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ON THE ϕ-ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

OF STOCHASTIC DIFFERENTIAL EQUATIONS

In this paper we study the a.s. asymptotic behaviour of the solution of the stochastic
differential equation dX(t) = g(X(t))dt + σ(X(t))dW (t), X(0) = b > 0, where g and
σ are positive continuous functions and W is a Wiener process. Making use of the
theory of pseudo-regularly varying (PRV) functions, we find conditions on g, σ and
ϕ, under which ϕ(X(�)) can be approximated a.s. by ϕ(μ(�)), where μ is the solution
of the ordinary differential equation dμ(t) = g(μ(t))dt, μ(0) = b. As an application
of these results we discuss the problem of ϕ-asymptotic equivalence for solutions of
stochastic differential equations.

1. Introduction

Gihman and Skorohod [16], Keller et al. [19], and later Buldygin et al. [7–11] consid-
ered the asymptotic behaviour, as t → ∞, of solutions of certain stochastic differential
equations (SDE’s) and gave conditions, under which the asymptotics of these solutions
are determined by nonrandom functions. In this paper, we reconsider this problem and
study conditions, under which solutions of two SDE’s are asymptotically equivalent.

Consider, for k = 1, 2, the stochastic differential equations

dXk(t) = gk(Xk(t)) dt + σk(Xk(t)) dWk(t), t ≥ 0, Xk(0) = bk > 0. (1.1)

Here {Wk, k = 1, 2} are standard Wiener processes defined on a common probability
space; {bk, k = 1, 2} are nonrandom positive constants; {gk, σk, k = 1, 2} are continuous
functions defined on the set R = (−∞,∞) and such that, for each k = 1, 2, the functions
σk and (gk(u), u > 0) are positive, and (1.1) has almost surely (a.s.) a unique and
continuous Itô-solution Xk = (Xk(t), t ≥ 0) with

lim
t→∞Xk(t) =∞ a.s. (1.2)

For k = 1, 2 denote by μk = (μk(t), t ≥ 0) the solution of the Cauchy problem for the
ordinary differential equations (ODE’s) corresponding to (1.1) with σk ≡ 0, i.e.

dμk(t) = gk(μk(t)) dt, t ≥ 0, μk(0) = bk > 0 (k = 1, 2). (1.3)

We assume that, for each k = 1, 2, the function gk is such that the solution μk exists, is
unique and satisfies

lim
t→∞μk(t) =∞. (1.4)

The following four main problems will be considered in this paper for given functions
ϕ1 and ϕ2.
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The first problem (Problem I) is to investigate, under which conditions it follows that
solutions of the SDE’s (1.1) and their corresponding ODE’s (1.3) are ϕ-asymptotically
equivalent, that is

lim
t→∞

ϕk(Xk(t))
ϕk(μk(t))

= 1 a.s., k = 1, 2. (1.5)

The second problem (Problem II) is to study, under which conditions it holds that
solutions of the ODE’s (1.3) are ϕ-asymptotically equivalent, that is

lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1. (1.6)

The next problem (Problem III) is a modification of Problem I. The question is, under
which conditions it follows that the solution of the first SDE in (1.1) is ϕ-asymptotically
equivalent to the solution of the second ODE in (1.3), that is

lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= 1 a.s. (1.7)

And finally, Problem IV is to verify, under which conditions it holds that solutions of
the SDE’s (1.1) are ϕ-asymptotically equivalent, that is

lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= 1 a.s. (1.8)

All these problems are closely connected, of course, and it is clear that the solutions
of Problems III and IV follow from those of Problems I and II.

Gihman and Skorohod [16], §17, and Keller et al. [19] considered some versions of
Problem I for a single equation, while Buldygin et al. [7–12] considered some versions of
all problems above. Here, we further study these problems in more detail.

In order to solve Problems I and II, we follow the general approach developed in
Buldygin et al. [5–7]. This approach allows for solving the following general problem:
Find conditions on a given function, under which its inverse or quasi-inverse function
preserves the equivalence of functions.

The paper is organized as follows. In Section 2, we formulate and discuss the results
concerning Problem I. Subsequently, Problems II, III and IV are considered in Sections 3,
4 and 5, respectively. The main problems of this paper are closely connected with the
relations between limits of ratios of functions and their (quasi-) inverse functions from
various classes of regularly varying (RV) functions and their extensions. These relations
are discussed in Section 6. In Section 7, some of our main results are proved.

2. The ϕ-Asymptotic Equivalence of Solutions of SDE’s and ODE’s.

In this section we consider the asymptotic behaviour, as t → ∞, of the Itô-solution
X = (X(t), t ≥ 0) of the SDE

dX(t) = g(X(t))dt+ σ(X(t))dW (t), t ≥ 0, X(0) = b > 0. (2.1)

Here W is a standard Wiener process. We assume that σ = (σ(x),−∞ < x < ∞) is
a positive function and g = (g(x),−∞ < x < ∞) is positive on (0,∞) (or ultimately
positive), and we shall only be interested in situations, in which limt→∞X(t) = ∞ a.s.
and such that infinity will not be reached in finite time.

Denote by μ = (μ(t), t ≥ 0) the solution of the ODE corresponding to (2.1) for σ ≡ 0,
i.e.

dμ(t) = g(μ(t))dt, t ≥ 0, μ(0) = b. (2.2)
We assume that the function g is such that the solution μ exists, is unique, tends to ∞
as t→∞, and that infinity will not be reached in finite time.
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Put

G(x) =
∫ x

b

ds

g(s)
, x ∈ [b,∞). (2.3)

Note that G = (G(x), x ≥ b) is the inverse function of μ, i.e., G = μ−1, if g is positive
and continuous for x ≥ b, and limt→∞ μ(t) =∞ if and only if limt→∞G(t) =∞.

The main problem in this section is to study conditions, under which

lim
t→∞

ϕ(X(t))
ϕ(μ(t))

= 1 a.s. (2.4)

for a given function (ϕ(x),−∞ < x <∞).
As a first step for solving this problem we use the Skorohod method. In Gihman and

Skorohod [16], §17, Theorem 4 (see also Keller et al. [19], Theorem 5) the process

Y (t) = G(X(t)), t ≥ 0,

is studied and it is proved that

lim
t→∞

G(X(t))
t

= 1 a.s. (2.5)

under certain conditions (see Remark 2.3 below).

