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ANDRIY OLENKO AND BORIS KLYKAVKA

SOME PROPERTIES OF WEIGHT FUNCTIONS IN
TAUBERIAN THEOREMS. I

The rate of convergence for weight functions series in Tauberian theo-
rems is obtained. Numerical results demonstrate required rate of con-
vergence. Some asymptotic properties of hypergeometric functions are
obtained as auxiliary results.

1. INTRODUCTION

In numerous problems in actuarial and financial mathematics asymptotic
behavior of random processes, fields, and limit theorems for some their
functionals are of great importance. Abelian and Tauberian theorems find
numerous applications in obtaining various asymptotic properties of random
processes and fields. The majority results of such type (see, for example,
[1]-[4]) describe relations between asymptotic behavior of spectral and cor-
relation characteristics at the infinity and in zero. Such relations do not
always exist for long memory random processes and fields. A new approach
based on the idea of studying relations between behavior of a spectral func-
tion in zero and some functional of random field at the infinity was proposed
in [5, 6]. In comparison with classical Tauberian theorems this functional
is used as an equivalent of a correlational function. Representation of the
functional was given in terms of the variance of spherical averages of random
field. It also can be calculated as some integral of the correlation function.

In [7], [8] similar investigations were continued. New results on relations
between local behavior of spectral functions in arbitrary point (not nec-
essarily zero) and asymptotics of some functionals of random fields were
obtained. Representations of these functionals were derived in terms of the
variance of weighted averages of random fields. Various properties of weight
functions in such representations were discussed in [7]-[10]. This paper con-
tinues the investigations.

Let R",n > 2 be an n—dimentional Euclidean space, £(t),t € R" be
a real measurable mean-square continuous homogeneous isotropic random
field (see, for example, [11]) with zero mean and the correlation function

By (r) = Bu([t]) = EE(0)E(t), t e R
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It is known that there exists a bounded nondecreasing function ®(z), z > 0,
which is called spectral function of the field £(¢), t € R" (see [11]), such that
B, (r) has the representation

B, (r) = Q"T”F(g) /OOO ﬁi@dﬂb(z),

(raz)

where J,(z) is a Bessel function of the first kind, v > —1 (see [12]).

Let
By o J2 (rz)
b(r) = (27r)”/0 (j“:p)” dd(z),

where for arbitrary a € [0, +00)

ar Sla+ N —Pla—A), 0<A<aq;
@W-:{@Eaﬂi, ( >)\Za.

In [8], it was shown the existence of a real-valued function f, ,(|¢|), for which

) =0 | [ it

The function can be defined by the formula

1 w23 (r(A = a)) .
W i) = e [ e A £

26

2. PROBLEM TO INVESTIGATE

In the following C' denotes a constant, exact value of which is not impor-
tant and which may be different in different places.
By asymptotic properties of the Bessel function (see §7.21, [12])

2 T T
(2) Jy(z)wglﬁ—zcos<z—§u—z), Z — 00

it follows that the integrand F'(A) in the definition (1) of f, .(|t|) has the
asymptotic behavior

O e S I (G R B

% (cos ((7’ FA = ra— %) —sin ((r — [t)A — m)) A — oo

Hence, the integral in the representation of the function f, ,(|t|) converges
conditionally.

Therefore there arise various problems of studying properties of the func-
tion f,.(|t|) and calculating its values with a given accuracy.
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To calculate the integral (1) well known standard approach implies an
application of the Poisson formula (§3.3, [12])

_ (2/2)" ! 2\v—1/2
Ju(2) = IO T 1/2T09) /_1(1 — 22)" 712 cos(zx)d.

Then the function f,,(|t|) can be rewritten as

1

oo
n—1

a(lt])= L 7 )\%Jn, tIA 1—22)" 2 cos(r(A—a)x)dzdA.

