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VLADIMIR ZUBCHENKO

LONG-TERM RETURNS IN STOCHASTIC
INTEREST RATE MODELS

We consider the behavior of integral functional of the solution of
stochastic differential equation with coefficients contained small pa-
rameter. The dependence on the order of small parameter in every
term of equation with Wiener process and Poisson measure term is
studied. We observe the convergence of the long-term return, using
an extension of the Cox-Ingersoll-Ross stochastic model of the short
interest rate. Obtained results are applied for studying of two-factor
stochastic interest rate model.

1. INTRODUCTION

Controlling the risk induced by interest rate fluctuation is of crucial
importance for banks and insurance companies. In this light, we think it is
interesting to study and to model the long-term return in a mathematical
way.

Interest to the behavior of long-term return leads to the investigation
of limit behavior of integral functionals of solution of stochastic differen-
tial equation. In [1] properties of integral functionals of Brownian motion
with drift are considered. In [2] the boundary classification of diffusion is
used in order to derive a criterion for the convergence of perpetual integral
functionals of transient real-valued diffusion. In [3] the behavior of integral
functional of the solution to stochastic differential equation with Wiener
process and Poisson measure term, and with coefficients containing small
parameter is studied. The first part of this paper contains some generaliza-
tion of results from [3].

In the Cox-Ingersoll-Ross stochastic model [4] the dynamics of the short
interest rate (1;);>0 is expressed by stochastic differential equation

d?”t = k(”}/ — Tt>dt + U\/?"_tdwt,
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with (w¢)s>0 one-dimensional Wiener process and k, v and o positive con-
stants. In this model r; never becomes negative and converges to the long-
term constant value v [5]. Further, it is reasonable to conjecture that the
market will constantly change this level v and the volatility o. Therefore
it is natural to consider v as the stochastic process and to generalize the
volatility.

In mentioned models the short interest rate satisfies the stochastic dif-
ferential equation of diffusion type. In this paper we consider the stochastic
differential equation for the processes with discontinuities. We observe the
convergence of the long-term return % fot rsds, where (r;);>o satisfies the
stochastic differential equation with Wiener process and Poisson measure
term, which is the generalization of the Cox-Ingersoll-Ross stochastic model
of the short interest rate.

2. THE LIMIT BEHAVIOR OF INTEGRAL FUNCTIONAL OF THE SOLUTION
OF STOCHASTIC DIFFERENTIAL EQUATION

We study the behavior, as ¢ — 0, of the integral functional 7.(t) =
t/ek
(e8/t) [ d(s,&(s))ds, where &(t) is the solution of stochastic differential

0
equation

de(t) = ™ (¢, £(t))dt +e"g(t, (1)) dw(t) +€™ /Rd q(t, (1), y)o(dt, dy), (1)

5(0) = &o;

e > 0 is the small parameter; kK > 0, k; > 0,7 = 1,2, 3; d(t, z) is non-random
function; f(ta [L’) = {f,(t,l’),% = m}a q(t,x,y) = {Qi(taxay)ai - m} are
non-random vector-valued functions; g(t,z) = {g;;(¢,x),7,7 = 1,d} is non-
random matrix-valued function; ¢ € [0,T],z,y € R% w(t) is d-dimensional
Wiener process; v(dt,dy) = v(dt,dy) — l(dy)dt, v(dt,dy) is the Poisson
measure independent on w(t), Ev(dt,dy) = [I(dy)dt; I1(-) is a sigma-finite
measure on the o-algebra of Borel sets in R?; &; is the random vector inde-
pendent on w(t) and (¢, -).
We need the following result.

Lemma 1. Let [, q(t,z,y)I(dy) is bounded and uniformly continuous in
x with respect to t € [0,00) in every compact set |x| < C. Let II(-) be a
sigma-finite measure on the o-algebra of Borel sets in RY. For each x € R?
there exists limat

lim l/OT/qu(t,x,y)H(Oly)dt= /Rd q(z,y) I(dy),

T—o0 T
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where [, q(x,y)IL(dy) is bounded and continuous. Then for any stochasti-
cally continuous process &(t) we have

_ll—l%//Rd (s/e,&(s) dyds—//Rd [(dy)ds

for all arbitrary t € [0, T].