The General Statement. Let g, σ and ϕ be functions satisfying the following condi-
tions:

(A1) g is continuous and positive on (0,∞) and σ is continuous and positive on
(−∞,∞) and such that (2.1) has a.s. a unique and continuous solution as well
as (2.2) has a unique and continuously differentiable solution;

(A2) ϕ = (ϕ(x), x > 0) is a positive and continuously differentiable function, strictly
increasing to infinity as x→∞.

Put
G(ϕ)(·) = G(ϕ−1(·)), g(ϕ)(·) = g(ϕ−1(·))ϕ′(ϕ−1(·)),

where G is as in (2.3), the function ϕ−1 is inverse to ϕ, and ϕ′ is the first derivative of
ϕ.

Observe that (G(ϕ)(t), t ≥ ϕ(b)) is the inverse function of ϕ(μ(·)).
For example, if ϕ(·) = log(·), then G(log)(·) = G(e(·)) and g(log)(·) = e−(·)g(e(·)).
If ϕ(x) ≡ x, then G(ϕ) = G and g(ϕ) = g.

Now our goal is to find conditions on g, σ and ϕ, under which relation (2.4) holds. To
do so, we first consider the following general statement, which describes extra conditions
for relation (2.5) to imply or being equivalent to (2.4). Note that the result below holds
for nonrandom functions.

Theorem 2.1. Assume conditions (A1), (A2) and∫ ∞

b

du

g(u)
=∞. (2.6)

Let g and ϕ be such that

lim inf
t→∞

∫ ct

t

du

g(ϕ)(u)G(ϕ)(u)
= lim inf

t→∞

∫ ϕ−1(ct)

ϕ−1(t)

du

g(u)G(u)
> 0 for all c > 1. (2.7)

Then,

1) if (2.5) holds, then (2.4) follows;
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2) if

lim
c↓1

lim sup
t→∞

∫ ct

t

du

g(ϕ)(u)G(ϕ)(u)
= lim

c↓1
lim sup

t→∞

∫ ϕ−1(ct)

ϕ−1(t)

du

g(u)G(u)
= 0, (2.8)

then (2.5) and (2.4) are equivalent.

Recall that, by condition (2.6), μ(t) → ∞ as t → ∞. Moreover, (2.6) excludes the
possibility of explosions, that is, the solution does not reach infinity in finite time.

Theorem 2.1 with ϕ(x) ≡ x describes extra conditions for relation (2.5) to imply or
being equivalent to

lim
t→∞

X(t)
μ(t)

= 1 a.s. (2.9)

(see Buldygin et al. [8]).

Corollary 2.1. Assume (A1), (A2) and (2.6). Let g and G be such that

lim inf
t→∞

∫ ct

t

du

g(u)G(u)
> 0 for all c > 1.

Then,

1) if (2.5) holds, then (2.9) follows;
2) if

lim
c↓1

lim sup
t→∞

∫ ct

t

du

g(u)G(u)
= 0,

then (2.5) and (2.9) are equivalent.

Next, we consider some sufficient conditions, for both (2.7) (Proposition 2.1) and (2.8)
(Proposition 2.2), which may be more suitable for practical use.

Proposition 2.1. Let g be a positive and continuous function on (0,∞) such that (2.6)
holds, and let ϕ satisfy (A2). Assume that at least one of the following conditions holds:

(i) lim supt→∞ g(ϕ)(t)G(ϕ)(t)/t = lim supt→∞ g(t)G(t)ϕ′(t)/ϕ(t) <∞;
(ii) g(·)ϕ′(·) is eventually nonincreasing;
(iii) there exists α < 1 such that 0 < inft≥1 g

(ϕ)(t)t−α, supt≥1 g
(ϕ)(t)t−α <∞;

(iv) (g(ϕ))∗(c) < c for all c > 1, with (g(ϕ))∗(c) = lim supt→∞ g(ϕ)(ct)/g(ϕ)(t);
(v) g(ϕ) is an RV function with index α < 1 (see Section 6 below).

Then, condition (2.7) is satisfied.

Remark 2.1. Under (2.6), condition (i) of Proposition 2.1 is equivalent to (2.7), if the
function g is eventually nondecreasing.

Remark 2.2. Condition (i) of Proposition 2.1 does not hold for g(ϕ)(t) ≡ t, since

lim sup
t→∞

g(ϕ)(t)G(ϕ)(t)/t = lim
t→∞

∫ t

1

ds

s
=∞.

Moreover, this condition does not hold for any regularly varying function g(ϕ) of index
1, that is, for a function g(ϕ) such that g(ϕ)(t) ≡ t�(t), where � is slowly varying. This is
due to a result of Parameswaran [24], which proves that

lim
t→∞ �(t)

∫ t

1

ds

s�(s)
=∞.
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Proposition 2.2. Let g be a positive and continuous function on (0,∞) such that (2.6)
holds, and let ϕ satisfy (A2). Assume that at least one of the following conditions holds:

(i) lim inft→∞ g(ϕ)(t)G(ϕ)(t)/t = lim inft→∞ g(t)G(t)ϕ′(t)/ϕ(t) > 0;
(ii) g(·)ϕ′(·) is eventually nondecreasing;
(iii)

∫ 1

0+ dc/
(
g(ϕ)
)∗

(c) > 0, with
(
g(ϕ)
)∗

(c) = lim supt→∞ g(ϕ)(ct)/g(ϕ)(t);
(iv) the set {c ∈ (0, 1] :

(
g(ϕ)
)∗

(c) <∞} has positive Lebesgue measure;
(v) at least one of the conditions (iii), (iv), or (v) of Proposition 2.1 holds.

Then, condition (2.8) is satisfied.

Remark 2.3. Under (2.6), condition (i) of Proposition 2.2 is equivalent to (2.8), if the
function g is eventually nonincreasing.

Example 2.1. Let g(x) = ϕ(x) = x, x > 0. Clearly condition (2.6) holds, but
condition (2.7) does not, since, for all c > 1,

lim inf
t→∞

∫ ct

t

du

g(ϕ)(u)G(ϕ)(u)
= lim inf

t→∞

∫ ct

t

du

u log u
≤ lim inf

t→∞
c− 1
log t

= 0.

Next, if g(x) = x, x > 0, and ϕ(x) = log x, x > 0, then

lim
t→∞

g(ϕ)(t)G(ϕ)(t)
t

= 1, t > 0.

Thus, by Propositions 2.1 and 2.2, conditions (2.6), (2.7) and (2.8) hold.

The Gihman–Skorohod Condition. Theorem 2.2 below provides some conditions,
under which relation (2.4) holds true.

