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ON ONE STOCHASTIC OPTIMAL CONTROL
PROBLEM WITH VARIABLE DELAY

The purpose of this paper is to give necessary conditions for the optimality of non-
linear stochastic control systems with variable delay and with constraint on the right
end of a trajectory. The necessary optimality conditions in the form of a stochastic
analogy of the maximum principle are obtained. These conditions are contained in
Theorems 1 and 2.

INTRODUCTION

Stochastic differential equations with delay find many applications in authomatic con-
trol theory, in the theory of self-oscillating systems, etc., where real systems are subjected
to the influence of random disturbances which cannot be ignored [1,2]. Optimal control
problems for the systems described by means of such equations have been already in-
vestigated in [3]-[5]. This research is devoted to a problem of stochastic optimal control
with delay both on control and state, when the cost function contains a variable delay
as well.

STATEMENT OF THE PROBLEM

Let (Q, F, P) be a complete probability space with the filtration {F? : ¢ <t < t;}
generated by the Wiener process w; and F' = o(ws;tg < s < t). L4 (to,t1, R") — space
of predictable processes z;(w) such that: E j;tol |7¢|2dt < 4o00. Consider the following
stochastic system with delay:

(1) dxy = g(Te, Te_p(r), Wty Up—py (1), 1) A 4 0 (T, Te_py, t)dwe, t € (to, ta];
(2) zy = ®(1), t € [to — h(to), to);

(3) Ty, = To;

(4) ur = Q(t), t € [to — ha(to), to);

(5) uy € Ug = {u(-,-) € LE(to, t1; R™)|u(t,”) € U C R™, as.}

where U — non-empty bounded set, ®(t), Q(t) — piecewise continuous non-random func-
tions, h(t) > 0 and hq(t) > 0 — continuously differentiable non-random functions, and

dh(t) dhi(t)
- < 1, —a < 1.
It is required to minimize the following functional in a set of admissible controls:

t1
(6) J(u)=E {p($t1) +/ l($t7$th(t)7utauth1(t)af)dt}

to
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under the condition
(7) Eq(xy,) € G C RF,

where G — closed convex set in R¥.

Let assume that the following requirements are satisfied:

I. Functions [, g, and ¢ are continuous in all arguments.

IT. When (t,u) are fixed, then [, g, o functions are continuously differentiable with
respect to (z,y) and satisfy the condition of linear growth:

(1 + |(E| + |y|)_l(|g(x?y7uav7t)| + |gI(x7y7u7v7t)|+

+lgy (@, y, w0, ) + |o(@,y, )| + |ow(z, y, 1) + |oy (2, y,1)]) < N
(1 + |x|)71(|l(x,y,u,v,t)| + |l$(xay7uvvat)| + |ly(x,y,u,v,t)|) S N

II. Function p(z) : R® — R! is continuously differentiable, and |p(x)| + |p.(z)| <
N(1+ |z|).

IV. Function ¢(z) : R™ — RF is continuously differentiable, and |q(z)| + |g.(z)| <
N1+ |z|).

First, we consider the stochastic optimal control problem (1)-(6).

PROBLEM WITHOUT CONSTRAINT

We obtained the following result that is a necessary condition of optimality for problem
(1)-(6):
Theorem 1. Let conditions I-III hold, and let (x9,u?) be a solution of problem (1)—(6).
Let there exist the random processes (Y, B) € L3%(to,t1; R™) x L3%(to,t1; R™*™), which
are the solutions of the adjoint equation
dipy = [ (wtv xt ’ yt ’ utvvt ) ) + H (wm Tz yz? uz? ’Ugv z)'ZZS(t)SI(t)]dt+
+Bidwy, to <t <ty — h(t1),
dpy = —Hp (g, 29,92, ud 00 1) + Bedwy, t1 — h(ty) <t < ty,
Yy, = —px(x%).
Then, ¥ u € U a.c., the following relations hold:

(8)

H (¢, 2,47, u, v?,t) — H (¢, xf, y7,ul,vf, O+
+[H (¢, z?yz7u u, 2) — H(v, z»yzvuzavgvz)Hz:T(t)T/(t) <0,
a.e. t € [to,t1 — h1(t1)),
H (e, 2,97, u, 08, 1) — H(g, a2, 47, uf, 0, 1) <0, ace. t € [ty — ha(tr), 1]

Here, 7 = s(7) is a solution of the equation 7 =t — h(t), T = r(7) is a solution of
equation T =t — hi(t), Y¢ = Ty_p(), V¢ = Ug—p, 1), and