Fra(lt) Q%F(%ﬂ)ﬁltfl/o 5 (] >/_1< ) (rA=a)z)

Changing the order of integration we obtain

1 o
n—1
Fra(t]) L T </ (1-22)"2 cos(ra:c)/ A%J%71(|t\)\) cos(rAz)dAdz+
— 0

ZQ%F(”T“)ﬁm 1

1 0
n—1 n
+ / (1—22) 2 sin(ra:p)/ ATJ%71(|t\)\) sin(rAm)dAdm) .
-1 0

Next step is to calculate the inner integrals.

Unfortunately it is not allowed to change the order in our case. By the
asymptotic formula (2) the inner integrals with respect to A, n € N do not
converge. That is why we must use another methods to study properties of
the function f, ,(|t]) in (1).

In [8], it was proposed an efficient approach based on the representation
of the function f, ,(|t|) as the series:

(2)E 2 g dulnralt), |t <,
(3)  fra(lt]) = n
2 n 00
(ar|2t\2> r (5) Zm:O sm(n, r,a, |t|)7 |t| >,

where

(34m) O a1y ey (2 3:(1)°)
F(%—l—l) )

4)  dm(n,r,a,t]) =

P2 ORI (5 4+ m o+ §)Jn o (ra)

|t[2m T (—m — 1T (2 4+ 2m + 1)

Sm(n7 /r? a’? |t|):

3 n

n 1 T 2
F - - 2 2‘ T
(5) X9 1<2+m—|—2,m—|—2,2+ m + 7<|t|)>

2 F1(a,b,¢; 2) is a Gauss hypergeometric function (see [13]).
The rate of convergence of the series (3) is important for numerical cal-
culations. We will study this problem in the paper.
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3. ASYMPTOTIC PROPERTIES OF THE (GAUSS HYPERGEOMETRIC
FUNCTION

To obtain the rate of convergence we will need some properties of the
Gauss hypergeometric function oFy in (4) and (5).
The function o F(a, b, ¢; z) is defined as

©) Filabcis) = 30 P

o C)l l!

(a)o=1 and (a);=ala+1)...(a+1—-1),if [ €N,

for arguments values for which the series (6) converges, and as analytical
continuation for another arguments values (complex-valued) if such contin-
uation exists.

Note, that in the cases (4) and (5) the function oF; can be correctly
defined by (6). Indeed for m = 2k, k€ NUO:

n n (1N _ s~ (B+E), (SR
(7) 21 (5 + k, —k, 5 <7> ) - Z (2),0 :

becomes a k-degree polynomial.
It can be found in §2.1.1,[14] that for a,b # {0, —1,—-2,...} :

~

(a)u(b)s I'(c) +b—c—1 ~1
= [ 14+ 0(
O~ Tare O
and the series (6) converges absolutely for |z| < 1. Therefore, for m # 2k,

2
k€ NU{0}, |t| < r, the function oF} <”+m —3.5; (M) is correctly

2 r

2
defined by (6). Similarly o F} <% +m+ %, m + %, 5+ 2m + 2; ((’7‘) ) is also

correctly defined by (6), when [t| > 7.
2
Let us consider the asymptotic behavior of oF} (”*m —5. 5 (%) ) ,

PR
when m — oo.
In the following we will use Stirling’s formula (see §540, [15]) for the
Gamma function

D(k + 1) ~ V2rkE12ekeE
where 6, € (0; ). Particularly

[4

k! ~ 2kt 20 ko

To obtain asymptotical formulas we could use Watson’s results (see §2.3.2

[14])
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D(L= b+ V() s
T(1/2)T(c—b+ \)

(8) (1 + €—§>c—a—b—1/2)\—1/2 (e(A—b)§ + 6:I:z’7r(c—1/2)6—()\4-(1)5) (1 + O(l)\_ID) :

where z + v/22 — 1 = ¢** according to Imz = 0.
Let us choose

n mo1 = (Y
a C 27 Y 2 9 2 2 ( ’ )
2
ntm _m n. (|t T(m/2+1)T(n/2)2/2-1/2
o Fy ( —5 » T (?) ) ~ T(n/2tm 2T (L2 X
1/2-n/2 _1/2
Co () e ()
2 m/2 - /2402
><<<|:+ (\%l) —1) +(sin("2):|:zcos(”2"))<|:+ (‘%) _1> ) _

:o(iﬁﬂ%)No(g%)
L(5+53)m?2 m2
when m — oo.