First, consider the following condition of Gihman and Skorohod [16], §17:
(GS) g is continuous and positive on (0,∞), σ is continuous and positive on (−∞,∞),

and g and σ are such that (2.1) has a.s. a unique and continuous solution with ar-
bitrary initial condition and with limt→∞X(t) =∞, as well as (2.2) has a unique
and continuously differentiable solution with arbitrary positive initial condition.
Let σ/g be bounded and let g′(x) exist for all x > 0 with g′(x)→ 0 as x→∞.

Remark 2.4. Recall that, under (GS), relation (2.5) holds true a.s., that is

lim
t→∞

G(X(t))
t

= 1 a.s.

(see Gihman and Skorohod [16], §17, Theorem 4 and Remark 1).
Remark 2.5. Problem (2.1) has a.s. a unique and continuous solution X with arbitrary
initial condition and with limt→∞X(t) = ∞ a.s., as well as problem (2.2) has a unique
and continuous solution with arbitrary positive initial condition, if, for example, the
functions g and σ satisfy the following assumptions:

a) for some K and for all x ∈ (−∞,∞),

|g(x)|+ |σ(x)| ≤ K(1 + |x|);
b) for each C > 0 there exists an LC such that, for |x| ≤ C and |y| ≤ C,

|g(x)− g(y)|+ |σ(x)− σ(y)| ≤ LC |x− y|;
c) for all x ∈ (−∞,∞),∫ x

−∞
exp
{
−
∫ z

0

2g(u)
σ2(u)

du

}
dz =∞ and

∫ ∞

x

exp
{
−
∫ z

0

2g(u)
σ2(u)

du

}
dz <∞

(see Gihman and Skorohod [16], §15, and §16, Theorem 1).
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Theorem 2.2. Assume conditions (GS), (A2) and (2.6), and let condition (2.7) or at
least one of the conditions (i)–(v) of Proposition 2.1 hold. Then relation (2.4) follows.

The Keller–Kersting–Rösler Conditions. Theorem 2.3 below provides further con-
ditions, under which relation (2.4) holds true.

Here we discuss the conditions of Keller et al. [19]. For t > 0, put

h(t) =
g′(t)σ2(t)

2g2(t)
, ψ(t) =

∫ t

1

σ2(u)
g3(u)

du .

First consider the following general condition:
(K0) g is continuous and positive on (0,∞), σ is continuous and positive on (−∞,∞),

and g and σ are such that (2.1) has a.s. a unique and continuous solution with
arbitrary initial condition and limt→∞X(t) = ∞ with positive probability, as
well as (2.2) has a unique and continuously differentiable solution with arbitrary
positive initial condition.

The following five conditions have been used in Keller et al. [19]:
(K1) g : (0,∞)→ (0,∞) is strictly positive and twice continuously differentiable such

that
∫∞
1

(g(u))−1du =∞.
(K2) h(t)→ 0 as t→∞.
(K3) σ : (0,∞)→ (0,∞) is strictly positive and continuously differentiable such that∫∞

0
(tg(μ(t)))−2σ2(μ(t))dt <∞.

(K4) The functions g(·), g′(·), σ2(μ(·))/g2(μ(·)) and h(μ(·)) are eventually concave or
convex. If ψ(∞) =∞, we require the same behaviour for the function h(ψ−1(·)).

(K5) There is a constant C > 0 such that logμ(2t) ≤ C logμ(t) for large t. Further-
more, the function e−(·)g(e(·)) together with its derivative is eventually concave
or convex.

Remark 2.6. Under the above conditions, the following two statements hold (see
Theorem 1 and Theorem 5 in Keller et al. [19]).

I) Under (K0)–(K4), relation (2.5) holds true.
II) Under (K0)–(K5), relation (2.4) holds true with ϕ(t) = log t, t > 0.

Theorem 2.3. Assume conditions (K0)–(K4), and (A2), and let condition (2.7) or at
least one of the conditions (i)–(v) of Proposition 2.1 holds. Then relation (2.4) follows.

3. The ϕ-Asymptotic Equivalence of the Solutions of ODE’s.

In this section we consider the ODE’s (1.3) and discuss conditions under which it holds
that solutions μ1 and μ2 of these ODE’s are ϕ-asymptotically equivalent, that is (1.6)
holds true.

Consider functions gk and ϕk, k = 1, 2, satisfying the following conditions: for each
k = 1, 2,

(B1) gk is continuous and positive on (0,∞) and such that (1.3) has a unique and
continuously differentiable solution;

(B2) ϕk = (ϕk(x), x > 0) is a positive and continuously differentiable function, strictly
increasing to infinity as x→∞.

Put

G
(ϕk)
k (·) = Gk(ϕ−1

k (·)), g
(ϕk)
k = gk(ϕ−1

k (·))ϕ′
k(ϕ−1

k (·)), k = 1, 2,

where, for each k = 1, 2,

Gk(x) =
∫ x

bk

ds

gk(s)
, x ∈ [bk,∞),
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the function ϕ−1
k is inverse to ϕk, and ϕ′

k is the first derivative of ϕk.
Note that, for k = 1, 2, the function Gk = (Gk(x), x ≥ bk) is inverse to μk, i.e.,

Gk = μ−1
k , and (G(ϕk)

k (x), x ≥ ϕk(bk)) is the inverse function of ϕk(μk(·)), that is

G
(ϕk)
k (x) =

∫ x

ϕk(bk)

(
ds

g
(ϕk)
k (s)

)
, x ∈ [ϕk(bk),∞).

In the sequel we make use of the condition∫ ∞

bk

du

gk(u)
=∞, k = 1, 2. (3.1)

It follows from (B1) that (3.1) is equivalent to∫ ∞

bk

du

g
(ϕk)
k (u)

=∞, k = 1, 2.

