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MINIMAX PREDICTION PROBLEM FOR
MULTIDIMENSIONAL STATIONARY
STOCHASTIC SEQUENCES

The considered problem is estimation of the unknown value of the

functionals A = >0 @(j)E(j) and ANE = Z;V:o @(j)E(j) whi-
ch depend on the unknown values of a multidimensional stationary
stochastic sequence &| (j) based on observations of the sequence 5 (9),
j < 0, from the class = of sequences which satisfy conditions E{ () =
0, |I€()||> < P. The maximum values of the mean-square errors of
the optimal estimates of the functionals Ag and ANg are found. It is
shown that these maximum values of the errors in the class = give
the moving average sequences which are determined by eigenvectors

of compact operators constructed with the help of the sequence @(j).
1. INTRODUCTION

Traditional methods of solution of the linear extrapolation, interpolati-
on and filtering problems for stationary stochastic processes and sequences
are employed under the condition that spectral densities of processes are
known exactly (see, for example, selected works of A. N. Kolmogorov (1992),
survey by T. Kailath (1974), Yu. A. Rozanov (1990), N. Wiener (1966);
A. M. Yaglom (1987)). In practice, however, complete information on the
spectral densities is impossible in most cases. To solve the problem one finds
parametric or nonparametric estimates of the unknown spectral densities or
selects these densities by other reasoning. Then applies one of the tradi-
tional estimation methods provided that the estimated or selected density
is the true one. This procedure can result in a significant increasing of the
value of error as K. S. Vastola and H. V. Poor (1983) have demonstrated
with the help of some examples. This is a reason to search estimates which
are optimal for all densities from a certain class of the admissible spectral
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densities. These estimates are called minimax since they minimize the maxi-
mal value of the error. A survey of results in minimax (robust) methods of
data processing can be found in the paper by S. A. Kassam and H. V. Poor
(1985). The paper by Ulf Grenander (1957) should be marked as the first
one where the minimax approach to extrapolation problem for stationary
processes was proposed. J. Franke (1984, 1985, 1991), J. Franke and H. V.
Poor (1984) investigated the minimax extrapolation and filtering problems
for stationary sequences with the help of convex optimization methods.
This approach makes it possible to find equations that determine the least
favorable spectral densities for various classes of densities. In the papers
by M. P. Moklyachuk (1994, 1997, 1998, 2000, 2001), M. P. Moklyachuk
and A. Yu. Masyutka (2005, 2006) the minimax approach to extrapolation,
interpolation and filtering problems are investigated for functionals which
depend on the unknown values of stationary processes and sequences.

In this article we consider the problem of estimation of the unknown
value of the functionals A = > im0 a())E() and AnE = Z;V:o a(;)EG)
which depend on the unknown values of a multidimensional stationary
stochastic sequence &£(j) = {&:(j)}i_, from the class = of sequences of the
rank m (1 <m < T') which satisfy conditions

EE() = {E&() ey =0, [I€G)I1* = ZE [0 (1)

based on observations of the sequence £(5) for j < 0. The maximum values of
the mean-square errors of the optimal estimates of the functionals Af, AN§
are found. It is shown that these maximum values of the errors in the class
= give the moving average sequences which are determined by eigenvectors
of compact operators constructed with the help of the sequence a(y).

2. MAXIMUM VALUE OF THE ERROR OF ESTIMATION OF THE
FUNCTIONAL Apn¢&

. S 42
Let A({,Ay) = FE ’ANf’ — ANﬂ denotes the mean-square error of the
estimate AN{ of the functional ANg. Denote by A the class of all linear

estimates of the functional Ay¢.

