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THE ROSENBLATT COEFFICIENT OF
DEPENDENCE FOR m-DEPENDENT RANDOM
SEQUENCES WITH APPLICATIONS TO THE ASCLT

We prove a new bound for the Rosenblatt coefficient of the normalized partial sums
of a sequence of m-dependent random variables; this bound is used to prove a general
result, from which the Almost Sure Central Limit Theorem can be deduced.

INTRODUCTION

Let (Xp)nen be a sequence of normalized centered i. i. d random variables. Put

Sn
In paper [4], it was proved that

(1.1) sup |P(Up € A, Uy < z) — P(U, € A)P(Uy < z)| < H iﬂ/g,
s L

where H is a suitable constant depending on the sequence (X, )nen only and where the

sup is taken over A € B(R) and = € R.

It is well known that covariance inequalities of the Rosenblatt type such as (1.1) are
a crucial tool in the proof of Almost Sure Limit Theorems, see papers [2], [5], and [9] for
some literature on this topic.

Here, we deal with a more general case than the one, considered in [4], of a sequence
of i.i.d random variables. More precisely, the aim of the present paper is twofold: first,
in Theorem (2.3), we prove an inequality similar to (1.1) for the case of a sequence
of m—dependent random variables (X,,)nen. Note that we do not assume the identical
distribution of (X,,)nen; note, moreover, that the constant H in the second member of
our inequality (see the statement of Theorem (2.3)) is absolute.

Using the inequality of Theorem (2.3), we prove a general result [Theorem (2.5) of
this paper| which is, in some sense, a generalization of the ASCLT to some kind of Borel
sets A such that 0A is not necessarily of Lebesgue measure 0. We deduce the ASCLT as
a corollary of Theorem (2.5) (Corollary (2.6)).

The paper is organized as follows: Section 2 contains the statements of the main
results [i.e. Theorem (2.3), Theorem (2.5), and Corollary (2.6)]. In Section 3, we prove
Theorem (2.3). In Section 4, we prove Theorem (2.5) and Corollary (2.6).

Throughout the whole paper, the symbol H denotes a constant which may not have
the same value in all cases.
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1. THE MAIN RESULTS
Let (X, )nen be a sequence of m-dependent real centered random variables with
(2.1) sup E[X2T] < 400
n
for a suitable § € (0, 1].

In the sequel, we put a = §(66 + 8)~1. Moreover, we set S, = X1 + Xo + -+ + X,,,
v, = Vars,,

Sn
U —
"V,
and assume that
(2.2) liminf 2% > 0.
n—oo n

The first result proved in this paper is

(2.3) Theorem. There exists an absolute constant H such that, for every pair of inte-
gers p,q with p < q, the following bound holds:

sup | P(U, € A, U, < z) — P(U, € A)P(U, < z)| < H( Y _),

T
where the sup is taken over A € B(R) and x € R.

Theorem (2.3) will be used to prove the second main result of this paper [Theorem
(2.5) below].

For a fixed Borel set A C R, consider the two sequences (T3,) and (W) defined,
respectively, as

7o X 1aW) L M gla@)
n n ) n 10gn > 1.
Put
Un
2.4 _ Un
24) o(n) =

(2.5) Theorem. In addition to the hypotheses of Theorem (2.3), assume that the se-
quence (¢(n)) defined in (2.4) is not decreasing, and let A C R be a finite union of
intervals. Then, P-a.s. the two sequences (Ty)n>1 and (Wy)n>1 have the same limit
points as n — oO.

Denote, by A, the Lebesgue measure on R and, by u, the Gaussian measure on R, i.e.

[ L g
p) = | = Mdz), A€ B(R).

Theorem (2.5) has the following consequence:
(2.6) Corollary (ASCLT). There exists a P—null set T' such that, for every w € T'¢,

we have
i S HaU)

n—o0 logn
for every Borel set A C R such that A\(OA) = 0.

= p(4)
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2. THE PROOF OF THEOREM (2.3)

We start with some preparatory results.
For every integer n > 1, we put
I, =sup |P(U, <z) — @(x)‘,
zER

where @ is the distribution function of the standard normal law. In [6], the following
Berry-Esseen-type result is proved:

(3.1) Theorem. Let (X,,)nen be a sequence of m-dependent random variables verifying
(2.1) and (2.2). Then, for every integer n,

H

o )

I, <

3

where H is an absolute constant.
(3.2) Definition. The concentration function of a r.v. S is defined as

Q(e) =supP(z < S<z+e), ecRT.
z€R

In the sequel, we denote, by @, the concentration function of U,,.

