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ANDRIY OLENKO

SOME PROPERTIES OF WEIGHT FUNCTIONS
IN TAUBERIAN THEOREMS. II

New representations for weight functions in Tauberian theorems are
derived. The representations are given by recurrent formulae. Ob-
tained results are used to study properties of the weight functions.

1. INTRODUCTION

The paper is the second part of the article [1] published in previous issue
of the journal. Therefore, we refer to [1] for notations, problems descrip-
tions, the bibliography, and discussions.

The paper continues investigations of weight functions in Tauberian the-
orems for random fields, see [1, 2, 3, 4]. New method for weight functions
computation is proposed and studied.

Sections 2 and 5 give recurrent formulae which link weight functions in
spaces of different dimensions. Initial functions for the recurrent formulae
are investigated in Sections 3 and 4. Some weight functions properties
followed from obtained representations are derived in Section 6.

In the following, a > 0, » > 0. C' with various indexes are nonnegative
constants which may be different in different places.

2. RECURRENT FORMULAE FOR WEIGHT FUNCTIONS

By formulae for Bessel function’s derivatives (see. §3.2, [5]), we get
d d /J, y
L) = aa(, L () o _hal)

dz dz yid 2V

Hence, for n > 0 integration by parts in the representation for weight
function (see (1) in [1]) gives

L RO, Bt -w)
Pl = G | G- MR =
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. * Jya(r(h — a)
n/2 7. o i\’
= )|+ o [
L/"o Jr(r(A—a))
" Jo o (r(A—a))*/?
because of Bessel function asymptotic behavior (see (2) in [1]).
Hence

(A2 T3 ([ A)dA

—0o.nJo(ar) + ()\|t|)n/2J”(|t|)‘)

r? /°° Ju1(r(A — a))

fn,r,a(|t|) = —507n‘]0(‘”‘) + |t|n+1 (r()\ _ ))n/2+1(

At T (] A)dA—

ar? [ Jo i (r(A —a))
g R

_50771!]0(@7‘) + r fn+27r7a(|t|) - TQFn(Ta |t|a CL),

ALE)™2 T ([HA)dX

where

Fu(r, [t], ) == (AJE)™2 T (| A)dA (1)

o (% Js(r(A - )
W/o (r(x — @)/

Remark. Note that due to Bessel functions behavior at infinity (see (2) in
[1]) and at zero (see, for example, Poisson’s integral in §2, [1]) the integral
in (1) converges absolutely.

Summarizing, we have:

Lemma 1. For n > 0 the following holds

n,r,a 5”‘]
f <|t|>;o o) L F (It a). (2)

fn+2 r a(|t|)
where F,(r,|t], a) is given by (1).
Due to (2) we get
Corollary. Forn >m >0

(1) if both n and m are even, then

n

Jmra([t]) + domJoar) 22: Fopo(r |t], @)

fnra(|t|)

pn—m yn—2k ’
k=41
(ii) if both n and m are odd, then
anl
fmra(|t|) FQk—l(ra |t|’a)
farallt) = =552 4 Y =g

m41
k= 2
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3. COMPUTATION f1,4(|t])

We will use sine and cosine integrals defined by formulae

Si(z) = /OZ sin(u) du, Ci(z) =v+1n(z) + /Z cos(w) — 1 du, (3)

U 0 u

where 7 is Euler’s constant.

Lemma 2. fi,.(|t]) equals
(Sia(|t|+r))=Si(a(]t|=r))) cos([t|a) = (Ci(a(|t|+r)) —Ci(a(|t| =r))) sin(]t|a) (4)

r )

if |t] > r, and

(Si(a(|t|+7))+Si(a(r—|t]))) cos(|t|a)—(Ci(a(|t|4+r))—Ci(a(r—[t]))) sin(|t|a)+m cos(|t|a) (5)

if [t <.
Proof. By §3.4, [5]

Hence
< Ji (r(A—a))

frra(lt]) = ; mmg]_%(w)\)d)\:

2 [ sin(r(A —a)) cos(|t|\)
— dA.
T Jo r(A—a)

The integral can be explicitly evaluated in terms of sine integrals Si(-) and

cosine integrals Ci(+). Computations by Mathematica 5.0' give expressions
(4) and (5). d