Theorem 1. The function A(€, Ay) has a saddle point on the set = x A
and the following equality holds true

min max A(¢, Ay) = max min A(¢, Ay) = Pv.
AneA E€E §€E AneA
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The least favorable multidimensional stationary stochastic sequence in the
class = for the optimal estimation of the functional AnE is a moving average
sequence of the order N of the form

. J

EG)= D @ —wif(u).

u=j—N

Here v3; is the greatest eigenvalue of the compact operator Qy in the space
CTWN+Y) determined by matriz constructed with the help of the T x T block-
matrices

min(N—p,N—q)

Qv ={QnP. D)} pmo= D (@p+u)ilg+u);

u=0

7(u) = {m(u)},~, is a multidimensional stationary stochastic sequence with
orthogonal values E7j(i)(77(j))* = 6;E, where E is the identity matriz, 5} is
the Kronecker symbol; ®(u), u=0,1,..., N are T x m matrices, elements
of which are determined by the eigenvector that corresponds to v3;, and the

condition ||E()||2 = P.

Proof. Lower bound. Denote by =g the class of all regular multidi-
mensional stationary stochastic sequences that satisfy condition (1). Since
Zr C =, we have

max min A(€, Ay) > max min A(E, Ay). (2)

§EE ANEA §EER ANGA

Every regular multidimensional stationary stochastic sequence admits the
canonical moving average representation [20]

J
) =D 2 —wilw), (3)
where 7j(u) = {nx(w)},—, is a standard multidimensional stationary stochas-
tic sequence with orthogonal values, ®(u) = {@kz(u)}le 1, are coefficients
of the canonical representation, m (1 < m < T') is the rank of the sequence
£(j) = {&(4)},_, The sequence £(j) € Zg is determined if there is determi-
ned {®(u) :u =0, 1, ...} such that

T j 2

Haj)HQ:iEm)F:ZE >3 Bl — wnl)| -

k=1 u=—o00 [=1

J m

=3 ) > bu — W)l — v) En(u)in(v) =
k=1

u,v=—00 [,n=1
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= Y 0@ =D ) eu@)’ =) @@l < P (4)

L 42
The value of the mean-square error E )ANS - ANﬂ is minimal if we take

an estimate ANE of the form

—

where é’(;) is an optimal estimate of the value £(j) based on observations
of the sequence £(p) for p < 0. From the canonical representation (3) of the
regular sequence and the form of the optimal estimate of its values

-1

€)=Y 8 — wi(u), (5)

it follows that

min B[4y~ Axé| = B > dl) Y 8~ wilu)| =

ANEA

7=0 u=0
N 7 i m
= > alda(j) > Cunli = )8 (j — 0) Ea(w)r(v) =
1,7=0 k,[=1 u=0 v=0 n,r=1
N T min(z,5) m L
= Z Z ax ()@ (j) Z D (1 — u) Py (j — u) =
4,j=0 k,l=1 u=0 n=1

where

min(z,5) m

R(i,j) = {Rua(is ) Ypmr s BB 5) = D > ®rnli = )i — ).

u=0 n=1
By changing of variables p =i — u, ¢ = j — u, we can represent ( 6) in the
form

T

min £[AvE ~ Axé] = 3 3 Y 00 0)@u() Qg ()

ANEA p,g=0 k=1 n=1
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where
min(N—p,N—q)

Quipa)= Y.  alp+waig+u). (8)

u=0
Denote by Qy the operator in the space CT(V+1 detern’nned by matrix whi-
ch consists of the block-matrices {Qn (p, )}pq _0: An(p.q) = {QN(p.q }kl -
Operator @ is self-adjoint (its matrix is Hermitian) and compact. It can be
represented in the form Qn = Ay - A}, where the operator Ay is determi-
ned by the matrix {Ay(p, q)};quo which consists with the blocks of vector

columns:
a(p+q), p+qg< N,

6, p+q> N.