9)

H(wtvxtvybut?vt?t) = w:g(xtaytvutvvht) + ﬁ:a(xtaytvt) - l(xhytautavtat)'

Proof. Let = uY + Auy be some admissible control, and let 71 = 2 + Axz; be the
trajectory of system (1)-(5) corresponding to this control. We use the identities

dAz; = [9(Te, Ty, U, U1, t) — 9(7, 97w, 0 O)]dt + [o(T1, Gy 1) —

—U({,E?, ,)]dwy = {Aug(xt»yt»utvvta )+Avg(xt7yt7ut7v?7t)+
(10) +gw(xt7yt7utvvt7 )Axt+gu(xt7yt7utvvtv t)Ay, tdt+

+{U$(xt7yt7 )Awt—i—ay(xt,yt, )Ayt}dwt‘f'??t» t € (to, ti]

Az, = 0, te [to — h(to),fo],
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where
1
77:51 = {/ [g;(xg—i_qutvytvﬂtvvt; ) gz(xtvytvutvvt7 )}Axtd,u_F
1
+/ 9y (@}, g + Py Ty, Ty, )—gz(l’?,yg,ﬂtﬁt,t)]ﬁytdu}dH
0
1
+ { xt + uAx, g, t) — (x?,yt,t)]Axtd,u—l-
0
1
+/ xt7yt +HAyt7 ) Uy(xtvy)fovt)]Aytdu}dwt
0
and

d(y; - Awe) = dipf - Ay + 4y - dAxy + {Biow(af, y7 1) - Axe + B oy (27, 97 1) - Ayet

1
487 [ loa(a 4+ pan,3.0) - 02 o, 0} At
0
1
(11) + 5; / oy (2, 4! + nAys, t) — oy (2, y7 )] Ayedp}dt.
0

The increment of functional (6) along the admissible control looks like

t1
AEJ(U) = E{p<ft1 _p(xg)l) +/ )[Z(Etvyhﬂtaﬁtvt) l(xtvytvutvvt7 )]dt} =

to
(12)
t1
= Epw(xgl)Axtl +E [A l(xwyt?utavt? t)+A l(xtﬂytvutﬂvt07t)+
to

+l (xtvytvutvvt7 )Axt+l (xt7yt7ut7vt7 )Ayt]dt+n )

where

1
W =B [ el + pdar,) (e, ) Avs, dy
0
t1 1
+E/ {/ [l;(fl??l + AT Gy, Ty, Uy, 1) — U (2] Gy, U, D, ) Ay
to 0
1
+ / [l;(x?7yt0 + /J'Aytaahﬁt?t) - l;(xgvytovﬂtaitat)]Aytdu}dt
0

Taking (10) and (11) into consideration, expression (12) takes the form

tl tl
AvT(u') = —E / dpiA —E [ g {[Aug(al, v, ud,of, )+

to tO
+ Avg(:ct,yt,ut,vt, )+gﬂe(xt7yt7ut7vt7 )Axt+

(13)
=+ gy(xt ) yt ) Ut ) Ut 1) Aygldt + [Um(xt ) yt ) Az + Uy(fE?; y?: t)Ayy] }dwy—
t1 t1
—FE ﬂ:[UI(I?,y?,t)AIt +Uy(x?7y?7t)Ayt]dt+E/ [Aﬂl(x&y?:u?vvgvt)'i_
to to

+A l(xtayt7ut7vt7 )+l (xtvytvutavta )A(Et+l (xtaytautvvtv )Aytdt]+nto,t17
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where
t1 1
Ntot1 = 772 + E/ { / W(gz(x? + ,qut,yt,u?,v?,t) - gw(xw?vyt?u?avgat))Axtdﬂ+
to 0
1
+ / 7/):(97;@?7 y? + IUAyt: U?, U?, t) - gy(x?v y?: U?, U?, t))Ayth}‘F
0
t1 1
o8 [ [ srtontad + u5int) - 0u 60 0) A
to 0
1
+/ B; (o (27,47 + plys, t) — Uy(w?,y?at))Aytdu}dt-
0

Using simple transformations and taking (8) into consideration, expression (13) takes the
form

t1
AJ) = =B [ (07 Drglal, gt uf,of,t) = Al b o )t~

to

ty
(14) _E/ [w:Aﬁg(xtovygvu?7v?7t) _Aﬁl(xto7yt07ut07vtovt)]dt+77to,t1'
to

Let’s consider the following spike variation:

07 té[eve +€)75 > 079 € [t07t1)

Auyp = Auf =
w T Fhe {a_u?, te[0,6+e),ue L*(QF P;R™).

