3w1(2q0)- 05 {4~ 1n 2£05 + 0.25Bw2a-2q-1[0.56+ aow- 2w2(R2 - R1)]}-

Solution (24) is localized near the lines where sinp << 1 Thus, according to (23)
and (24), periodic spherical solitons may be excited in viscous media at the exact
resonance. These waves contrast with the periodic spherical shock waves, which
are predicted by (21) for inviscid media.

Linear (15) and nonlinear (21) and (24) solutions describe some scenarios of
transresonant evolution of the waves in weakly dissipative media. Far from
resonance, we have harmonic waves. These waves are distorted due to the
nonlinear effect when the value of «1 decreases. If 0, these waves transform
into the shock-like waves. However, 6 20 and discontinuities do not form in the
system. Very close to resonance W1~ 0 and spatial dispersion (the second term in
(17)) begins to distort the waves. As a result, the waves may be generated which
have some features of both shock and soliton-like waves. However, at the exact
resonance, the first term in (17) equals zero and soliton-like waves are generated.
These waves may be much localized if 0

Now we can find pressure and velocity in the medium. However, we
emphasize again that expression (10) does not take into account correctly the
second-order values far from the boundaries. Therefore, we must only consider
the first-order terms in expressions for velocity and pressure. For example, instead
of (9) we have

P- Po=r-1poao[f'(n- R1)- f '(E+ R1)]

Thus, according to the above analysis, strongly localized waves travel inside
the sphere (spherical layer). Pictures of the variation of dimensionless pressure
(P - P0)/poao£os are presented in Figs. 1, 2, and 3. There the dimensionless

time r and radius (r/R2) are used. We calculated pressure using (21) (Fig. 1)
and (23) (Figs. 2 and 3), and assuming R1= 0.01R2. There is strong amplification
of the waves near r = R1.

In contrast to plane resonant shock waves [7, 14], resonant spherical
nonlinear waves practically have not been studied [9, 13]. At the same time, the
spherical model for the simulation of different physical objects is very popular.
Indeed, on the one hand, the model of a pulsating sphere is widely used in
astrophysics [15, 16]. On the other hand, this model is used for studying
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sonoluminescence in liquids when the period of oscillation and the space
distances are very small [17]. The competition of nonlinear, dissipative, and
dispersive effects may be important for these systems. We considered this
competition in the transresonant regime. The distortion of harmonic waves into
shock-like and then soliton-like waves was shown. Our considerations have been
strictly limited to the aspect of nonlinear acoustics; however, the results presented
may be interesting for various media and circumstances.

Fig. 1 Forced pressure waves inside the sphere (q =10, qt =01, and N = 2).

Fig. 2. Forced pressure waves inside the sphere (o =0.00L, N =2 and M = 1)

Fig. 3. Forced pressure waves inside the sphere ¢ =0.01, N =4, and M = 4).
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Pestome

Po3rnagatloTbCa pagiaibHi ChepuyHi pe3oHaHCHI XBWAI, WO 30yAKYHTbCA B
TPAHCPe30HAHCHOMY pexuMi. HabnvxeHwii 3aranbHuii po3B’A30K 30ypeHOoro
XBWUNbLOBOTO PIBHAHHS 3aMUCYETLCA 3 ypaXyBaHHSAM HEeiHIAHWX, NPOCTOPOBMX i
ancunatuBHMx egekTiB. 'paHMYHa 3afaya 3BOAMTLCA 40 36YPEHOro 3MillaHoro
piBHAHHS Bloprepa-KopTteBera-ge Bpisa, gna akoro nobygoBaHO fekKinbka pos-
B’A3KiB. YCTAHOB/EHO, WO B HEB’A3KOMY CepefoBuili nob6an3y pe3oHaHCy Mo-
XYTb BUHUKATU yAapHi xBuni. OfHaK fK B’A3KiCTb, TaK i NpocTopoBa Aucnepcis
no6am3y pe3oHaHCy 3anobiraloTb (POPMYBaHHIO YAApPHOT0 pPO3pMBY, B pe3ysbTarTi
4yoro B pe3oHaTopi 3aMiCTb YJapHWUX TFeHepyrTbCA MepioAUYHI NoKani3oBaHi
XBUJII.
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