Proof. Since the process £(t) is stochastically continuous then [6, pp.218-
219] for any d; > 0 there exists such constant C' > 0 that

sup P{[{(t)] > O} <6

te[0,7)

and for arbitrary ¢; > 0 and d5 > 0 there exists such d3 > 0 that
P{[&(t1) — &(t2)] > b2} < 0y
for all [t;—ts| < 83, 1,12 € [0,T]. We choose d, such that | [ (¢, z1,y) II(dy)
d

- fd q(t, z9,y) I(dy)| < 0, and |fRd q(z1,y) I (dy) — fRd CY?IZJ/) (dy)| < &

R
for all t € [O,T], as |I1 — I’2| < 62, |I’1| < C, |l’2| <C.
Let us consider partition 0 =ty < t; < ... <t, =t, t € [0,T] such that
max. |tk+1 — x| < d3. For any 6 > 0 we have

e
]//R (s/e,&(5) dyds—//Rd dy)ds‘>5}

<pf ]Z / / a5/, €05),) — (/= 1), )] Tdy)ds| > 673 )+
+»] ]Z / / s/, E(timr).v) — G(€(ti) )] Ty)ds| > 573} +
[ | 60s) ) =alelti). ) ) ds]> 63} = Py Pa P

For estimation of P; and P53 we use Chebyshev inequality, properties of
chosen partition and above mentioned inequalities. Let us estimate Py :

P, < E(Z/t
<2p (z / (/1 / (5/2,€(5), ) — a(s/2, E(ta ), )] TH(dy) |

0(5/2,(5)0) — als/. 6060 )] )]t ) <
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Xx{18(s) = E(te-1)| < 02} - x{I€(s)| < O [E(—1)| < O}

FOLOIE(S) — )] > i + €00 > €+ el > ) ds) <

{ Z/ 51ds +01 Z/tklpﬂg lber)| > 6o} dst

+Z/tk 1P{|£ |>C}d8+2/tk 1P{|f k-1 |>C}ds>] < C?Sl.

Similarly we obtain P3 < Ctd;/9, where we use notation C' for any constant
independent on e. For each k = 1, n from conditions of lemma we have

lim / / a5/, E(tmr) ) — (€ W) M(d)ds =0 as

e—0 ¢

Therefore 1iII(1) P, =0, and for arbitrary 6; > 0,6 > 0

imp{| [ [ fats/e.806).0) ~ el i ntanas| > o} < S,

whence we obtain the statement of the lemma. [

Lemma 2. Let for each x € R? there exists Jim * fOT b(t,z)dt = b(x). The

function b(z) is bounded and continuous, function b(t, x) is bounded and con-
tinuous in x uniformly with respect to (t, x) in any regiont € [0, 00), |z| < C,
and stochastic process £(t) is stochastically continuous, then

t

P—lim | b(s/=,&(s ))ds:/o b(E(s)) ds

for all arbitrary t € [0, T].
The proof of this statement is similar to the proof of lemma 1.

We suppose that coefficients of equation (1) satisfy the following condi-
tions:

D [f(t o)+ gt 2)1* + [ra la(t, z,y)["I(dy) < C, where |f[* = fo,

lgll* = Z 95

i,7=1

2) For any N > 0 there exists Ly > 0 such that

[t 21) = f(t, @) * + llg(t, 21) — g(t,22) [+
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# [ latta1.) = ot )P 1) < Livker = ol
for all z; € R% i = 1,2 such that |z;| < N,i=1,2.