Then (14) takes the form

O+e
Ae‘](uo) = _E/ [w:Aﬂg(xgv yt07 u?a Ut07 t) + w;ﬁA'ﬁg(xtov yt07 ut07 ’U?, t)_
0
(15)
— Agl(@?, 92, u? v, t) — Azl (20,92, ud, 02, t)]dt + 19,0+¢-
We will use the following lemma.

Lemma 1. Let conditions I-III be satisfied. Then
E|x?,s - x?|2 < Ne2, if e =0,

0

where Ty

is the trajectory corresponding to the control uf,a =uf + Auf’a.
Proof. Let’s designate

’] 0 6 _ .0
Tpe =Ty ~ Tin),e ~ Te—n()
y Ytie = Lt—h(t),e = - .

Tte =

It is clear that V ¢ € [tg,0) T¢c = 0. Then, for V¢ € [0,0 +¢),

. 1 . U
dxt,e = _[g(xto + ETy e, y? + €Yte, U, v?? t) - g(I?, yt07 utov Utov t)]dt+
1 0 ~ 0, .~ _ 0.0

+ 6 [o(z; +eTre, Y + Yre,t) — oy, yy, t)]dwy, t € (0,0 +¢)

()

5976 = —(g(fcg,yg,ﬂ, U270) - g(xg,yg,ug,vg,H)).
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Therefore, conditions I-IT and the Gronwall inequality yield

El|Totce* < N[E sup |xtE — 22+ E sup |20 —a)*+ E sup |yf7E —y) 2+
0<t<0+e 0<t<0+e 9<t<f+e

+E sup |y19 _y8|2 + Sup Elg(xtvytauvvgat) _g(x27y87a7v879)|2+
0<t<6+e¢ 0<t<6+e¢

1 O+¢
+ EER/ |g(x?,y?,u?,vg,t) _g(x37yg7ug7v879)|2dt .
0

Hence: E|Ziiec|? <N, e =0, Vte[0,0+c¢). In the same way for V t € [0 + ¢, 1], we
have

~ 1 ~ ~ ~
dxt,a = g[g(xto + Ext,aa y? + Eyt,&‘? ut07 u, t) - g(xt ) yt ) ut ) vt ) )]dt+

1 ~ ~
+ E[U(x? + 8xt,87 yto + Eyt,&‘a t) - U(xtoa ytoa t)]dwt

Whence we have E|7;.[? < N, for Vt € [0 +¢,t1], if ¢ — 0. Thus, sup E|Z:.[*> < N.
to<t<ti
Lemma 1 is proved.

According to Lemma 1 and from expression for ny, +,, we obtain 7y g+. = o(e).
Then it follows from (15) that

AgJ(u’) = —E[;Aag(xy, vy, v, ug, vy, 0) — A~l(x2,y2,x8,u2,v3,9)+
+[¢:A59( zayzax ug?”zae) Aﬁl( z?yz7x US,US,Z” (G)TI(Q)]E—FO(E) 20

Hence, due to the sufficient smallness of ¢, relation (9) is fulfilled. Theorem 1 is proved.

PROBLEM WITH CONSTRAINT

Using the obtained result and the variation principle of Ekeland [6], we will prove the
following theorem for a stochastic optimal control problem with the endpoint constraint

(7).

Theorem 2. Let conditions I-1V hold, and let (x?,u?) be a solution of problem (1)—(7).
Let there exist the random processes (Yt 1) € L%(to,t1; R™) x L%(to, t1; R™*™) which
are solutions of the adjoint system

dipy = [ (wtvxhyt?utﬂvt? )+H (wm z?yzauzvU272)|225(t)31(t)]dt+
+Bidwy, to <t <ty — h(t1),

dipy = —Ho(Yy, 2, yf, uf o t)dt + Bedwy, t1 — h(ty) <t <ty

P, = _)‘OPw(xtl) - )\l%(xtl)7

where (Mo, A1) € RFTL, Xg > 0, Ay is the normal to the set G at the point Eq(a,), and N3+
[A1]? = 1. Then, V @ € U a.c., the following relations hold:

(16)

H (s, 24, 97, u, v?,t)— H (e, 2 yi v )+

FH Wz, 22,92, ul, u, 2) — H(Yz, 22, 42, ul, v2, 2)][o=r ()7’ (t) < 0,
a.e. t € [to,t1 — hi(t1)),
HWuya, 90,0, 00,6) — H (28, 5,00, 00,8) <0, £ € [t — ha(t1), 1), ae.