Unfortunately the formula (8) is true only if z € C\(—o0, 1) (see [16],
[17]). Therefore we cannot use it directly in our case. Nevertheless we will

show that the asymptotics O (%) is valid for our parameters case.

Lemma 1 For |t| <r:

n+m mn [|t]\’ B cm
2ﬂ<_?ﬁ 22( ))‘Oﬂﬁﬁ e

Proof. It m = 2k, k € NU {0}, then it follows from (7)

oFi(a+XNb—Xe 1/2—2/2) = (1_€—§>—c+1/2><

then

ST 4k DT (2) (1) kL
Er( T(G)(=1)

oA (5 + ki gie)| = (= + WD(E + D) (k— Dl

0 <ol Z g < R ey,

E
2

because

D5 +k+1)  T(5+2k)
L+ — T(5+k)

By Stirling’s formula
U(%+2k) e 2 (242k—1)° B

[2(5 +k)  \/2re—n—2k+2 (2+k— 1)”+2k—1 N

1
nyok—1
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6%_12%+2k_% (1 + %;% 4 X 2%+2k—1
(10) = . I k2T
z

By (9) and (10) we obtain

o (penen (1)) o (L) ~o (55).

when m = 2k — oc. ,
Let us show that oF} ”+m, —25 5 (%) ) has the same asymptotics

when m is odd. Actually

(12) o F1 (n-gm’ —%; %,Z) = w l + (5+7)l(_%)’zl.

Hence

1) % (5+2),), 4| - o el o (e

13 2 ) < 1 dpe T |-
1=0 (2), 1=0 (3), (=34)° :

where the last identity follows from (9) and (10) proven for even m.
Consider the asymptotics of the second term in (12).

o0 [e.e]
S i), Z (3BT (- BB+ (3) F (-
()1 T(5+ T (5 +DT(+1) -
=[5]+2 ~[3]+
Ve [e.e]
(14) k=1-[2]-1|_ o r(e)r@):2+2 Z (Z+m+ L R0 (k1) 2k
l=k+2+5 | m(5+73) o T(5 5 tRT (k5 +3)

0,1
o0 o0 3
Z D(2+m+d+k)0 (k+3 )2 e BT (B 1) TR ks
244k (k+2+3) _Z Ok,2 X

= k=1 e,%,%,k+%(%+%+k %>7+7+k Bymyg 1
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%,3
— o0 n
—k+%(,_1\F k=% n _1\gtmEk 1Nk g
S ) R BPPRTE I () ()
_ k4 - n,m., ., 1\ZTtZTtk m_ 1)kt 1
671%%7%(k+%+%)k+%—+1ek+%+1 k=1 (2*2“C 2) (’“*2*2)
. %+%m+k*%,%'(%+%+f) o m
o (14 2 7 grgthog (14 2oL} 2 ok
_C R~ k+241 ¥
- k-1l moyy =
k=1 m\ Tk ]
(+E)F kv z+))
P

To estimate the last sum we use:

Lemma 2 For all x € (0,00): 0<a < (1+%)I§b<~l—oo.

Proof. The function (1 + %)x is positive, continuous and it is not equal to 0
or +oo for any = € (0; +00). Moreover :EEI—POO (1+1)" =, mlin&g (1+1)" = 1.