The following result gives an estimate of @Q,,. It is similar to the one given in [8] for a
sequence of i.i.d. random variables, but here the constant H is absolute (i.e. it doesn’t
depend on the sequence (X, )nen).

(3.3) Lemma. There is an absolute constant H such that, for every ¢ € RT,
<H L
Qnle) < €+ )
Proof. Denoting the distribution function of U,, by F),, Theorem (3.1) yields

max{‘Fn(x—i—e) —®(z+e)|,|Fulz) - <I)(:C)|} <IIL, < nﬂa

Hence,
Pla<U,<z+¢€) =F,(z+¢€) — Fo(x)

< |Fu(@+€) = ®(x+€)| + |Fu(z) — ®(2)| + ®(x + ) — ()

<H+ 1 < +1
— € € — 1.
- po /271_ — no

The following lemma is stated in [1] without proof:

(3.4) Lemma. IfS and T are random variables, then, for every pair of real numbers
a,b with b > 0, we have

P(S+T <a—b)— P(T|>b) < P(S < a)
<P(S+T<a+b)+P(|T|>b).
Proof. The first inequality follows from the inclusion
{S+T <a->b} C{S<a}U{|T|>b}.

The second inequality follows from the first one applied to the pair of random variables
S+ T,—T and to the pair of numbers a + b, b.
We now begin the proof of Theorem (2.3).
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Let p, ¢ be two integers with p < ¢; let (Y, )nen be an independent copy of (X, )nen,

and put
Y1+...Yp_|_Xp+1_|_...Xq

.V‘.]:
e
Put, moreover,
Yi—-X e+ (Y, - X
Z:‘/'(I_Uq:(l 1)+ +(p p):RP.

If we set
H={U,e A}, K={U;<z},
our aim is to give a bound for |P(H N K) — P(H)P(K)|.
Let € > 0 be any positive real number, and put

Ki={Vy<o—e, Ko={Vy<aotel, F={Z>eh
By Lemma (3.4) (applied to S =U,, T =Z, a =z, b =€), we can write
P(K1) - P(F) < P(K) < P(K) + P(F).
Hence,
|P(HNK)-P(H)P(K)| <max {|P(HNK)—-P(K,)P(H)+P(F)P(H)|,
(3.5) |P(HNK)— P(Ky)P(H) — P(F)P(H)|}
< max {|P(HNK)-P(K1)P(H)|,|P(HNK)-P(Ky)P(H)|}+ P(F)

In what follows, we estimate the three quantities in the last member, i.e. |[P(HNK)—
P(K1)P(H)|, |[P(HNK)— P(Ky)P(H)| and P(F).
We start with P(F'). We have

E[|Ry]] _ Var'/?(Ry)

. P(F)=P <
(3.6) (F) = P(|Rp| > ey/vg) < Py R
Now, since (X, )nen and (Yy)nen are independent and have the same law,
(3.7) Var(Ry,) = 2Var(Sy) = 2v,
From (3.6) and the (3.7), we conclude that
H
(3.8) Py <= |
e Vv,

We now pass to the terms |P(H NK) — P(K,)P(H)| and |[P(HNK) — P(K3)P(H)|.
We give the details only for |P(H N K) — P(K3)P(H)|, since the proof is identical for
the other quantity.

We need some more lemmas.

(3.9) Lemma. Let g be a Lipschitzian function defined on R, with Lipschitz constant
8. Then

|Elg(Uy)] = Elg(Vy)l| < HB o

Proof. Arguing as for relation (3.6) and using (3.7), we get
|Elg(U,)] — Elg(Vy)]| < Elg(Ug) — 9(Vo)l] < ﬁEHU = Vall

_ g BBl _ ﬂVarm ) < u \f
=B~ < €
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In the sequel, we denote, by Qq, the concentration function of V.