Ax(p,q) = {

The operator (Qny has positive real-valued eigenvalues It follows from (7)
that ®;;(p) = 0 for p > N + 1. Denote ®(p) = {P~1/2d;, ()} P =

. N
{@(p)} . Then condition (4) has the form
p=0

zl] 1

19]* = Z 19 (p) (9)

where ||®|| is the norm in the space CT™(N+1),
From (7) and (9) it follows that

min A(¢, AN) <QN¢}7 (i’>a

ANEA

where (-, -) is the scalar product in the space CT™N+1) and QN is the
matrix constructed with the help of block-matrices

N N

Qnd = {Qwé(p, Q)} = {sz(p, q) - &)(q)}

p,q=0 2,q=0

Taking into account (2), we will have the following lower bound for maxi-
mum of the mean-square error

max min A(¢, Ay) > P max <QNCT>,&>> = Pvy. (10)

EEE AneA ||c1>||<1
Here v% is the greatest eigenvalue of the operator Q.

Upper bound. We will use the following inequality to find an upper
bound of the mean-square error

min max A(€, Ay) < min maxA(€, Ay). (11)

AyeA E€E Anen, §EE
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Here A is the class of all linear estimates of the functional A N{, which have

the form .

AvE =Y @i)El). (12)
j=—o00
where @(j) = {cx(j)},_, are complex vectors such that Zj_:lfoo 1€ < oo.

The spectral representations of the multidimensional stationary stochastic
sequence and its correlation functions gives us a possibility right the relation

-1 2

STaiEG) — Y diEy)

]:O j:*OO

A6, An) = B|AvE - Ané] =B

2

| (Z G — Y e ) Z(d))

j=0 j=—00

_ /7r (AN(ei)\) o C(ez)\)) F(d}\) (AN(GM) _ C(ei)‘))*,

An(e®) =D a()e??, Cle?) = > aj)e™

j=0 j=—o00

Here Z(d\) = {Zx(d\)},_, is the spectral random measure and F(d)\) =
{Fkl(d)‘)};f,z:l is the spectral matrix-valued measure of the multidimensi-
onal stationary sequence. Elements Fj;(d\) of the spectral matrix-valued
measure are complex measures with bounded variation which satisfy the
following conditions [20]

Fi(dX) >0, |Fua(d\)]* < Fip(dN\) Fu(d\). (13)

Conditions (1) mean that
/ Tr F(d\) < P. (14)
From these reasons

max A(€, Ay) =

e=

_ mgx/ﬁ (An(e™) — C(c™) F(aN) (An(e?) — O(e)" <
< e [ [Jax(e) - | PN <

< max (e - @ [ IR

Ae€[—m,m]



MINIMAX PREDICTION OF STOCHASTIC SEQUENCES 95

It follows from (13) and (14) that the spectral matrix-valued measure satisfy
condition

™ T o 1/2 LA 1/2
JLE (Z uwmu?) </ (Z kam(d») -

kel=1 k=1

_r -7

_ / iFkk(dA) . /ZTTF(d/\) <P

T k=1 -
From these reasons we have

max A(¢, Ay) < P max } |An(e™) — C(ei)‘)}}Q.

(e= NE[—m,m

To estimate
max || Ax(e?) — C ()|’
rel—m,]
we consider the class of vector-valued power series f(z) = > g d(n)z",
which are regular in the unit disk |z| < 1 and start from given summands
Z;.V:O d(j)z7. Denote by p% the greatest eigenvalue of the matrix H =
{H (p, q)}ngo constructed with the help of block-matrices

min(p,q)

Hp.q)= Y_ d(p—jdlg—3j), p.q=0,N.
7=0

Then we have the following relation [2]

min max
{@(n)m>N+1} |z|=1

Since in our case cf(p) =d(N —p), p=0,N, we have to find the greatest
eigenvalue of the matrix constructed with the help of block-matrices

min(p,q)

Gn ={Gn (DD} yens Gnpg) = D (@N —p+u)a(N - q+u).

u=0
Denote this eigenvalue by w%. The we will have

min max A(§, Ay) < Pw?,.
ANGAl geE

It follows from (11) that

min max A(€, Ay) < Pw?. (15)

ANEA §EE
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Now note that Gy (N —p, N —q) = Qn(p, q). Therefore w3 = v%. Relations
(10) and (15) give us the inequality

min max A(¢, Ay) < max min A(E, Ay). (16)

ANEA §EE §EE ANEA
Since the opposite inequality holds true, we have equality in (16). The proof
is complete.