4. COMPUTATION fj,.(|t])

Lemma 3. For |t| # r we have

op (1 x cos(arz) dx
fO,r,a(|t|) = _/ - JO(CLT)_
T Jwin(1, /) /7222 — [t]2V/1 — 22
o fmin(L, [t|/r) zsin(arey) dx

. 6
T Jo \/|t|2—7’2x2\/1—x2 (6)

TAll Mathematica 5.0 computations in this paper were verified by Maple 9.5 and
tables [6], when it was possible
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Proof. To evaluate fo,.(|t]) we use the relation J_,(2) = (=1)"J,(2) (see
§2.1, [5]) and Poisson’s integral (see §2, [1]):

fonallt) =11 [ h(r(n= @) ()07 = -
t] > Y cos(r(\ — a)z) B
_F2(1/2)/0 Ji([t[A) /_1 N dxd\ =
_|7ri| _1(1 — 2?12 /OOO J1([t|N) cos(r(A — a)x)dAdz . (8)

We need to prove the correctness of interchanging the integration order in
the last identity.
Let us rewrite the integral in (8) as

/ / Gw ra SIJ )\ dzd) = / / Gw ra SIJ )\ dezdA+
/ / G\t|,r,a<xu )\)dl‘d)\, (9)
C -1

cos(r(A — a)x)
V1i—a2?
The first integral in (9) has compact integration domain and it converges

absolutely. Therefore, interchanging the integration order in it is correct and
it does not change its value. Hence, to prove (8) it is enough to show that

where

Gltfra(T, A) = J1([HN)

0 1 1 0
/ / Gt|ra(@, N)dzdA — 0, / / Gt|ra(x, A)dAdz — 0,  (10)
c Ja 1Jc

when C' — +o00.
The first statement in (10) follows from the representation (7)

o

oo 1
/ Gt|,ra(x, N)dzdA = —7T/ Jo(r(A —a))J_1([t|\)dA
c J-1 c
and Bessel functions asymptotic behavior, see (2) in [1].
To prove the second statement in (10) we note that

o0

/OO J1([t|A) cos(r(X — a)z)dA = cos(rax) / J1([t|A) cos(rAz)dA +
c c

g

I

sin(raz) /C T () sin(rAz)d) -

& J/
-~~~

Ip)
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We will use the relation (see (1) in §3.61 [5])

HP(2) + HY (2)

J(e) = S

where ngk)(z), k = 1,2 are Bessel functions of the third kind.
By asymptotic expansions (3) and (4) for Bessel functions of the third
kind given in §7.2 [5], for parameters values v = p = 1, we have

2 L ar 1
o= Zn v

for £ =1 and 2, respectively.

Hence
oo ilt|A 00 Lilt[A 1
L] < et cos(rAr) e Cos(r)\x)o ( ) a4
c /27t ¢ \/2xtx ] A
> it cos(rAx)

oo —ilt|A
a4 e cos(r)\x)0< 1 )d)\

c /27|t A c V27|t A [t|A
/ V2 cos(|t|\) cos(rAx) d)\' N ‘/ V2sin([t|)\) cos(r)\x)d)\‘+
VA V[t

© CidA (|t (It +
13 A ‘/ cos(\(|t| — ‘/ cos(A (|t rx))d)\‘+
C’ 2)3/ 27r|t V27 [t
I3 14

/: sin(A(Jt] - ra)) dA‘ . ‘ /: sin(A([t] + ra)) dA’ LG

NG NG NG
Is Is

</1 <|]|+|]|+|]|+|]|+ Cl) dz

'/ cos(razx) cos(raz)
V1— a2 !

Note that

Lo e oS z T
dr = dz )
1V1— 2?2 _1 1 Jept—ra] VZ V1 —a2/||t| — raf

If |¢] # r it is easy to check that:

/°° CoS 2 d
z

C||t|-rz| NE

VI-22\/ - ra]

foreachxe(—l,l),x%gz — 0, when C' — +00;
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> cos z
sup

/°° cosz
C[t|-re| \/_ csolle Vz
Vi VY ot

This means that conditions of Lebesgue dominated convergence theorem
hold true and

dz

€ Li([-1,1]).

b
-1 \/1—1’2
'
-1 \/1—I2

dr — 0, when C — .

For k = 4,5,6 proofs of dxr — 0, as C' — oo are similar.