3.10) Lemma. Letz € R and g = 1(_o - Then, for every n > 0, we have
(=

H .
|Elg(Ug)] = Elg(V)]] < ; + Qq(n) + Qq(n).-
Proof. Put
) = (14 5 o0, 300 = g(0) + 100
Then g is Lipschitzian with the Lipschitz constant 1/7. So, by Lemma (3.9),
H
(3.11) |E[g(Ug)] = Blg(Vl| < — />
n YV Yq

On the other hand, h has support contained in (z, z + n] and is bounded by 1. Hence,
we have trivially

(3.12) | E[A(Uy) = h(Vy)]| < Qq(n) + Qq(n).

Now, recalling that g = g — h, we can write

|Elg(Uy)] = Elg(Vo)l| = [El(g = k) (U)] = E[(5 = 1) (Vo)
< |Elg(U)] = BVl + [ElR(U,) = h(Vy)l|

?

and the conclusion follows from relations (3.11) and (3.12).

The next lemma concerns the concentration function Q,, of V. Its proof is iden-
tical to the proof of Lemma (3.3), since it is immediate to see that also the sequence
(Y1,Y2,...,Y,, Xpi1,...) is m-dependent.

(3.13) Lemma. There is an absolute constant H such that, for every e € RT,
~ 1

We go back to the proof of the main result (2.3). Since H and K, are independent,
we can write

|P(H N K) = P(K>)P(H)| = P(H)|P(K|H) — P(K2|H)|
= P(H)|Eu(f(U,)] - Eulg(Vy)]

)

where f = 1(_ ;) and g = 1(_ »4- We denote, by Ep, the expectation with respect
to the probability law P(-|H). By summing and subtracting Ex[g(Uy,)], we see that the
above quantity is not greater than

(H)|Enl9(Uy)] — Erlg(V)l| + P(H)Enl[lf — 9|(Uy)]
(3.14) =|E[( )l = Elg(Vy \+E|f—g|( Uy)l
_H

= +2Qq( )+Qq(5);

€

using Lemma (3.10) and observing that the function f — ¢ is bounded by 1 and has the
interval (x,x + €] as its support.

Estimate (3.14) holds not only for |P(H N K) — P(K2)P(H)|, but also for |P(H N
K) — P(Ky)P(H)|.
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We now insert relations (3.8) and (3.14) into (3.5) and obtain

P(HNK) ~ PIPR) < 2 [ 190,00+ Oyl

1 1
SH(—1/U—p+e+—)
€\ vq q“
by Lemmas (3.3) and (3.13). The above inequality holds for every e > 0; by passing to
the infimum in €, we get
1
[P(H 0 K) = PU)P(K)| < H (324 —).
Uq

th
4. THE PROOF OF THEOREM (2.5) AND THE ASCLT

Let’s start with the proof of Theorem (2.5). It is sufficient to consider the case where
A is of the form A = (—o0, z]. The proof is split in two steps: (i) and (ii).
Put

1
(4.1) an =log, (1 + H)
(i) Here, we prove that (S,) and (H,,) have the same limit points, where

on
H. — 2 i1 @ilaUi)
n n )
This is equivalent to proving that the sequence
ag1a(Uan) _ S 1a(Us) = 301 aila(Us)
n n

T,—H,+

tends to 0 as n — oo, P—a.s. Now, the numerator of the fraction in the second member
above can be written as

n n 2t -1 n 2t 1
S 1) =30 X ana@) =3 (1) - 3 a1ay)

i=1 j=2i-1 i=1 j=2i—1
n  2—1

:Z Z aj(].A(UQi)—].A(Uj))
i=1 j=2i—1

(note that E?:_Ql_l aj = log,(2%) —log,(2:=1) = 1). Put now

201

(4.2) Ri= Y aj(1a(Us) —14(U;)).

j=2"’_1
Then we must prove that, P-a.s.

Z:‘L:l R;

lim =0.
n—oo n
We write
Z?:l R; _ Z?:l (Ri - E[Ri]) + Z:'L:l E[Rz] _ Z?:l Rz + Z?:l E[Rz]
n n n n n

and consider separately the two summands above.
For the first one, we apply the Gaal-Koksma law (see [8], p. 134) to the sequence

(Rn)n:
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(4.3) Theorem (Gaal-Koksma Strong Law of Large Numbers). Let (X,), be a
sequence of centered random wvariables with finite variance. Suppose that there exists a
constant § > 0 such that, for all integers m >0, n >0,

m+n

(4.4) E{( > Xi)2:| < H((m+mn)” —m”),

i=m-+1

for a suitable constant H independent of m and n. Then, for each p > 0,
ZXZ' = O(nﬁ/2(logn)2+p), P —a.s.
i=1

We need a bound for Cov(R;, R;). Tt is easily seen that, for i < 7,

201 291

Cov(Ri, R;) Z > ahak< 2,21')—C(h,w’)—C(2i,k)+0(h,k)>,

—2i—1 j=2j—1
where
C(p,q)=Cov(14(Up),14(Uy))=P(Upc A, Uy € A) — P(U,e A)P(U, € A).