The statement of the lemma immediately follows from these properties. [

By application of Lemma 2

7n(7z+m+k) ™ n m
o bar e (14 ) o R oE
k+5+3 1 by 2
ZSO'Z S SC.X:C’?—|r1 Eam o1y
k=1 ak% (k + % + %) k=1 “2 ( +3+ 5)

< 2 < 2
— m 1
k:1k+2—|—§ P kE+1

By (14) and Stirling’s formula
5+9),(3) | _ o (O L (5 Y :O(Cm>
(5), ¢ r(2+2) m3=1)’
when m — oo.

For odd m by (12), (13) and (15) we obtain

n+m mn (|t cm
F _mEEY) ) = — .
21( 2 2’2’<r>> O(ms—% e

Statement of Lemma 1 follows from the last asymptotics and (11). g

WE

(15)
[5]+2

To investigate asymptotic properties of

1 3 ’
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we could also use Watson’s results (see §2.3.2 [14])
(2 - %)_a_/\gFl (a+XNa—c+1l+Xa—b+1+2)\2(1—2)7) =

2T (a — b+ 1+ 2\ () A2
MNa—c+1+ N (c—=b+A)

6—(a+)\)§<1 _ 6—5)—c+§ X

(16) (1+e a3 (140 (A1),
where ¢ is defined as in (8).
Choosing
n 1 1 n 2 >
T3ty 2y Ty T T (|t|)
we obtain

n 1 3 n r\?
Fi| = = = +2 2| = ~
2 1<2+m+2,m+2,2+ m + ’(|t|>>

2:H0(2 +2m + 2)y/Tm "z r\
SR b @ (@) ~owm.
when m — oo. Unfortunately, similarly to the case (8) we cannot apply (16)
directly. Nevertheless we will show that the asymptotics O (C™) is valid for
our parameters case.

Lemma 3 For |t| > r:

3 n

n 1 r\ 2
ol - om+2(—) | =0@™ :
21<2+m+2,m+2,2+ m+ ,(|t|>> (C™), m — oo

2 F <E—I-m+l,m+§ E—|—2m—|—2;z> :Z

=0
m+l+ )T (2+2m+2)T (m+1+3) 2
m+3) T (5+2m+1+2)T (m+3) L (1+1)

(5 +m+3), (m+3), I _
(% +2m+2),1!

()¢

=

—|

WIS |~

+ |3
_I_

I (2+2m+2) ir(g+m+l+§)r(m+l+§)zl

17) 1
(17) +P(g+m+§)r(m+g) F(Z+2m+14+2)T(1+1)

1=1
By Stirling’s formula

T(542m42) ~ V27 (3 12m1) EP2MH3 e 5721 /o (o) BH2EE m2m

(18) F(2+m+l) ~ v2w(g+m—%)%+m€_%_m+% ~V2rmztme™™,

['(m+3) ~ v27r(m+§)m+le_m_% ~V2rm™ e when m — oo.
The asymptotic behaviour of the first multiplier in (17) is
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F(%+2m+2) 95 +2m+3m s
G DI~ Ve

Using Stirling’s formula with 6, ; € (0, %), j = 1,4, we transform the series
n (17):

(19)

o0

Z F +m+l+ m+l+%)zl

+2m+z+2) (I+1)

=1
00 S -
(72—L+m+l— >7+m+l -5 —m— l+267+m+z (m+l+ >m+l+1
=2 )
=1 (%+2m+l+1)7+2m+l+7 f772m -1 m
L %7,3
—m—Il—=z 00
e~ m l gem+l+g Z Dl 1 2+m+l(m+l+%)m+z+1Zl B
31 =
ll+%e—leT4 — "+2m+l+1)7“m“+§ll+§
1 +1
> 1422 +% (rm 2)21 _—
= C : (m+l+§> =
= Z m+%— — 1-

Bimri—d (m+3)(FrmiD) ;3 (Z+2m+1+1)

=1 3
1 + m+§ m+% %+m+17%
n 1
m 2

By Lemma 2

o0 m+1 l o0 m 4l
( S Z b 2 ‘ 1 V4 <CZ C(lZ‘
i Gas ) [CECLD RyE 3 (TN MY S

=
~
o~
N]]
=

a 7+m+l j

By (17), (19) and (20), we get

n 1 3 2

F 2m + 2; =0([C™ . O

2 <2+m+2m+22+ + <||)> (C™), m— o0
4. RATE OF CONVERGENCE

Let us estimate the rate of convergence for the series (3). For this purpose
we will study asymptotics of d,(n,r, a,|t|) and s,,(n, 7, a,|t|), as m — co.