The latter condition means that limx→∞G
(ϕk)
k (x) = ∞, k = 1, 2. Thus, under (B1),

condition (3.1) holds if and only if (1.4) holds.
Our goal in this section is to find conditions on gk and ϕk, k = 1, 2, under which

relation (1.6) holds. Theorem 3.1 below gives conditions, under which the following
three relations hold:

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1, (3.2)

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 ⇐= lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1, (3.3)

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1. (3.4)

Consider the next two conditions: for k = 1, 2,

lim inf
t→∞

∫ ct

t

du

g
(ϕk)
k (u)G(ϕk)

k (u)
= lim inf

t→∞

∫ ϕ−1
k (ct)

ϕ−1
k (t)

du

gk(u)Gk(u)
> 0 for all c > 1; (3.5)

lim
c↓1

lim sup
t→∞

∫ ct

t

du

g
(ϕk)
k (u)G(ϕk)

k (u)
= lim

c↓1
lim sup

t→∞

∫ ϕ−1
k (ct)

ϕ−1
k (t)

du

gk(u)Gk(u)
= 0. (3.6)

Remark 3.1. Note that, for k = 1, 2, conditions (3.5) and (3.6), respectively, coincide
with conditions (2.7) and (2.8), where g = g

(ϕk)
k and G = G

(ϕk)
k . Hence, if at least one

of the conditions (i) – (v) of Proposition 2.1 [Proposition 2.2] holds with g = g
(ϕk)
k and

G = G
(ϕk)
k , then condition (3.5) [(3.6)] follows.

Example 3.1. For k = 1, 2, let the functions gk and ϕk be positive and continuous on
(0,∞) and such that condition (B2) holds, and let g(ϕk)

k be an RV function with index
α < 1 (see Section 6 below). Then condition (v) of both Propositions 2.1 and 2.2 holds
together with condition (3.1) and, by Remark 3.1, conditions (3.5) and (3.6) are satisfied.

Theorem 3.1. Let gk and ϕk, k = 1, 2, be such that conditions (B1), (B2) and (3.1)
hold. Then,

1) if, at least for one k = 1, 2, condition (3.5) holds, then (3.2) follows;
2) if, at least for one k = 1, 2, condition (3.6) holds, then (3.3) follows;
3) if, at least for one k = 1, 2, condition (3.5) holds and also, at least for one

k = 1, 2, condition (3.6) holds, then (3.4) follows.
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By Theorem 3.1 and Example 3.1, we have the following result.

Corollary 3.1. Let gk and ϕk, k = 1, 2, be such that conditions (B1) and (B2) hold.
If at least one of the functions g(ϕ1)

1 and g(ϕ2)
2 is an RV function with index less than 1,

then (3.4) holds true.

On the Mutual Relation Between the ϕ-Asymptotic Equivalence of the Func-
tions g1, g2 and the Solutions of ODE’s.

Here we discuss a new Problem II*. The question is to find conditions, under which
it holds that the following three relations are satisfied:

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1, (3.7)

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 ⇐= lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1, (3.8)

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

= 1. (3.9)

It is clear that, in general, these relations do not hold. For instance, consider the
following counterexample to relation (3.7).

Example 3.2. Let ϕ1(x) = ϕ2(x) = x,

g1(x) = x, g2(x) = x+
√
x, x > 0,

and μ1(0) = μ2(0) = 1. Then

μ1(t) = et, μ2(t) =
(
2et/2 − 1

)2
, t ≥ 0.

Thus

lim
t→∞

g1(t)
g2(t)

= 1, but lim
t→∞

μ2(t)
μ1(t)

= 4.

Observe that g1 and g2 are both RV functions with index 1.

On an Application of Karamata’s Theorem. Theorem 3.1 shows that Problem II*
is directly connected with the next one.

Consider two functions (f1(t), t > 0) and (f2(t), t > 0), which are nonnegative and
Lebesgue-integrable on finite intervals, and, for given positive numbers a1 and a2, put

Fk(t) =
∫ t

ak

fk(u) du, t ≥ ak, k = 1, 2.

Assume that limt→∞ Fk(t) = ∞, k = 1, 2. The question is, under which conditions the
following three relations hold:

lim
t→∞

f1(t)
f2(t)

= 1 =⇒ lim
t→∞

F1(t)
F2(t)

= 1, (3.10)

lim
t→∞

f1(t)
f2(t)

= 1 ⇐= lim
t→∞

F1(t)
F2(t)

= 1, (3.11)

lim
t→∞

f1(t)
f2(t)

= 1 ⇐⇒ lim
t→∞

F1(t)
F2(t)

= 1, (3.12)

It is clear that (3.10) always holds. But the inverse relation (3.11) does not hold in
general. A simple counterexample is the following one: f1(t) = 2t, f2(t) = 2t(1 + cos t2),
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t ≥ 0, and F1(t) = t2, F2(t) = t2 + sin t2, t ≥ 0. Note that the function f1 is an RV
function with index 1.

So, for the relation (3.11) to hold one needs additional conditions. On applying Kara-
mata’s theorem (see Bingham et al. [4], p. 26) we get the next result.

Lemma 3.1. If f1 and f2 are RV functions with indices α1 and α2 greater than −1,
then (3.11) and (3.12) hold true.

Now we return to Problem II*. By relation (3.10) and Theorem 3.1, the following
result holds.

Theorem 3.2. Let gk and ϕk, k = 1, 2, be such that conditions (B1), (B2) and (3.1)
hold. If, at least for one k = 1, 2, condition (3.5) holds, then (3.7) follows.

From Theorem 3.2, with ϕ1 = ϕ2 = ϕ, we conclude the following result.

Corollary 3.2. Let g1, g2 and ϕ be such that conditions (B1), (3.1) and (A2) hold.
If, at least for one k = 1, 2, condition (3.5) holds, with ϕk = ϕ, then

lim
t→∞

g1(t)
g2(t)

= 1 =⇒ lim
t→∞

ϕ(μ1(t))
ϕ(μ2(t))

= 1.

Lemma 3.1 in combination with Corollary 3.1 gives the next theorem.

Theorem 3.3. Let gk and ϕk, k = 1, 2, be such that conditions (B1) and (B2) hold.
If g(ϕ1)

1 and g(ϕ2)
2 are RV functions with indices less than 1, then (3.9) follows.

From Theorem 3.3, with ϕ1 = ϕ2 = ϕ, we conclude the following results.

Corollary 3.3. Let g1, g2 and ϕ be such that conditions (B1) and (A2) hold. If g(ϕ)
1

and g(ϕ)
2 are RV functions with indices less than 1, then

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

ϕ(μ1(t))
ϕ(μ2(t))

= 1.

Corollary 3.4. Let g1 and g2 be RV functions with indices less than 1, and let (B1)
hold. Then,

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

μ1(t)
μ2(t)

= 1.

Remark 3.2. Example 3.2 shows that the RV functions g1 and g2 in Corollary 3.4 (and
in other statements above) cannot have indices equal to 1.

4. More about Asymptotic Equivalence of the

Solutions of SDE’s and Their Corresponding ODE’s.