3) Functions f (¢, x) and g(¢, ) are continuous in = uniformly with respect
tot € [0,00) and z in every set |x| < C. For each x € R¢ there exist
the following limits

T

lim & [ f(t2)dt = f(x), lim 1/ ot 2)g" (8, 2) dt = G(x),

T—oo T

hm—/‘/ (.2, y)g" (b, )T (dy)dt = | Qlay)TI(dy).
R R

T—oo T

Here ¢* is the matrix (vector) transpose to g, therefore for vector-
valued function ¢(¢,x,y) the product ¢(t,z,y)q*(t, x,y) is the d x d-
matrix-valued function.

4) The functions f(x),G (), Jra Q( I1(dy) are bounded, continuous
in z. Matrix B(z) = G(z) + fRd )H(dy) is uniformly parabolic.

5) Jpaa(t,z,y)q*(t,z,y) I(dy) is bounded, continuous in z uniformly
with respect to t € [0, 00) in every compact set |z| < C.
Jra la(t, z, y)[ T(dy) < C, i =1,6.

Theorem 1. Let conditions 1)-5) be fulfilled, k = min(ky, 2ks, 2k3) and the
function d(t, x) is bounded, continuous in x uniformly with respect to (t, ) in
any region t € [0,00),|z] < C. For each x € R? there eists
’Jli—IBo%fOT d(t,r)dt = d(z). The function d(x) is bounded and continuous.
t/ek

Let us consider n.(t) = (*/t) f d(s,&(s))ds, where £(t) is the solution of
equation (1).

1. If ky = 2ky = 2k3, then stochastzc pmcess n:(t) converges in law, as

e — 0, to stochastic process 7j(t) = * fo )) ds, where process &(t) is the
solution of stochastic diﬁer@ntml equatwn
dé(t) = f(E())dt + a(E(t))dw(t), €(0) = &, (2)

5(50) = BY2(x); w(t) is some d-dimensional Wiener process.

If k < ky, then in equation (2) the drift coefficient f(x) is absent; if
k: < 2ky, then in equation (2) the diffusion matriz B(z) does not depend on
G(z); and if k < 2ks, then B(z) does not contain the term [, Q(x,y) I(dy).

Proof. We can rewrite 7.(t) in the form n.(t) = (1/t) fo (s/e*, E(s/e¥)) ds
Let us denote &.(t) = £(t/e¥), w.(t) = 5k/2 (t/5 ), De(t,-) = I/(t/e , )
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(t/e*)II(+). Tt worth to note that for any & > 0 w,(t) is the Wiener process
and 7.(t,-) is the centered Poisson measure. With these notations from
equation (1) we obtain

E(t) = §0—1—6k1_k/0 f(s/sk,fa(s))ds+€k2_k/2/o g(s/e, £.(s)) dw.(s)+

+€k3/0 /Rd q(s/e* €.(s),y) v.(ds, dy). (3)

It follows from conditions 1), 2) that the solution of equation (3) exists and
unique for each € > 0.
Let us check that following conditions are fulfilled:

a) limlim sup P{|&(t) — &(s)| > 6} =0 for any § > 0,¢,5 € [0,7];
hl0 e=0 [t—s|<h

b) lim lim sup P{|&.(t)] > N} = 0.

N—00e=0yco,T]
Using properties of stochastic integrals, we can obtain the estimates
Bl&(t)]? < O[E|&o* + (2" 7PT 4 227k 4 e2hamhyy],

Ble.(t) = &(s)? < ClP®Pt — 5| + 2278 4 27|t — 5.

From Chebyshev inequality and obtained estimates we have fulfillment of
conditions a) and b). Similarly we can check conditions a) and b) for
stochastic process

t

) =7 [ glsfeb sl dunts)+e [ [ ot/ ls)) nlds, ),

0

Therefore [7, pp.13-18], for any sequence &, — 0,n = 1,2, ... there exists
a subsequence ¢, = ¢, — 0,m = 1,2,..., probability space, stochastic
processes .. (1), C.,. (1), E(),C(t) defined on this space, such that &, (t) —
£(t), ¢, (1) — C(t) in probability, as €, — 0, and finite-dimensional dis-
tributions of & (t), (., (t) coincide with finite-dimensional distributions of
&, (t), ¢, (t). Since we are interested in limit behavior of distributions, we
can consider processes &, (t) and ., (t) instead of &, (t), (., (t). From (3)
we obtain equation

o (1) = £ + 2" / F(5/25 6o (5)) ds + Co (8). (4)