(17)
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Proof. For any natural j, we introduce the approximating functional

t1
Ji(u) = S;(Ep(xy,) + E/t Uxt, yt, ug, ve, t)dt, Eq(ay,)) =
0

= min
(c,y)e€e \/

E={(c,y): c < J%y € G}, where J° is the minimal value of the functional in (1)-(7).
By V = (Us,d), we denote the space of controls obtained by means of introducing the
metric

t1 2
C—l/j—Ep(xtl)—E/ Wze, ye, u, v, t)dt| + |ly — Eq(ze,)|1?,

to

d(u,v) = (1 @ P){(t,w) € [to,t1] X Q: vy # ug},
so that V' is a complete metric space. In what follows, we need the following lemma.
Lemma 2. We assume that conditions I-IV hold, uj — a sequence of admissible controls
from V,x} — a sequence of the corresponding trajectories of system (1)-(3). If d(uy, us) —

0,n — oo, then lim { sup E|z} — x4? p = 0, where x4 is a trajectory corresponding
o0 L to<t<ta
to an admissible control u;.

Proof. Let uf be a sequence of admissible controls from V, and let z' be a sequence of
the corresponding trajectories. Then, for any t € (to;t1], we have

|z — 24| =
t

t
/[g(x?,y?,u?,v?,s)—g(xs,ys,us,vs,s)]ds—l-/ [U(x?,y?,s)—a(xs,ys,s)]dws

to to

Let’s square and take expectation of both sides of the last expression. Due to assumption
II, we have
Elay —af* <
t

¢ t
<NE |Aung(xs7ys,us,vs,s)|2ds+NE |x?—xt|2dt+N E|yf—yt|2dt.
to to to

Hence, condition I and the Gronwall inequality yield
Bla? — 4| < Cexp(C(t —to)),

where C = NE ftz [Aung(zs, ys, Us, Vs, 8)|2ds. Lemma 2 is proved.
Due to continuity of the functional J; : V' — R", according to the variation principle
of Ekeland, we have that there exists a control uj : d(uf,uf) < /&5 and, ¥ u € V, the
ine i i < T () . “d(u? 1
following inequality holds: J;(u ) < le (w) + Ed(u u), €5 = 5.
This inequality means that (z7,u]) is a solution of the following problem:

Ii(u) = J;j(u) + \/E_jEfttOl 8(ug, ul)dt — min
dxy = g(x4, ye, ug, ve, t)dt + o (2, ye, t)dwy, t € (Lo, t1]

(18) xy = B(t), t € [to — h(to), to]
uy = Q(t), t € [to — ha(to), to]
us € Uy.

0, u=wv

The function 6(u,v) is determined in the following way: §(u,v) = { ) ”
. uF .



ON ONE STOCHASTIC OPTIMAL CONTROL PROBLEM WITH VARIABLE DELAY 9

Let (27, ul) be a solution of problem (18). If there exist the random processes Yl e
L2(o,t1; R"), 8] € L% (to,t1; R"*™), which are solutions of the system
dwg: [ (whxt?yt?utvvtv )+H ( gvxjvyivuwvzvzﬂz S(t ( )]dt+
+B]dwy, to <t <ty —h(ty)
d’t/]g = —Hgg(wg,xi,yg,ui,vg,t)dt + ﬁgdwtv tl - h(tl) S t < tl
Uty = = Xope(21,) — Nga(at, ),

where the non-zero (X, A]) € R¥*! meet the requirement

(19)

(20) (/\%,/\Jl):(—Cj+1/j+Ep(I§1)+E/ U], yi,u, o] t)dt, —y; + Bq(x,)) /17,

to

then, according to Theorem 1,

H(wgv'xi7yi7u Ug7t)_ (’l/)th?ytvutvvt? ) [ (wzd z?yz7ujz.7uvz)_
(21) —H @, 23yl ul, vl 2)]|.— ' (1) <0, ac., ae. t € [to,t1 — hi(t1)),