On applying the results above, we can now discuss, under which conditions it holds
that the solution X1 of the first SDE in (1.1) and the solution μ2 of the second ODE
in (1.3) are ϕ-asymptotically equivalent, i.e. that (1.7) holds true.

This problem is more general than Problem I (see Section 1), but its solution follows
from the results of Sections 2 and 3, since

lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= lim
t→∞

ϕ1(X1(t))
ϕ1(μ1(t))

· lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

. (4.1)

The following results demonstrate that, under certain conditions, the statements of
Theorems 2.1, 2.2 and 2.3 are stable with respect to a change of the initial condition and
a change of the function g(ϕ) to an asymptotically equivalent version.
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Theorem 4.1. Assume (B1), (B2) and (3.1), and let g = g1 and σ = σ1 be such
that (A1) and (2.5) hold. Then,

1) if, for at least one k = 1, 2, condition (3.5) holds, then

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= 1 a.s., (4.2)

and moreover,

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= 1 a.s.; (4.3)

2) if, for each k = 1, 2, conditions (3.5) and (3.6) hold, then

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= 1 a.s. (4.4)

Remark 4.1. Theorem 4.1 remains valid if (2.5) is replaced by (GS) or (K0)–(K4).
We consider some corollaries of Theorem 4.1 under the Gihman–Skorohod condition

(GS).

Theorem 4.2. Assume (B1), (B2) and (3.1), and let g = g1 and σ = σ1 be such
that (GS) holds.

1) If, for at least one k = 1, 2, condition (3.5) holds, then (4.2) and (4.3) follow;
2) If, for each k = 1, 2, conditions (3.5) and (3.6) hold, then (4.4) follows.

Theorem 4.3. Assume (B1) and (B2), and let g = g1 and σ = σ1 be such that (GS)
holds.

1) If at least one of g(ϕ1)
1 and g

(ϕ2)
2 is an RV function with index less than 1 (see

Section 6 below), then (4.2) and (4.3) follow;
2) If both g(ϕ1)

1 and g(ϕ2)
2 are RV functions with indices less than 1, then (4.4) follows

and, moreover,

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(μ2(t))

= 1 a.s. (4.5)

Observe that Theorems 2.2, 4.2 and 4.3 generalize and complement Theorem 4 in
Gihman and Skorohod [16], §17.

By Theorem 4.3, with ϕ1 = ϕ2 = ϕ, we have the following results.

Corollary 4.1. Assume (GS) with g = g1 and σ = σ1, and let g2 and ϕ be such that
conditions (B1) and (A2) hold. If g(ϕ)

1 and g(ϕ)
2 are RV functions with indices less than

1, then

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

ϕ(X1(t))
ϕ(μ2(t))

= 1 a.s.

Corollary 4.2. Assume (B1) and (GS), with g = g1 and σ = σ1. If g1 and g2 are RV
functions with indices less than 1, then

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

X1(t)
μ2(t)

= 1 a.s.
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Example 4.1. (See Gihman and Skorohod [16], §17, Corollary 1). Assume (GS) with
g(x) = g1(x) ∼ Cxβ as x → ∞, where 0 ≤ β < 1 and C > 0. Then, by Corollary 4.2,
with g2(x) = Cxβ for x > 0, we have

lim
t→∞

X1(t)

(C(1− β)t)1/(1−β)
= 1 a.s.,

since μ2(t) ∼ (C(1 − β)t)1/(1−β) as t→∞.
Observe that, in view of Remark 2.2, we cannot use Theorem 4.2 with ϕ1(x) ≡ ϕ2(x) ≡

x and g1(x) ∼ Cx as x→∞.
Example 4.2. Assume (GS) with g(x) = g1(x) ∼ Cx/(log x)γ as x→∞, where γ > 0
and C > 0. Put ϕ1(x) = ϕ2(x) = (log(x+ 1))1+γ for x > 0. Then g(ϕ1)

1 (t) ∼ C(1 + γ) as
t→∞. Thus, by Corollary 4.1, with g2(x) = C(x + 1)/(log(x+ 1))γ for x > 0, we have

lim
t→∞

(logX1(t))
1+γ

C(1 + γ)t
= 1 a.s.,

since ϕ2(μ2(t)) ∼ (C(1 + γ)t) as t→∞.
Example 4.3. Assume (GS) with g(x) = g1(x) ∼ Cx exp (−(log x)r) as x→∞, where
0 < r < 1 and C > 0. Note that exp ((log x)r) , x > 1, is a slowly varying function, and
exp ((logx)r) /(log x)γ →∞ as x→∞ for all γ > 0. Put ϕ1(x) = ϕ2(x) = exp ((logx)r)
for x > 0. Then g

(ϕ1)
1 (t) ∼ r(log t)(r−1)/r as t → ∞. Thus, by Corollary 4.1, with

g2(x) = Cx exp (−(log x)r) for x > 0, we have

lim
t→∞

exp ((logX1(t))r)
exp ((logμ2(t))r)

= 1 a.s.

Remark 4.2. Theorems 4.2 and 4.3, and Corollaries 4.1 and 4.2 remain valid if (2.5) is
replaced by (K0)–(K4).

Example 4.4. (See Gihman and Skorohod [16], §17, Corollary 2). Assume (K0)–
(K4) with g(x) = g1(x) ∼ Cx as x → ∞, where C > 0. Put ϕ1(x) = ϕ2(x) = log x
and g2(x) = Cx for x > 0. Then g

(ϕ1)
1 (t) ∼ C as t → ∞. Thus, by Theorem 4.3 and

Remark 4.2, we have

lim
t→∞

logX1(t)
Ct

= 1 a.s.,

since ϕ2(μ2(t)) ∼ Ct as t→∞.

5. The ϕ-Asymptotic Equivalence of the Solutions of SDE’s.

In this section we consider the SDE’s (1.1) and discuss, under which conditions it
holds that the solutions X1 and X2 of these SDE’s are ϕ-asymptotically equivalent, i.e.
that (1.8) holds true. This problem is the last one in the list of our main problems (see
Section 1), and its solution follows from the results of Sections 2 and 3, since

lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= lim
t→∞

ϕ1(X1(t))
ϕ1(μ1(t))

· lim
t→∞

ϕ1(μ1(t))
ϕ2(μ2(t))

· lim
t→∞

ϕ2(μ2(t))
ϕ2(X2(t))

. (5.1)

In this section, we study some new statements under the Gihman-Skorokhod condition
(GS) only (see Section 2). Consider the following version of (GS):

(GS*) Condition (GS) holds for the functions g = gk and σ = σk, k = 1, 2.
The following statements provide conditions, under which solutions of the SDE’s (1.1)

are ϕ-asymptotically equivalent.
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Theorem 5.1. Assume (GS*), (B2) and (3.1).