From this point we will omit the sub-index m in ¢, for simplicity of notation.
It worth to note that processes &.(t) and (.(t) are stochastically continuous
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without discontinuity of second kind. Let us obtain some estimates for
processes & (t) and (.(t):

’4

BIett) ~ &)l = Ble0 [ 70/ em)ar +60) - 6o
< Cle™ Pt = s|* + BIG(8) = C(s)]"). (5)

BIG() = Cs)]* < 8(= g(r/e",&(7) dus (7)) +

’4

q(t/e", €.(7), y) D-(dr, dy) ’4>.

If we use Jensen’s inequality and properties of one-dimensional Wiener pro-
cess, we obtain

E/tg(7/5k7§6< ) dw. (T ’ <dZEZ/gw (/€% (7)) dwi(r )‘ <

s

R4

<Y 5| [ e/ e auk(e)] < e o
ij=1 s
Let us estimate ]
[/ sty frm=23 ()
Since
ar/, &), y) el dy)| <

R4

Y

d
< dm—l

’2m

[ (/24 67),0) Pl dy)

it is sufficient to estimate E| fst Jaa @i(T/€",6(7),y) De(dr, dy)|*™, i = 1,d.
In view of this later on, estimating (6), we will consider one-dimensional
case. Therefore for simplicity of notations we will omit the sub-index 7.
Let £(t) f Jraa(T/e", &(T),y) D.(dT,dy). If we apply generalized Ito

formula to |£.(£)|2™ and take mathematical expectation, we get

pewr =5 [ [ {0+ ao/ i - empn-

I1(dy)

dr.
ok

—2mfé(r) P sign () - g7/ €7, ) }
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We obtain
‘4

[ a(r/e (r).0) 7l )
< C[ 2 —2k + (t )3/2 —3k/2 + (t . s)e‘k],

6
\ <

7'/5 &(7),y) v.(dT, dy)
Rd

< C[(t— S)3€_3k 4 (t —5)P2e7k2 L (t — )27k 4 (t — 5)e7H).
Taking into account obtained estimates of E| [ g(1/e*,&(7)) dwe()[* and
E| fst Jra q(1/e*, £.(T),y) D (dr, dy)|*, we have:

E|C(t) = C(s)|* < O[(e™=72F 4 e 72M)|t — s+

etk 3R/2)p _ g|3/2 4 gthamkp _ ] (7)

Similarly E|&.(t) —&.(s)[8 < O(e8*1=P|t — 5]6 + B|¢.(t) — (.(s)|%). Using the

estimate of E| ! [, q(7/", &.(7),y) i-(dr, dy)|® and taking into considera-
tion that & = min(ky, 2ks, 2k3), we obtain:

BlE(t) —&(6)° <O, BIG(t) - C(9)° < C. (8)

Since &.(t) — £(t),¢.(t) — ((t) in probability, as e — 0, then, using (8),
from (5) and (7) we obtain estimates

BIE®#) —Es)[F <Ot —s*+ [t = s*),  EIC(E) = ((s)|* < Ot — s
Therefore processes £(t) and ((t) satisfy Kolmogorov’s continuity condition

[8, pp.235-237]. It should be noted that process (.(t) is the vector-valued
square integrable martingale with matrix characteristic

(e G () = ™27 k/ g(s/€",6(5))g" (s /", E(s)) ds+

+52k3_kA /I;d q(5/6k,Sa(s),y)q*(s/gkaga(s)ay) H(dy)ds (9)