4.1 Case |t| <.

Let us consider the expression (3) for |t| < r and investigate asymptotics
for multipliers in (4) as m — oc.
Lemma 4 For |t| <7

(21) Ay, 1) = O (C—) R,
m

Proof. By Stirling’s formula

. (m I — 1)m+n—1/2€—m—n+1 mn—1

mn LY T g m i 2emm(p — 1)1 (n— 1)1
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For Gamma functions we have

r (% + 1) ~ V2me (m)2)

m n m m+n 1

r (5+§) ome % (m)2)
Therefore

(% + m) O T (252

) m" n/2—1
D(2 1) T =) (5) '

For v > 0, z > 0 due to a representation of the Bessel function as a series
(see §8.1 [12]) it follows that

_ G z/z (=)™ (z/2)*™
|J | ‘Zm 0 m'I‘(u+m+1 ‘ I(v+1) m 0m'(1/+1)(u+2) .(v+m) <
z/ 2 2 (2/2)Pm

=0
By Stirling’s formula

(/27 S (/2P (/2 (R et sy
(23) F(y+1)n;) mlym \/ﬂy”lﬂmzzo ml \/27T—V(5) '

For large values of m

1 o)t nt2m)? o\ mim
(24)  Jzym(ra) < \/me Fnm (n+2m) =0 ( m+7+7> :
Applying Lemma 1 and all previous asymptotics to (4) we obtain

dm(n,r,a,|t]) = O (07> , M — 00. O

mm—%-‘rl

Consider the series (3) remainder for |t| < r.
Theorem 1 For |t| <7

oo oo Cm
(25) > dw(n,ralt]) = O (Z W) , N — 0.
m=N

m=N
For anye > 0:

(26) > dulnrali) = 0 s )« N = .
m=N

Proof. The asymptotic formula (25) is a direct corollary of Lemma 4. The
assertion (26) follows from the the chain of estimates

E cm E cm E c mo_
m7n7%+1 S mm(l—e) S (les) -

m=N m=N m=N
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o CN Nl—¢ o O CN
- NN(l—s)(les_C) - NN(1-¢)

which is valid for large . U

4.2 Case |t| > 7.

Let us consider the expression (3) for || > r and investigate asymptotic
behavior for multipliers in (5) as m — oo.
Lemma 5 For |t| > r

(27) sm(n,rsalt]) = O (C—) o,

m2m—5+2
Proof. By Stirling’s formula
(n + 2m)n+2m+%e2m+l (Qm)n—l
et2m(2m + 1)2 e (n — 1)1 (n— 1)V
I'(n/24+2m+1) ~V 27re_2m(2m)72i+2m+%.
Let us find the asymptotics of (2m + 1)!! :
Cm+ =21 (l4 1) (L+2)..(3+m)=
_ gm+l1 1"(1142(;-/7721)—1-1) -~ \/E(Qm + 1)m+le—m—1/2.