1) If, for at least one k = 1, 2, condition (3.5) holds, then

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= 1 a.s., (5.2)

and moreover,

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 =⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= 1 a.s. ; (5.3)

2) if, for each k = 1, 2, conditions (3.5) and (3.6) hold, then

lim
t→∞

G
(ϕ1)
1 (t)

G
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= 1 a.s. (5.4)

Theorem 5.2. Assume (GS*) and (B2).

1) If at least one of g(ϕ1)
1 and g

(ϕ2)
2 is an RV function with index less than 1 (see

Section 6 below), then (5.2) and (5.3) follow;
2) If both g(ϕ1)

1 and g(ϕ2)
2 are RV functions with indices less than 1, then (5.4) follows

and, moreover,

lim
t→∞

g
(ϕ1)
1 (t)

g
(ϕ2)
2 (t)

= 1 ⇐⇒ lim
t→∞

ϕ1(X1(t))
ϕ2(X2(t))

= 1 a.s. (5.5)

Theorem 5.2, with ϕ1 = ϕ2 = ϕ, implies the following result.

Corollary 5.1. Assume (GS*) and (A2). If g(ϕ)
1 and g

(ϕ)
2 are RV functions with

indices less than 1, then

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

ϕ(X1(t))
ϕ(X2(t))

= 1 a.s.

For ϕ(x) ≡ x one has the following statement.

Corollary 5.2. Assume (GS*). If g1 and g2 are RV functions with indices less than
1, then

lim
t→∞

g1(t)
g2(t)

= 1 ⇐⇒ lim
t→∞

X1(t)
X2(t)

= 1 a.s.

6. Properties of Some Classes of Functions

In this section we recall the definitions and some properties of various classes of reg-
ularly varying functions and their extensions. Also asymptotic quasi-inverse functions
and relations between limits of the ratio of functions and their quasi-inverse functions
are discussed.

Let R+ be the set of nonnegative reals. Also let F = F(R+) be the space of real-valued
functions f = (f(t), t ≥ 0), and F+ =

⋃
A>0{f ∈ F : f(t) > 0, t ∈ [A,∞)}. Thus f ∈ F+

if and only if f is eventually positive.
Let F(∞) be the space of functions f ∈ F+ such that

(i) sup0≤t≤T f(t) <∞ ∀ T > 0;
(ii) lim supt→∞ f(t) =∞.
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Further let F∞ be the space of functions f ∈ F(∞) such that limt→∞ f(t) = ∞. We
also make use of the subspaces C

(∞) and C
∞ of continuous functions in F

(∞) and F
∞,

respectively.
Finally, the space C∞

inc contains all functions f ∈ C∞, which are strictly increasing for
large t.

For a given f ∈ F+, we consider the upper and lower limit functions

f∗(c) = lim sup
t→∞

f(ct)
f(t)

and f∗(c) = lim inf
t→∞

f(ct)
f(t)

, c > 0,

which take values in [0,∞].

RV and ORV Functions. Recall that a measurable function f ∈ F+ is called regularly
varying (RV) if f∗(c) = f∗(c) = κ(c) ∈ R+ for all c > 0 (see Karamata [17]). In
particular, if κ(c) = 1 for all c > 0, then the function f is called slowly varying (SV). For
any RV function f , κ(c) = cα, c > 0, for some number α ∈ R, which is called the index
of the function f . Moreover, f(t) = tα�(t), t > 0, where � is a slowly varying function.

A measurable function f ∈ F+ is called O-regularly varying (ORV) if f∗(c) < ∞ for
all c > 0 (see Avakumović [1] and Karamata [18]). It is obvious that any RV function is
an ORV function. The theory of RV functions and later extensions and generalizations
turned out to be fruitful in various fields of mathematics (cf. Seneta [25] and Bingham et
al. [4] for excellent surveys on this topic and for the history of its theory and applications).

PRV Functions. For any RV function f , we have f∗(c) → 1 as c → 1. In order to
generalize this property to a wider class of functions, we introduce the following notion
(see Buldygin et al. [5]).

Definition 6.1. A measurable function f ∈ F+ is called pseudo-regularly varying
(PRV) if

lim sup
c→1

f∗(c) = 1. (6.1)

Any PRV function is ORV, but not vice versa. Moreover, any RV function is PRV,
but not vice versa. Corresponding examples have been given in Buldygin et al. [5].

PRV functions and their various applications have been studied by Korenblyum [21],
Matuszewska [22], Matuszewska and Orlicz [23], Stadtmüller and Trautner [26], Berman
[2, 3], Yakymiv [28], Cline [13], Djurčić [14], Djurčić and Torgašev [15], Klesov et al. [20],
and Buldygin et al. [5–10]. Note that PRV functions are called regularly oscillating in
Berman [2], weakly oscillating in Yakymiv [28], intermediate regularly varying in Cline [13]
and CRV in Djurčić [14]. We stick to the notion PRV introduced in Buldygin et al. [5].

One of the well-known properties of PRV functions is that they and only they preserve
the equivalence of functions (see, for example, Buldygin et al. [5]).

Two functions u and v are called (asymptotically) equivalent if u(t) ∼ v(t) as t→∞,
that is, limt→∞ u(t)/v(t) = 1. The equivalence of functions is denoted by u ∼ v. Recall
that a function f preserves the equivalence of functions if f(u(t))/f(v(t))→ 1 as t→∞
for all nonnegative functions u and v such that u ∼ v and limt→∞ u(t) = limt→∞ v(t) =
∞.

Lemma 6.1. A measurable function f ∈ F+ preserves the equivalence of functions if
and only if it is PRV.

SQI Functions. Next we define a further class of functions playing an important role
in the context of this paper (see also Buldygin et al. [5, 6]).
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Definition 6.2. A measurable function f ∈ F+ is called sufficiently quickly increasing
(SQI) if

f∗(c) > 1 for all c > 1. (6.2)

These functions have also been used by Yakymiv [27], Djurčić and Torgašev [15], and
Buldygin et al. [5–10].

Note that any slowly varying function f cannot be an SQI function. On the other
hand, any RV function of positive index as well as any quickly increasing monotone
function, for example f(t) = et, t ≥ 0, is SQI.