For any 6 > 0

P{‘/Otd(s/gk’gs(s))ds—/ot d(E(s)) ds| > 5} <

< 2| / s/ £(5) (52" E(5)] s

‘/ (s/c* ds—/t qE(s)) ds| > 6/2} = %11 41,
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Since the function d(¢, z) is continuous in z uniformly with respect to (¢, z)
in any region t € [0,00),|z| < N, then for any 6; > 0 there exists dy > 0
such, that sup,~q |d(t,z) — d(t,y)| < 61 as |z —y| < o, |z] < N, |y| < N.
Therefore from boundedness of d(t, z) we have

I < E/O |d(s/e*,&(s)) — d(s/€", &(s))x{l&(s) — E(s)] < 02} x

t
X x{l€:(s)] < N, |&(s)] < N}ds +C (/ P{l&(s) = &(s)] > d2} ds +
0
t t _
v [Pl > Nyas+ [ p(ee) > vyas) <
0 0
C ! -
<Gt 4 15+ C [ Pls) ~ €] > &) ds.
0
Since P— liII(l) £.(s) = £(s), 6 > 0 and N > 0 are arbitrary, then lirré IL =0.
The process £(s) is continuous and function d(t, ) satisfies the condi-
tions of lemma 2. Therefore lim I, = 0 and

e—0

t t
iy [ d(s/e"¢(s)) ds = [ d(E())ds (10)
e=%Jo 0
in law (because the distributions of &, (t), (., (t) coincide with distribu-

tions of stochastic processes &, (t), (., (t) and in fact we have proved that

P—lim.,, . fy d(s/ek, &, () ds = [y d(€(s)) ds).
Let us consider the case k; = 2ky = 2k3. From (4) we obtain

@@=@+AU@M¢$»@+@W

where martingale (.(f) has a matrix characteristic

(G, Go)(t) = /t9(5/5k,fa(s))g*(S/Ek,ga(s)) ds+

0

—i—/o /Rd q(s/e* €.(s),y)q" (s/€*, &.(s), y) TI(dy)ds.

Using lemma 1 and lemma 2 it is easy to show that

Pt [ 705/t ds = [ gl ds

P—lin(C. (1) = [ BlE)as
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Hence ((t) is a vector- valued contlnuous square integrable martingale with

matrix characteristic ((, ¢)(t fo )) ds. It follows from conditions 4)-
5) and [9, pp. 446 449] that there ex1sts a d dimensional Wiener process w(t)
such that ((t) fo w(s), where a(x)a*(x) = B(x). Therefore the

process £(t) is the Solutlon of stochastic differential equation

— 6+ / F(E(s)) ds + / 5(E(s)) da(s). (11)

Furthermore, equation (11) has unique weak solution. Hence for any se-
quence &, — 0 the stochastic process . (t) converges in probability to
the solution &£(t) of equation (11). From this and (10) we have proof of
statement 1) of the theorem.

When k- < ki the boundedness of f(¢t,z) implies that

f(s/ek &(s)) ds‘ < (), therefore the second term in the right side

of (3) converges to 0 in probability, as € — 0, and we obtain the first state-
ment in 2). From boundedness of g(t,z) and [, q(t,z,y)q*(t, z,y) I(dy)
we obtain that either first or second term in the right side of (9) converges
to 0 in probability (respectively to the cases k < 2k, or k < 2k3), as e — 0.
Then we can complete the proof of statement 2) of the theorem as the proof
of statement 1). [J

3. LONG-TERM RETURNS IN STOCHASTIC INTEREST RATE MODELS

Suppose that a stochastic process X, satisfies the stochastic differential
equation

dX, = (28X, + 6,)dt + g(X,)duwy + / (X y)oldt,dy) VteR, (12)
R

B < 0; g(x), g(x,y) are non-random functions; x,y € R; w, is one-dimensio-
nal Wiener process; v(dt, dy) = v(dt, dy) — II(dy)dt, v(dt, dy) is the Poisson
measure independent on wy, Fv(dt,dy) = ll(dy)dt ; 1I(-) is a sigma-finite
measure on the o-algebra of Borel sets in R; X is the random variable
independent on w; and (¢, -) and such that there is a constant ¢ > 0 with
EX? <ec.