Using properties of Gamma functions (see §538, [15]) and Stirling’s formula
we obtain

2m—+1
Cn+2m ~

1
1 2m+1 m+5 m
F(_m_ﬁ):(—l)mﬂﬁ(zmﬂ)u ~(=1)mHt %7(77;1 )m+1 N(_1)7n+1\/§—min+l .
3

We will use the formula (23) to study the asymptotics of the Bessel function
Jg+2m+1(ra). For large values of m

(ra)?
Jn_,’_2 +1(7“a) < 627Ligm+4+%+2m+1 ( ra )72—L+2m+1 _ O (L)
9 m

V2 (g+2mtr)  ntaml mB+2mT3

Taking into account (18), all previous asymptotics for (5), and Lemma 3 we
obtain

Sm(n,r,a,lt]) =0 <07> , M — 00. O

m2m—5+2

Consider the series (3) remainder for [t| > r.
Theorem 2 For [t| > r

(28) Z Sm(n,r,a, |t|> = O (Z 277107_”4_2> ) N —

m=N m=N m

For anye > 0:

(29) > sl lt) = O =g ) « N = o

m=N
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Proof. The asymptotic formula (28) is a direct corollary of Lemma 5. The
assertion (29) follows from the chain of estimates

o0 Cm
_— <

m=N

m=N

ON N2(1—¢)

oo Cm
ZWS

m=N

CN

N2N(1—6)<N2(1—6) _ C')

which is valid for large N.

5. NUMERICAL EXAMPLES

o C m
Z(W> =

=0 (NZN(l—e)) ’

In this section we give some numerical examples of our results.
Let n = 3. In this case f,.,(|t|) can be written explicitly using functions
Si(z), Ci(z) (see §5, [8]).
Plots of the function f, ,(|t]) for r =1, a = 1.2, and a = 15 are shown
on Fig.1 and Fig.2. To plot the function we used N = 100 first terms of the
series (3).

Fig.1. fi12(]t])

Fig.2. fi15(]t])

Comparison of Fig.1 and Fig.2 with corresponding plots from §5 [8] shows
their identity. The following table gives some exact numerical values of

~

fra(|t]) calculated by formulae from §5 [8] and its approximations f.Y,(|t|)
by increasing number N of first terms in the series (3).

t [ fua) 0 0 7o)

0.1 | 3.3346 3.33328 3.3346 3.3346

0,5 | 2.54618 2.54648 2.54618 2.54618

0.99 || -0.327282 -0.326829 -0.327282 -0.327282
1.01 || -0.759792 -0.759792 -0.759792 -0.759792

3 -0.0012482 -0.0012482 -0.0012482 -0.0012482
10 —9.25 x 107% || =9.25 x 107° || —=9.25 x 107° || —=9.25 x 10~°
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Analyzing the table we see that even for N = 10 the values of the function
are calculated with a high accuracy. It is important to mention that the
accuracy of calculations declines, when ¢ tends to r, due to discontinuity of
the function f, ,(|¢|) in the point |t| = r.

Figures 3, 4, 5, and 6 show the sequence lg(gy(t)) for different ¢, where

Nt t<1,

gn(t) = |f1,12(8) — f?m(t)’ ' { N%, t> 1.

an (® gn (M)
150 - £=0.00000000001 A 300 —+—  t=1.00000000001
195 t=0.5 - 250 N to3

- £=0.9999999999 '/'

100

75

50

25

Fig.3. Plot of Ig(gn(t)), t < 1 Fig.4. Plot of lg(gn(t)), t > 1
On (1) an (D)
—+—  t=0.5 - 70000
4000 s 60000
3000 : 50000
40000
2000 30000
20000
1000
10000
200 400 600 800 1000 N 2000 4000 6000 8000 IOOOON
Fig.5. Plot of 1g(gn (1)) Fig.6. Plot of lg(gn(?))

Numerical results shown on the figures 3-6 are in complete accordance
with estimates for the rates of convergence in Theorems 1 and 2 (¢ = i was
chosen).

CONCLUDING REMARKS

The rate of convergence for weight functions series in Tauberian theorems
for random fields was obtained. Numerical results show that partial sums of
the series give good approximation for weight functions and have required
rate of convergence.

Some asymptotic properties of hypergeometric functions were obtained
as auxiliary results.
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