Quasi-Inverse Functions. First, we recall the definition of a quasi-inverse function,
which will be useful for our considerations below (cf. Buldygin et al. [5, 6]).

Definition 6.3. Let f ∈ F(∞). A function f (−1) ∈ F∞ is called a quasi-inverse
function of f if f(f (−1)(s))) = s for all large s.

For any f ∈ C
(∞), a quasi-inverse function exists, but may not be unique (see Buldygin

et al. [5, 6]). If f ∈ C∞
inc, then its inverse function f−1 exists, that is, f(f−1(s)) = s and

f−1(f(t)) = t for all sufficiently large s and t.

Quasi-Inverse Functions Preserving the Equivalence of Functions. Next we dis-
cuss conditions under which quasi-inverse functions preserve the equivalence of functions
(see Buldygin et al. [5, 6]).

Theorem 6.1. Assume f ∈ C∞
inc. Then, its inverse function f−1 preserves the

equivalence of functions if and only if condition (6.2) holds.

Finally we consider relations between limits of the ratio of functions and their quasi-
inverse functions (see Buldygin et al. [5, 6]).

Theorem 6.2. Assume f ∈ C∞
inc and let f satisfy condition (6.2). If, for some

function x ∈ F
∞,

lim
t→∞

x(t)
f(t)

= a with some a ∈ (0,∞),

then, for any quasi-inverse function x(−1) of x, we have

lim
s→∞

x(−1)(s)
f−1(s/a)

= 1,

where f−1 is the inverse function of f.

7. Auxiliary Results

The proofs of some statements in this paper are closely connected with the questions
of when differentiable functions satisfy PRV or SQI conditions (see Section 6). These
questions were studied in Buldygin et al. [8, 9, 11]. In this section, some results from
these papers are collected.

Conditions for Differentiable Functions to be PRV or SQI. Consider the follow-
ing five conditions on a function f and its derivative f ′:

(D) f ∈ F∞ and f is positive and continuously differentiable for all t ≥ t0 > 0;
(DM) Condition (D) holds and f ′(t) ≥ 0 for all t ≥ t0 > 0;

(DM+) Condition (D) holds and f ′(t) > 0 for all t ≥ t0 > 0;
(DM1) Condition (DM+) holds and f ′ is nonincreasing for all t ≥ t0 > 0;
(DM2) Condition (DM+) holds and f ′ is nondecreasing for all t ≥ t0 > 0.
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For a function f satisfying condition (D), the following integral representation holds:

f(t) = f(t0) exp
{∫ t

t0

f ′(u)
f(u)

du

}
(7.1)

for any t > t0.
The next result provides some simple inequalities between the limit functions of f and

f ′.

Proposition 7.1. If condition (DM+) holds, then

c(f ′)∗(c) ≤ f∗(c) ≤ f∗(c) ≤ c(f ′)∗(c)

for all c ≥ 0.

In particular, Proposition 7.1 demonstrates that under condition (DM+), if f ′(·) is an
ORV (PRV, SQI, RV) function, then f possesses the same property. Below, these results
will be strengthened for PRV and SQI functions.

Lemma 7.1. Assume condition (D). Then f is a PRV function if and only if

lim
c→1

lim sup
t→∞

∫ ct

t

f ′(u)
f(u)

du = 0.

Lemma 7.2. Assume condition (DM). Then f is a PRV function if and only if

lim
c↓1

lim sup
t→∞

∫ ct

t

f ′(u)
f(u)

du = 0.

Let us consider some corollaries of the above lemmas.

Corollary 7.1. Assume condition (D).

1) If

lim sup
t→∞

t|f ′(t)|
f(t)

<∞,
then f is a PRV function.

2) If f is a PRV function, then

lim inf
t→∞

tf ′(t)
f(t)

<∞.

3) If condition (DM) holds and

lim sup
t→∞

tf ′(t)
f(t)

<∞, (7.2)

then f is a PRV function.
4) If condition (DM1) holds, then f is a PRV function.

Remark 7.1. If condition (D) holds and lim supt→∞ t|f ′(t)| < ∞, then f∗(c) = 1 for
all c > 0. This means that f is an SV function, and hence it is a PRV function. Thus we
can confine ourselves to the case, when lim supt→∞ t|f ′(t)| =∞.
Corollary 7.2. Assume condition (DM2). Then f is a PRV function if and only
if (7.2) holds true.

The integral in the next statement means the Lebesgue integral.



26 V. V. BULDYGIN ET AL.

Corollary 7.3. Assume condition (DM+). If∫ 1

0+

(f ′)∗(c)dc > 0, (7.3)

then f is a PRV function.

On applying Corollary 7.3, we get the following result.

Corollary 7.4. Assume condition (DM+). If the set {c ∈ (0, 1] : (f ′)∗(c) > 0} has
positive Lebesgue measure, then f is a PRV function. In particular, this condition holds
if f ′ is an ORV function.

Now we discuss conditions for differentiable functions to be SQI.

Lemma 7.3. Assume condition (D). Then f is an SQI function if and only if

lim inf
t→∞

∫ ct

t

f ′(u)
f(u)

du > 0 for all c > 1.

Next, we consider some corollaries of Lemma 7.3.

Corollary 7.5. Assume condition (DM).
1) If

lim inf
t→∞

tf ′(t)
f(t)

> 0, (7.4)

then f is an SQI function.
2) If f is an SQI function, then

lim sup
t→∞

tf ′(t)
f(t)

> 0.

3) If f is an SQI function, then

lim sup
t→∞

tf ′(t) =∞.

4) If condition (DM2) holds, then f is an SQI function.

Corollary 7.6. Assume condition (DM1). Then f is an SQI function if and only
if (7.4) holds true.

The next result gives a condition in terms of the function (f ′)∗(·).
Corollary 7.7. Assume condition (DM+). If

c(f ′)∗(c) > 1 for all c > 1,

then f is an SQI function.