H(@bf,x{,y{,u,vi,t)— (’l/)th;ytvutvvw )<O a.c, a.e. te[tl hl(tl)7t1]~

0 __
-

Since ||(M, M))|| = 1, we can think that (M, M) — (Ao, A1)
It is known that S; is a convex function which is Gateaux-differentiable at a point:
(Ep(ai,) + B [, Uyl uf,vf ,)dt, Bq(a],). Then, for all (c,y) € €,

Here,

2

. t1 .
cj—l/j—Ep(xil)—E/ l(xt,yt,ut,vt, t)dt —|—|yj—Eq(xil)|2.

to

. 1 . o , , 1
<%m—j—EMﬂJ—EA‘Kﬂﬂﬁ@ﬂ%ﬂﬁ>+Qﬂy—EW%D§]
0

Proceeding to the limit in the last inequality, we get that Ay > 0 and A; is a normal
to the set G at Eq(z}, ). Since

(22) 1/)t1 = —Aépz(xgl) - A{qm(xgl), we have 1/)%1 — 1y, in L%(to,tl;R").

Lemma 3. Let ¢} be a solution of system (19), and let 1, be a solution of system (16).
Then

tl X tl . .
E/|w—wfﬁ+E/|@—mﬁwﬁaﬁaﬂmnamjaam

to to

Proof. According to Ito formula V s € [t; — h(t), 1],
|yl = onl* — By - o,f* =
t
=28 [ o vl ol ol od o) = g o )l +
+gx @,y ul, vf, ) (W] — ) + (05 (ad, vl t) — okl y t) %
xw&wm—mﬁwhmdﬁ+u@h&@m&Mﬁ+E/ﬂ@—mﬁw

Due to assumptions I-IT and using simple transformations, we obtain

t1 ) ) 11 . .
E/I@—M%HEW#wfﬁ+M%/Iﬁ—&WHIWi—wF
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Hence, according to the Gronwall inequality, we have
(23) Bl — s> < DeN=9) ae. in [t — h(t), ],

where the constant D is determined in the following way: D = E |1/1§1 — 4, |2. According
to Ito formula V s € [tg,t1 — h(t1)),

. _ ti—h(t) S
E|’l/)i1*h (t1) - wt1—h(t1)|2 - E|’l/)g - 1/)S|2 = 2E/ (’l/)g - wt)[(g;(xgvygvugﬂ)gvt)_

—g;(xto,y?,u?,vt, ))wt +gz(xt7yt7ut7vt7 )(wt Vi) + (o *(wi}yf»t)—

—on (@, yl )8 + on (@, yg (8] = B) + (g ( Lyl ul, vl 2)—

— gy (@2, y2 ul, 02, 2))Ls’ (8) + gy (22, 2, ud, 02, 2) (WL — 2)s' (t)oy (vl 2)—
— oy (22,2, 2))8Ls' (t) + 0y (22,42, 2) (B — B2)8 (1) + Lo (2, ), uf, vf £)—

_lw(xtvytvutvvg7t)+ly(x?7y?7u?7v?7t)_

. . . . t1 h(tl )
— by (el vl ud ol D)t + B / 3 — .

In view of assumptions I-IT and expression (22), we obtain
11 h(tl) . )
B[ s Bl - <
ti—h tl) . t1 h(tl) .
<BN [ Wi -uPderENe [ - waPae

t1—h(t1) )
+EN€/ |ﬂt ﬂt| dt+E|'l/)t1 htl) 'l/)tl_h(tl)| .

Hence, using simple transformations, we have

ti—h(t1) . ti—h(t1)
E(1—2Ne) / 18] — Budt + Elwd — uf? < E(N + Ne) / hf — Pdt+

t1

ENe [ i-wfder BNe [ 6= Gl Ny, — o
t

17h(t1) tlfh(tl)

According to the Gronwall inequality,
Elp? —1ps|? < Dexp[—(N + Ne)(t1 — h(t1) — s)], a.e. in [to,t1 — h(t1)),

where

t1 t1

D = BV}, y) — Yo+ ENe [ i —wfde+ENe [T 19— g,

t1—h(t1) t1—h(t1)

Due to sufficient smallness of € and from inequality (23), we get D — 0. Thus, 1/1{ — 1y
L%(to,tl;R”),ﬁg — B¢ L3%(to, t1; R™*™). Lemma 3 is proved.

It follows from Lemma 3 and assumptions I-ITII that we can proceed to the limit in
systems (19), (21) and get the fulfillment of (16) and (17). Theorem 2 is proved.

Corollary. In the case where g = g(¢, ys, ut, t) and | = I(x4, ug, t) we obtain the result
proved in [4].
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