Therefore
cos(rax)
Iidz| — 0, when C — 0. (11)
m
Similarly
sin(rax)
Iydx| — 0, when C — 0. (12)
m

By (11) and (12) we obtain the second statement in (10).
Computations by Mathematica 5.0 give

1 r|z]

h 1t 222 t] < rlzl;
Ji([t[A) cos(rAz)dA = ¢ | [tly/7222 |t
0 T [t >l
> . 0 [t <rlel;
/0 Ji(Jt|A) sin(rAz)dX = It\\/ih |t > x|,
and (6) as a corollary. O

Remark. Let us stress that in comparison with representation (7) inte-
grals in the formula (6) converge absolutely. Hence the representation (6)
is preferable for investigations and computations functions fy, .(|t]), and

f2k,r,a(|t|), k € N.

5. MAIN RESULT

By Lemmas 1-3 and the Corollary we obtain
Theorem 1. Forn > 1, |t| #r,

(i) if n is even, then

f (|t|) gra(|t|) 2 FQk—?(T7 |t|’ a’) .
n,r,a rn Tn_Qk )

k=1
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(ii) if n is odd, then
n—1
2

flra |t| ng 1 |t|
Fama(lt) = D)

k=1

where F,(r,|t|,a) is given by (1), fi,.(|t]) can be calculated by (4) and (5),

2r x cos(arx) dx
gra([t]) := 22 172 >
min(1, |t]|/r) \/’f‘ € |t| \/1 — T

o /min(1,|t/7") rsin(arz) dx
VIt = r2a2y/T — 22

6. ON PROPERTIES OF WEIGHT FUNCTIONS

In this section we apply Theorem 1 to study properties of weight functions.

Theorem 2. Forn >1

Im f,.(|t]) =

[t| =00

Proof. Hence, by (3) and the representation (4) from Lemma 2, for [¢| > 7,
we have

alltln) a(ltl+r)
urallihl = = [eontiia) [ 22 qu—singire) [ = au =
u u
a(ltl=r) a(lt]-r)
1

wr

/t|+r sin(a(u — [t])) dul < 1 /|t+r du _ (1 2r N\ | 0
t]—r u T oar o u [t| —r ’

when |t| — +o0.
Recalling the definition of g, ,(|t|), it is easy to verify that

x sin(arz)

lim  g,4(|t / =0
\t|—>+oog ’ (1) = T |t\—>+oo \/|t|2 —r222y/1 — 22

By (1), for n > 0,

a
|Fo(r, [t], a)| = [RE

/“@ﬂ@9<—wwwwm<—mnu+
; \(T)\)n/2+l a sUtia ’

Q1([t[,r,a,\)
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L ToaU) (2, (4]0 + a)) | — 0 (13)

Q2([tl,r,a,))

when |t| — oo. To see this, we can apply Lebesgue dominated convergence
theorem. Due to Bessel functions behavior at infinity (see (2) in [1]) and at
zero (see Poisson’s integral in §2, [1]) conditions of Lebesgue theorem hold
true:

J—i—l rA
HWJQMHTGAN<C%L%@¥m—AWﬂeLMQ@L (14)
Ta 1 (rA
MMJQMHraAM<C%i7%£QA+@W2euqa+mm (15)

HwﬂQﬂﬂra»| 0, HW”QMﬂraAHHO (16)
when |t| — oo.
Finally, we use the representation of f,,.(|t|) from Theorem 1. O

Remark. Theorem 2 explains decreasing magnitude of f,,,.(|t|) on plots
in [1, 3, 4], when |t| grows.

Theorem 3. Forn >1

lim f, Ta(|t|)

r—+00

Proof. By the representation (5) from Lemma 2, for r > |t|, we have

1 alr+ 1t gin (u =1t gin(u
D] = | cos(la ></ Waus [ q) -
r 0 u 0 u
a(r+lt])
Sin(|t|a)/ cos(u) du + 7 cos(|t|a)| <
(r—1tl) u
o | ratrtl) g L] palre) |
_/ 81n(u)du‘+_/ —dul+ = —0,
™\ Jo u wr a(r—|t|) u r
when |r| — +o0.
By the definition of g, ,(|t|), for r > |t],
[tl/r
|gra([2])] ( / xdx +/ xdx ) B
rn - gl i V/r2a? — [t2v/1 — a2 ) V2 = r2a2y/1 — a2
t