8. Proofs of the Main Results

Proof of Theorem 2.1. By conditions (2.6), (2.7) and Lemma 7.3, with f = G(ϕ) and
f ′ = 1/g(ϕ), we have that G(ϕ) is an SQI function, that is, it satisfies (6.2). Moreover,
G(ϕ) ∈ C∞

inc. Hence, by Theorem 6.1, the function ϕ(μ(·)) = (G(ϕ))−1(·) preserves the
equivalence of functions (see Section 6). Therefore, in view of (2.5),

lim
t→∞

ϕ(X(t))
ϕ(μ(t))

= lim
t→∞

ϕ(μ(G(X(t))))
ϕ(μ(t))

= lim
t→∞

G(X(t))
t

= 1 a.s.,

since μ = G−1. Thus, relation (2.4) holds and statement 1) is proved.
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By conditions (2.6), (2.8) and Lemma 7.2, with f = G(ϕ) and f ′ = 1/g(ϕ), we have
that G(ϕ) is a PRV function (see Definition 6.1). Hence, by Lemma 6.1, the function
G(ϕ) = G(ϕ−1) preserves the equivalence of functions. Therefore, in view of (2.4),

lim
t→∞

G(X(t))
t

= lim
t→∞

G(ϕ)(ϕ(X(t)))
G(ϕ)(ϕ(μ(t)))

= lim
t→∞

ϕ(X(t))
ϕ(μ(t))

= 1 a.s.,

that is, relation (2.5) holds. Thus, statement 2) follows from the last implication in
combination with 1). �
Proof of Proposition 2.1. Condition (2.7) follows from

a) (2.6) and (i), in view of Corollary 7.5, with f = G(ϕ) and f ′ = 1/g(ϕ), since

lim inf
t→∞

tf ′(t)
f(t)

= lim inf
t→∞

t

G(ϕ)(t)g(ϕ)(t)
= lim inf

t→∞
ϕ(t)

G(ϕ)(ϕ(t))g(ϕ)(ϕ(t))

= lim inf
t→∞

ϕ(t)
G(t)g(t)ϕ′(t)

=
(

lim sup
t→∞

G(t)g(t)ϕ′(t)
ϕ(t)

)−1

> 0;

b) (2.6) and (ii), since, by (ii), g(ϕ) is eventually nonincreasing and thus (i) holds;
c) (iii), since (i) (and also (2.6)) follows from (iii);
d) (2.6) and (iv), in view of Corollary 7.7, with f = G(ϕ) and f ′ = 1/g(ϕ), since(

1/g(ϕ)
)
∗ = 1/(g(ϕ))∗;

e) (2.6) and (v), since (iv) follows from (v).
�

Proof of Proposition 2.2. Condition (2.8) follows from

a) (2.6) and (i), in view of Corollary 4.1, with f = G(ϕ) and f ′ = 1/g(ϕ), since

lim sup
t→∞

tf ′(t)
f(t)

= lim sup
t→∞

t

g(ϕ)(t)G(ϕ)(t)
= lim sup

t→∞
ϕ(t)

G(ϕ)(ϕ(t))g(ϕ)(ϕ(t))

= lim sup
t→∞

ϕ(t)
G(t)g(t)ϕ′(t)

<∞ =
(

lim inf
t→∞

G(t)g(t)ϕ′(t)
ϕ(t)

)−1

<∞;

b) (2.6) and (ii), since, by (ii), g(ϕ) is eventually nondecreasing and thus (i) holds;
c) (2.6) and (iii), in view of Corollary 7.3, with f = G(ϕ) and f ′ = 1/g(ϕ), since

(1/g(ϕ))∗(c) = 1/(g(ϕ))∗(c) for all c > 0;
d) (2.6) and (iv), since (iii) follows from (iv);
e) (2.6) and (v), since (iv) follows from (v).

�
Proof of Theorem 2.2. Theorem 2.2 follows from Theorem 2.1 in combination with Re-
mark 2.4 and Proposition 2.1. �
Proof of Theorem 2.3. Theorem 2.3 follows from Theorem 2.1 in combination with Re-
mark 2.6 and Proposition 2.1. �
Proof of Theorem 3.1. Assume that (3.5) holds for at least one k = 1, 2. Then, by
conditions (3.1), (3.5) and Lemma 7.3, with f = G

(ϕk)
k and f ′ = 1/g(ϕk)

k , we have that
G

(ϕk)
k is an SQI function, i.e. it satisfies (6.2). Moreover, G(ϕj)

j ∈ C∞
inc and (G(ϕj)

j )−1 =
ϕj ◦ μj , j = 1, 2. Hence, by Theorem 6.2, relation (3.2) follows and statement 1) is
proved.

In order to prove statement 2) we assume that (3.6) holds for at least one k = 1, 2.
Then, by conditions (3.1), (3.6) and Lemma 7.2, with f = G

(ϕk)
k and f ′ = 1/g(ϕk)

k ,
we have that G(ϕk)

k is a PRV function (see Definition 6.1). Hence, by Lemma 6.1, the
function G

(ϕk)
k preserves the equivalence of functions. Therefore, by Theorem 6.1, the
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function ϕk ◦μk is an SQI function, since G(ϕj)
j ∈ C∞

inc and (G(ϕj)
j )−1 = ϕj ◦μj , j = 1, 2.

Hence, by Theorem 6.2, relation (3.3) follows and statement 2) is proved.
Statement 3) follows from statements 1) and 2). �

Proof of Lemma 3.1. For each k = 1, 2, the function Fk is an RV function with index
αk + 1 > 0, since fk is an RV function with index αk > −1. Assume that

lim
t→∞

F1(t)
F2(t)

= 1.

Then α1 + 1 = α2 + 1 = β > 0 and, by Karamata’s theorem (see Bingham et al. [4], p.
26), we have that

lim
t→∞

tfk(t)
βFk(t)

= 1, k = 1, 2.

Hence

lim
t→∞

f1(t)
f2(t)

= lim
t→∞

tf1(t)
βF1(t)

· lim
t→∞

F1(t)
F2(t)

· lim
t→∞

βF2(t)
tf2(t)

= 1.

Thus relation (3.11) is proved.
Relation (3.12) follows from relations (3.10) and (3.11). �

Proof of Theorem 4.1. In view of relation (4.1), Theorem 4.1 follows from Theorems 2.1,
3.1 and 3.2. �
Proof of Theorem 4.2. Theorem 4.2 follows from Theorem 4.1 and Remark 2.4. �
Proof of Theorem 4.3. Theorem 4.3 follows from Theorem 4.2 in combination with Ex-
ample 3.1 and Lemma 3.1, with fk = 1/g(ϕk)

k , k = 1, 2. �
Proof of Theorem 5.1. In view of relation (5.1), Theorem 5.1 follows from Theorems 2.2,
3.1 and 3.2. �
Proof of Theorem 5.2. Theorem 5.2 follows from Theorem 5.1 in combination with Ex-
ample 3.1 and Lemma 3.1, with fk = 1/g(ϕk)

k , k = 1, 2. �
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