From the proof of the theorem we have a construction of the optimal
minimax estimate of the functional Ay¢&.

Corollary 1. The optimal minimax estimate ANE of the functional ANE S

of the form

N -1

AnE =) d()) ( > (G- u)ﬁ(U)) ,

=0 u=j—N

where 7j(u) = {n(u)};, is a standard vector-valued stationary stochastic
sequence with orthogonal values, ®(u) = {D;; (u)}ZT:1 Ly s uniquely determi-
ned by eigenvector of the operator (Qn which corresponds to the greatest ei-
genvalue V%, and condition ||€(j)||> = P. In particular case of stationary
sequence of the minimal rank (m = 1), the vector ® = {®(u)}._,, that consi-
sts of the block-vectors ®(u) = {®4(u)}._,, is eigenvector of the operator
Qn, which corresponds to the greatest eigenvalue V3.

EXAMPLE 1. Let = 1 and let 4;€ = & (0) +&(0) + &1 (1) +&2(1). The eigenvalues
of the operator 1 are equal to A\j o = 2+ V2. Therefore vi=2+ /2. Eigenvector

of the operator which corresponds to the greatest eigenvalue v? = 2 + V2 is of
the form ® = {®(0), (1)}, where

®0)=(v2/2, 1/2),®(1)=(1/2, 0).

—

In the case of the minimal rank (m = 1), the least favorable sequence £(j) is of
the form

£(7) = ®OmG) +(W)n(j — 1) =1/2- ( V20() + G — 1), (i) )-
The optimal linear minimax estimate 2115 of the functional A1§ is of the form

A€ =a(0)@(1)n(-1) = n(-1)/2.

In the case of the maximal rank (m = 2), the least favorable sequence £(j) is of
the form

—

£(7) = w(0)7(7) + ¥ (1) = 1),
where U(0), ¥(1) are 2 x 2 matrices constructed with the help of the vector-
columns

T(0) = 1/v2-{2(0), 2(0)} , ¥(1) = 1/V2- {2(1), (1)} .
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Therefore
€0) = 55 (V2m@) +m@) +mG =) +m0 =1, m@) +mn0) ).
The optimal linear minimax estimate ,2115 of the functional A1{ is of the form
Ao 1
A& =a(0)v()n(—-1) = —= —1) +n2(-1)).
(&= A0V = 5 (1) + (1)
The mean-square errors in both cases are not greater than 2 4 /2.

EXAMPLE 2. Let = 1 and let A1€ = &(0) + &(0) + & (1) + &(1). eigenvalues

of the operator @ are equal to 3 + /5. Therefore v? = 3 + /5. Eigenvector

of the operator which corresponds to the greatest eigenvalue v? is of the form

® = {®(0), (1)}, where
®1(0) = B2(0) = /(5 + V5)/20,®1 (1) = Bo(1) = 1/ (5 — V5)/20.

—

In the case of the minimal rank (m = 1), the least favorable sequence £(j) is of
the form

—

£G) = 2(0n() + @(1)n(j —1) =
=6+ V5)/20(nG), nG) )+ (6=v5)/20(nG=1), nG-1)).

The optimal linear minimax estimate is of the form

A€ = a0)(1)n(=1) = /(5 - V5)/5n(-1).

In the case of the maximal rank (m = 2), the least favorable sequence £(j) is of
the form

£(j) = W)+ (1)F(j—1) = /(5 + V5)/40-I-7i(j)+1/ (5 — V/5) /40-I-ij(j —1),

where [ is a square matrix elements of which are units.
The optimal linear minimax estimate is of the form

A€ = @(0)T(1)7(—1) = 1/ (5 — V5)/10 (n1(—1) + n2(—1)) .
The mean-square errors in both cases are not greater than 3 + V5.