We suppose that the following conditions are fulfilled:

1) g(0)=0,¢(0,y) =0 VyeR;

2) there is a constant b > 0 with |g(z1) — g(22)|* < blxy — @3] and
Jrla(zr,y) = q(ze, y)PT(dy) < blay —xa| Vi, x5 € R;

3) 0; is non-random bounded function.
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It follows from these conditions that equation (12) has weak solution
[10,p.357]. If we use generalized Ito formula, we get the following rep-
resentation of the solution:

t t
X, = ¥ (Xo + / 0. 2% ds + / g(Xs)e_QﬁS dw,+
0 0

+ /0 t /R q(Xs,y)e—%Sﬁ(ds,dy)) (13)

Theorem 2. Suppose that X; satisfies the stochastzc differential equa-
tion (12). Let condztzons 1)-8) be fulfilled and * fo §ods — 8, as t — oo.

Then * fo X,ds — —ﬁ in mean square, ast — oo.

Proof. Using representation (13), let us estimate EX?, ¢t € R.

u 2 U 2
EX? < 4Ee (X02+ ( / §oe= 208 ds) +( / g(X,)e 28 dw5> +
0 0

T ( /0 ) /R q(Xs,y)e‘%ﬁ(ds,dy))z) =

/ Eg?(X,)e %54 ds < be4Pv / E|X,|ds < be~4hu / (EX%)Y2 5.
0 0 0

The same estimate we have for f J2 E¢*(Xs,y)e P I1(dy)ds. It follows from

[10, p. 370] that in conditions of the theorem EX? is bounded on [0,u],

therefore ng X,)e % ds < 0o and ffREq (Xs,y)e P I (dy)ds < oo.
0

Then

u 2
I = 4Fe* X2 4 4e*P ( / 5,e 20 ds) +
0

0 0 R

48u “ —28s 2 48u 6_25u — 1?2 4Bu  _ —4PBu
e ( d.€ ds) < Ce <Tﬁ> < (e . e =C.
0 _

/ Eg2(Xs)e_4ﬁsds+/ /Eq2(Xs,y)e_4ﬂsH(dy)d5§
0 o Jr

<2b / E|X |e*" ds < 2b / (EX2)V2e45 g,
0 0

sup EX2 < 4EX7 + C + 8bsup e4ﬁ“/ (EX2)2e 45 <

u<t u<t 0
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< O + Cysup 645“/ (sup EX2)/2e=45s s <
0

u<t <t
—4pPu 1
< Cy + (sup EX3)Y2 . Cysup e*? < Cy + Cs(sup EX3)Y2.
<t u<t _46 u<t
Therefore sup EX?2 — Cs(sup EX2)'/2 < Cy, whence sup EX? < C, where
u<t u<t u<t

constant C' is independent on ¢, and thus EX? < C.
From the equation (12) we obtain

X, —X, 1 [ 1
—Lrizt/2&¥$+t/6dﬁ

/ ) dw, + // (X, ) #(ds, dy). (14)

Using that EX? < C, we have

E(Xt —X0)2 < 2<EXE EX?
t 12 t?

1 t 2 1 1 t
t—2E(/O o(X,) du,) —t2/ By (Xs)ds§—2/ bE|X.| ds <

<—/ EX2)1/2d3<€—>0 t — 0.

1 t
so( [ [axnmtas.an)’ =5 [ [ B s <
t2 0 R

1

C
gt /bE|X|d$<—/ (EXH)Y2ds < = ; — 0, t — oo.

>—>0, t — oo.

1 [ -
—/5sds—>5,t—>oo.
t Jo

Therefore % fo Xsds — Tﬁ in mean square []

Remark. In conditions of theorem 2 there is a constant C' > 0 with
EX? <C.
Let us generalize theorem 2 to the case of the stochastic process d;.