By Theorem (2t3)’ there exists a constant H such that, for every p, ¢ with 207! < p < 2¢
and 2771 < ¢ <27,

o< ({fE+ ) = ({f55e+ ) <u (B) <mamei,

so that we obtain

2t—-1 291
COU( R ) < H 2 eli—il Z ap Z ap = H2~eli=il,
h=2i—1  k=2i-1

In particular, E[R?] < H. In order to use the Gaal-Koksma law, we evaluate

[("fzz)] [minéfw S i

i=m+1 i=m+1 m+1<i<j<m+n
n—1
<Hn+2H» 2" =Hn+2HY (n—r)(2%)"
m+1<i<j<m+n r=1
n—1
< Hn+2HnZ(2“)_7" < Hn=H |[(m+n)—m]|.
r=0

Hence, the condition in the Gaal-Koksma law holds with § = 1, and we obtain
ZR O(v/n(logn)**?), P—a.s.,

which implies
n =
lim 721‘:1 Fi _

n— o0 n

We now prove that
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By Cesaro’s theorem, it will be sufficient to prove that
2" -1
lim E[R,]= lim Y  a;(P(Us € A) = P(U; € A)) =
n—oo n—oo gt
[recall formula (4.2)]. This is immediate by the relation
201

Z a; = log,(2 ) —logy (271 =1
j=2t1
and by Theorem (3.1), which implies
lim P(U, € A) = u(A4).

n—00

(ii) We now prove that (H,) and (WW,,) have the same limit points. First, observe that
>t gz la(Ui)

W, =
logyn

Since the sequences (a,,) [see definition (4.1)] and (b,), where b,, = #ng are equiv-

alent as n — oo, this amounts to show that (H,,) has the same limit points as
v = iz @ila(Ui)

" logy

This is easy since, for 2" < n < 271 we can write

r 1
Z?:l a;14(U;) <V < Zf 1 a;14(U;)
- 4 = n -~ - -

r+1 r

We pass to the proof of the ASCLT [Corollary (2.6)]. Consider first a Borel set A of
the form A = (—oo, z]. The Gaal-Koksma law applied to the sequence

].A(Uza‘,) — P(UQi S A)

gives, P—a.s,

lim =0.
n—oo n n—oo n

<Tn Y P(Us € A))_ LTI (1aUs) = P(Ux € )

by an argument similar to that used above for the sequence (R,) [see below for the
definition of (R,)]. On the other hand, again by Cesaro’s theorem and Theorem (3.1),

we have " p A
m 2z P(Us € 4) = lim P(Usn € A) = p(A).
n—0oo n n—oo
Hence, we get
(4.5) lim T, = p(A), P —a.s.
n—0oo

Now, the classical techniques (similar to those used in the Glivenko—Cantelli theorem;
see, e.g., [3], p. 59) yield that the P-null set I' such that (4.5) holds for w € T'° is
independent of A, and it is henceforth immediate that, on I'¢, (4.5) holds also for Borel
sets A that are finite unions of disjoint intervals.

For a general set A with A\(0A) = u(0A) =0, fix e > 0 and let A. and B, be finite
unions of disjoint intervals such that

A.CAC B, and w(B\ Ae) <€
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Then n "
Zi=1 1A5(U217) <T, < Zi=1 1BE(U2’3);
n n
hence, by passing to the limit as n — oo, we get, for w € I'°,
(4.6) w(Ae) < liminf T, <limsupT, < u(Be);
since
(4.7) 1(Ae) < p(A) < p(Be) < p(Ae) +e

by passing to the limit as € — 0 in (4.7) and then in (4.6), we deduce that lim, o T,

exists for w € T'¢ and, moreover,

lim T, = p(A), wel*“.

n—oo
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