1
— (In 1+¢ +m7) —0, as r— 00.
T r— |t
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For n > 0, (13) is also true, when r — o0o. To see this, we can apply
Lebesgue dominated convergence theorem again. Due to Bessel functions
asymptotic behavior (16) holds, when r — oo, A # 0. It is also easy to check
the another theorem’s conditions:

a

e [Qu(lt], 7, a, M| < Cla = A2z (|t](a = A))] € Li([0, a)),

_a
|t|n/2

a (A +a)™/?
MT/Q|Q2(|75|77”7G7)\)| <O

1Qa(lt]. .0, M| < A+ )

Ja(

t|(A +a))| € L1([0, C1)),

T2 ([tl(A + a))| € Li([Cy, +o0]).

Finally, we use f,.(]t|) representation from Theorem 1. O

Example. The assertion of Theorem 3 is illustrated in Figures 1 and 2 in
the cases n =3, a= 1.2, |t| =1 and |t| = 5.
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Flg]— Plot of f3,7",1.2(]-) Fng Plot of f3,r,1.2(5)

Theorem 4. Forn > 1 the weight function f, ,.(|t|) has a discontinuity at
[t| = r. If € N there exists a jump discontinuity at |t| = r. In other cases
frra(lt]) has an infinite discontinuity.

Proof. From the representation (1) and conditions (14) and (15) it follows

that F,(r,|t[,a), n > 0 is a continuous function of |¢|. It is easy to show

that for each |t| # r both functions fi,.(|t|) and g..(|]t|) are continuous.

Therefore, we need to investigate fi,.(]t|) and g, 4(|t|) behavior in [t| = 7.
By Lemma 2

lim fi,.(|t]) = %(Si(Qar) cos(ra)—Ci(2ar) sin(ra)+ lim Ci(a(|t|—7))x

[tl=r+ [t —r+
sin(|t|a)> _ Si(2ar) cos(ra) + (v — Ci(2ar)) sin(ra) N | ‘lim Mx
wr t|—r+ mr

sin(|t|a) = Si(2ar) cos(ra) + (v — Ci(2ar)) sin(ra) N { 0, if%eN;

mr 00, otherwise;
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Hm fi,q(t) = Si(2ar) cos(ra) + (v — Ci(2ar)) sin(ra) N
tl=r= r
cos(ra) n { 0, if ¥ eN;

oo, otherwise.

,
This implies Theorem’s assertion for odd n.
By application of Theorem 1 and computations by Mathematica 5.0 it
is easy to derive

2 ! ' d
lim ga(|t]) = I xsin(arz) dx _
jtl—r+ T lt=r+ Jo \/[t]? — r2a?V/1 — 22
(=1)*/"Si(2arm) /7, if < eN;
0, otherwise;

2
lim g,(|t) = = lim

[t|—r— T |t|—r—

/1 x cos(arx) dx

e /1222 — VT —
2r ! xsin(alt|z) dx

— lim

T ltl=r=Jo /1 — [t]2a2/r2 /1 — 22

(=1)"/7Si(2arm) . ar .
cos(ar) + { m , T EN;

0, otherwise.
This implies Theorem’s assertion for even n. U
Remark. For the case a = 0 it is well known that

ot <y
if [t| >

fuvall) = { &

has a jump discontinuity at |t| = r.
Remark. Theorem 4 explains behavior of f,,, .(|t|) in the neighborhood of
|t| = on plots in [1, 3, 4].

Example. The assertion of Theorem 4 is illustrated in Figures 3 and 4 in
the casesn =3, r=1,a=m and a = 2.

N
.
0

H
o
n

0.5 1 1.5 2

Fig.3 Plot of f31.,(|t]) Fig.4 Plot of f312(|t])
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7. CONCLUDING REMARKS

New recurrent formulae for weight functions in Tauberian theorems are
derived. In comparison with previous representations the formulae are writ-
ten in terms of absolutely convergent integrals and functions Si(-), Ci(-). It
gives a new possibility to investigate the weight functions and to obtain
their new properties. The formulae are convenient for numerical computa-
tions of weight functions values for small space dimensions n. For large n,
representations proposed and studied in [1, 3] are preferable.

It would be interesting to apply the formulae exposed here and in [1, 3]
to establish new properties (for example, oscillations which are observed on
plots in [1, 3, 4]) of the weight functions.
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