Theorem 3. Suppose that the stochastic differential equation (12) has a
solution X; such that EX? < oo and let conditions 1)-2) be fulfilled. Sup-
pose that o; is a stochastic process and that there is a constant k > 0 such
that fot Eé%ds < k(1+1) ‘v’t € Ry and %fot §sds — & in mean square, as

1 rt
t — o0o. Then fo Xods — Tg m mean square, ast — oo.
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Proof. Similarly to the proof of theorem 2 we obtain

u 2 1/2
sup EX?2 < C) + sup Ee*?" (/ 5se~ 208 ds) + Cs (sup EXS) )
0

u<t u<t u<t

Since

u 2 u u
sup Ee*t (/ 56208 ds) < sup Ee*Pu / 53 ds/ e 405 ds <
0 0 0

u<t u<t

1 t
gsupEew“ iy / 62ds < —— —17 ), E§?ds < Cy(t+1),

u<t

then
sup EX?2 — Cy(sup EX2)Y? < Cy + Cy(t + 1),

u<t u<t
2
((sup EX2)V? — 03/2) <O+ Cy(t+1) + C2/4,
u<t
whence it follows that EX? < C(t + 1), where constant C' is independent
on t. Therefore
E(Xt — X0)2 < 2(EXt2 EX?
t 12 12

>—>0, t — oo.

t 2 t
2B [atcyan) <5 [ o as <
0

t= Jo

N (S DL |
§t2 O(s+ )/ ds-C’t—2

1 t 2 1 [t
—F ¢( X, y)0(ds,dy)) < = | b(EX)Y?ds — 0, t — .
12 s
0

— 0, t — o0.

I

Therefore, taking into account (14), we obtain ; f Xsds — Tﬁ in mean
square. []

4. A TWO-FACTOR STOCHASTIC INTEREST RATE MODEL

Let us consider an application of theorem 2 and theorem 3. We study
the two-factor model

drt - k - /rt +o V |Tt dwt +/ rtay)ﬁ(dta dy)7

dy = ];?(’Y* — Vo) dt + 7\/7; dwy,

k,k > 0; v*, 0 and & are positive constants; (w;);>o and (i) are two
Wiener processes; v(dt,dy) = v(dt,dy) — II(dy)dt, v(dt,dy) is the Poisson
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measure independent on wy, Ev(dt,dy) = II(dy)dt; 1I(-) is a sigma-finite
measure on the o-algebra of Borel sets in R.
Suppose that the first equation of the model has a solution and that

/Iq w1, y)—q(x2,y) P 1(dy) < blay—xo| V1,20 € R, q(0,y) =0Vy €R.

We are interested in the convergence of the long-term return % f(f rsds.

Applying theorem 2 to the second equation of the model we have, that
%fot vsds — y* in mean square. Really, if we define Y; = 4+,/52, then Y;
satisfies stochastic differential equation of the kind

dY; = (8, + 206Y,)dt + §(Y;)daiy,

with § = —k/2, 6, = 4kv* /52 YVt € Ry, §(V}) = 2V/Y,.

We can note, that [11] there exists a solution of this equation, it is unique
and non-negative.  Since conditions of theorem 2 are fulfilled, then
3 fot Yyds — 44*/6? in mean square and accordingly 1 f(f Yeds — v in
mean square. Further, taking into consideration remark to the theorem 2,
we have Ey? < C, where constant C' is independent on t.

Now we consider first equation of the model. If we define X; = 4r;/0?,
then X, satisfies, in the notations of theorem 3, the equation of the following
kind

X, = (20, + )it -+ (X + [ (X0 )it ),

with 3 = —k/2, §; = 4]<77t/02> 9(Xy) = 2| Xy, au(Xe,y) = 02¢I( Xm Y)-

Since conditions of theorem 3 are fulfilled and fot bsds = (7 fo Vs ds) 2 —

. t * o,
7*3—’; in mean square, then % fo X,ds — 40% in mean square and finally

%fot rods — ~* in mean square.
We conclude that the long-term return converges in mean square to the
long-term constant value ~*.
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