3. MAXIMUM VALUE OF THE ERROR OF ESTIMATION OF THE
FUNCTIONAL A&

Theorem 2. Let the sequence of vectors d(j),j = 0,1,... satisfies conditi-
ons

> Dl < oo, Yo(i+ DD < o, (17)

k=1 7=0
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The function A(E, A) has a saddle point on the set Z x A and the following
equality holds true

minmax A(¢, A) = maxmin A(§, A) = P2,
Aen E€EE §EE AeA

The least favorable multidimensional stochastic sequence in the class = for
the optimal estimate of the functional A is a moving average sequence of
the form
J
£G) = ) o —wif(u).

Here v? is the greatest eigenvalue and ® = {®(u)}., is the corresponding
eigenvector of the compact operator Q) in the space Uy determined by matrix
constructed with the help of the block-matrices

Q=1{Q, )} . Za p+u)i(g +w),

7(u) = {ne(u)},, is a multidimensional stationary stochastic sequence wi-
th orthogonal values; ® = {®(u)},~, are matrices, elements of which are
determined by the eigenvector of the operator Q that corresponds to v, and
the condition ||€()||> = P.

Proof. Lower bound. Let £ € =;. Then we have the inequality

max min A(€, A) > maxmin A(, A). (18)
EEE AeA §€ER AecA

Making use the canonical representation of the regular stationary sequence
(3) and the form (5) of the optimal estimate, we get
2

o) Y G~ wiu)| =

min A(§, A =min F )Af Aé] =F

Aen AeA -
=Y XD ) Pi(@)Qulp, ), (19)
p,qg=0 k,l=1n=1
where
QP q) = {Qn(p, Q>}£l:1 ;o Qup,q) = Z ap(p +w)a (g + u). (20)

u=0
Denote by @) the operator in the Hilbert space {5 determined by the matrix

constructed with the help of block-matrices Q = {Q(p, q)}." _,. Since there
are satisfied conditions (17) and

dllRw. ol =Y > 1@Qup.a)l =

p,q=0 p,q=0 k,l=1

p,q=0"
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2

=Y D D alp+walg+u)| <
<> > <Z|ak(p+U)| > lai(g + ) ) -
p,g=0 k=1 \u=0 =0

we have

where N(Q) is the Hilbert-Schmidt norm of the operator @). The operator Q)
is a self-adjoint Hilbert-Schmidt operator 1. It can be represented in the form
@ = A- A*, where the operator A is determined by matrix constructed with
the help of block-columns A = {A(p,q)},._, = {d@(p + )}, o For these
reasons the operator () has real-valued positive eigenvalues. The operator
A is an Hilbert-Schmidt operator and his Hilbert-Schmidt norm is equal to

o 1/2
N(A) = (Z(p+1) ||67(p)H2> :

p=0
Since &(p) = { P~12Q;; (p)}ZT:1 1, then (19) can be represented in the form

min A (&, 121) =P <Q<f>, <f>> i

AeA
Taking into account restrictions (4), we will have

max min A(f,/l) = P max <QC§, Cf>> = P12,
1

§€ER AeA HéH:
where 12 is the greatest eigenvalue of the operator @, ( -, -) is the scalar
product in the space fs. It follows from (18) that we can estimate the maxi-
min value of the error

max min A(¢, A) > P12, (21)
§EE Aen
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Upper bound. Consider the sequence of operators (Qn determined by
matrices (8) and the operator @) determined by matrices (20). Since condi-
tions (17), we have

oo

N@Q—-Qx)= > (p+1)am|*—o,

p=N+1

for N — oo. Taking into account that

1Q — Qn|| £ N(Q — Qn),

we will get
Jim @ - Q| =0,

So the sequence of operators )y converges to the operator ). For this reason

1, 3] A}im v = v?, where % is the greatest eigenvalue of the operator Qy,
— 00

and 1?2 is the greatest eigenvalue of the operator ). From theorem 1 it
follows that

minmax A(¢, A) = lim min max A(¢, Ay) = lim Pv3 = Pu2. 22
Ty R A A) = i mmin reax A% Aw) = Jing, Py (22)

From relations (22) and (21) we have

~

min max A(¢, A) = Pr? < maxmin A(€, 4),
Aen E€E €€E Aea

where only equality is possible. Theorem is proved.

Corollary 2. The optimal minimax estimate Aé’ of the functional Ag is of
the form
o'} -1
AL =) a(j) [ > oG- U)ﬁ(U)] :
j=0 u=—00
where 7j(u) = {n(u)};", is a standard vector-valued stationary stochastic
sequence with orthogonal values, ®(u) = {Cbij(u)}iT:lT:l, u=20,1, ...1s
uniquely determined by eigenvector of the operator ) which corresponds to
the greatest eigenvalue 12, and condition ||€(§)||2 = P. In particular case of
stationary sequence of the minimal rank (m = 1) the vector which consists
of the block-vectors ® = {®(u)} ., is eigenvector of the operator Q, which
corresponds to the greatest eigenvalue 2.

EXAMPLE 3. Let = 1 and let A& = Y1 Y20 e™¥&,(j), A > 0. Elements of
the block-matrices of the operator @) are of the form

Qup,q) = > ak(p+war(g+u) = e A1 — 7270, (23)
u=0
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The eigenvalues of the operator () are determined by the system of equations

T oo
o) = YD e M1 — e ) (s), k=TT, p=0,1, ... (24)
=1 s=0

From (24) we will get that ®x(p) is of the form ®4(p) = Ce ™, k = 1,T. The
constant C'is determined by the normalizing condition. In the case of the minimal
rank (m = 1) we have

C = (1 o 672)\)1/2T:71/27 ‘I)k(P) _ Tfl/Q(l - 672)\)1/267)\p7 k=1,T.

Substitution of theses expressions into (24) gives us u = T'(1 — e~?*)72. In the
case of the minimal rank (m = 1), The least favorable in the class = vector-valued
stationary sequence £(j) is a moving average sequence of the form

J
g(]) _ T—1/2(1 _ 6—2)\)1/26—)\j Z AU

U=—00

where T is a square matrix elements of which are units, 7(u) = {ns(u)};_, is a
standard vector sequence with orthogonal values.
The optimal linear minimax estimate A£ of the functional A€ is of the form

Ag T1/2 1/22 —2)j [ Zl e)‘un(u)].

U=—00

In the case of maximal rank m = T we will have

J
5(3) _ T—l(l - e—2>\)1/2€—>\j Z e’\“Iﬁ(u),

U=—00

B0 |5 5 ),

k=1u=-—0o0

. . . . o T .
where I is a square matrix elements of which are units, 7j(u) = {ng(u)},_, is a
standard vector sequence with orthogonal values.

The mean-square errors in both cases are not greater than 7'(1 — e=2*)~2

4. CONCLUSIONS

We propose formulas for calculation the mean square errors and the
spectral characteristic of the optimal linear estimate of the unknown value
of the functionals AS = > 7%, d(7)§(j) and AnE = Z;'V:o a(7)¢(j) which
depend on the unknown values of a multidimensional stationary stochastic
sequence E(]) based on observations of the sequence E( ) from the class =
of sequences which satisfy conditions EE(5) = 0, [|£(5)||? < P, for j < 0.
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Formulas are proposed that determine the maximum values of the mean-
square errors of the optimal estimates of the functionals AE and ANE in the
class =. It is shown that these maximum values of the errors in the class =
give the moving average sequences determined by eigenvectors of compact
operators constructed with the help of the sequence a(j).
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