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ROBUST ESTIMATION PROBLEMS FOR STOCHASTIC
PROCESSES1

We deal with the problem of optimal linear estimation of the functional
AL

�ξ =
∫ L

0 �a(t)�ξ(t)dt which depends on the unknown values of a multi-
dimensional stationary stochastic process �ξ(t) with the spectral density
F (λ) based on observations of the process �ξ(t) + �η(t) for t ∈ R\[0, L],
where �η(t) is uncorrelated with �ξ(t) multidimensional stationary process
with the spectral density G(λ) (interpolation problem), and the prob-
lem of optimal linear estimation of the functional A�ξ =

∫∞
0

�a(t)�ξ(t)dt
which depends on the unknown values of a multidimensional stationary
stochastic process �ξ(t), t ≥ 0, from observations of the process �ξ(t)+�η(t)
for t < 0 (extrapolation problem). Formulas are obtained for calculation
the mean square errors and the spectral characteristics of the optimal
estimates of the functionals under the condition that the spectral density
matrix F (λ) of the signal process �ξ(t) and the spectral density matrix
G(λ) of the noise process �η(t) are known. The least favorable spectral
densities and the minimax spectral characteristics of the optimal esti-
mates of the functionals are found for concrete classes D = DF × DG

of spectral densities under the condition that spectral density matrices
F (λ) and G(λ) are not known, but classes D = DF × DG of admissible
spectral densities are given.

1. Introduction

Traditional methods of solution of the linear extrapolation, interpolation
and filtering problems for stationary stochastic processes may be employed
under the condition that spectral densities of processes are known exactly
(see, for example, selected works of A. N. Kolmogorov (1992), survey arti-
cle by T. Kailath (1974), books Yu. A. Rozanov (1990), N. Wiener (1966)
and A. M. Yaglom (1987)). In practice, however, complete information on
the spectral densities is impossible in most cases. To solve the problem
one finds parametric or nonparametric estimates of the unknown spectral
densities or selects these densities by other reasoning. Then applies the
classical estimation method provided that the estimated or selected density
is the true one. This procedure can result in a significant increasing of the
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value of error as K. S. Vastola and H. V. Poor (1983) have demonstrated

with the help of some examples. This is a reason to search estimates which

are optimal for all densities from a certain class of the admissible spectral

densities. These estimates are called minimax since they minimize the max-

imal value of the error. A survey of results in minimax (robust) methods of

data processing can be found in the paper by S. A. Kassam and H. V. Poor

(1985). The paper by Ulf Grenander (1957) should be marked as the first

one where the minimax approach to extrapolation problem for stationary

processes was proposed. J. Franke (1984, 1985, 1991), J. Franke and H.

V. Poor (1984) investigated the minimax extrapolation and filtering prob-

lems for stationary sequences with the help of convex optimization methods.

This approach makes it possible to find equations that determine the least

favorable spectral densities for various classes of densities. In the papers

by M. P. Moklyachuk (1994, 1997, 1998, 2000, 2001), M. P. Moklyachuk

and A. Yu. Masyutka (2005, 2006) the minimax approach to extrapolation,

interpolation and filtering problems are investigated for functionals which

depend on the unknown values of stationary processes and sequences.

In this article we considered the problem of estimation of the unknown

value of the functional AL
�ξ =

∫ L

0
�a(t)�ξ(t)dt which depends on the unknown

values of a multidimensional stationary stochastic process �ξ(t) = {ξk(t)}T
k=1 ,

E�ξ(t) = 0, with the spectral density matrix F (λ) = {fij(λ)}T
i,j=1 based

on observations of the process �ξ(t) + �η(t) for t ∈ R\[0, L], where �η(t) =

{ηk(t)}T
k=1 is an uncorrelated with �ξ(t) multidimensional stationary sto-

chastic process with the spectral density matrix G(λ) = {gij(λ)}T
i,j=1 (in-

terpolation problem), and the problem of optimal linear estimation of the

functional A�ξ =
∫∞
0

�a(t)�ξ(t)dt which depends on the unknown values of a

multidimensional stationary stochastic process �ξ(t), t ≥ 0, from observa-

tions of the process �ξ(t) + �η(t) for t < 0 (extrapolation problem). Formulas

are obtained for calculation the mean square errors and the spectral char-

acteristics of the optimal linear estimates of the functionals under condition

that the spectral density matrices F (λ) and G(λ) are known. Formulas

are proposed that determine the least favorable spectral densities and the

minimax-robust spectral characteristics of the optimal estimates of the func-

tionals for concrete classes D = DF × DG of spectral densities under the

condition that spectral density matrices F (λ), G(λ) are not known, but

classes D = DF × DG of admissible spectral densities are given.

2. Hilbert space projection method of interpolation

Let �ξ(t) = {ξk(t)}T
k=1 , E�ξ(t) = 0, �η(t) = {ηk(t)}T

k=1, E�η(t) = 0, be uncor-

related multidimensional stationary stochastic processes with the spectral
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density matrices F (λ) = {fkl(λ)}T
k,l=1 and G(λ) = {gkl(λ)}T

k,l=1 , which sat-
isfy the minimality condition

(1)

∞∫
−∞

b(λ)(F (λ) + G(λ))−1b∗(λ)dλ < ∞

for a nontrivial vector function of the exponential type b(λ) =
∫ L

0
�α(t)eitλdt,

where �α(t) = {αk(t)}T
k=1 . Under this condition the error-free interpolation

is impossible (see, for example, Yu. A. Rozanov (1990)).

Denote by L2 (F ) the Hilbert space of vector-valued functions ϕ(λ) =

{ϕk(λ)}T
k=1 which are square integrable with respect to measure with the

density F (λ) = {fkl(λ)}T
k,l=1:

∞∫
−∞

ϕ(λ)F (λ)ϕ∗(λ)dλ =

∞∫
−∞

T∑
k,l=1

ϕk(λ)ϕl (λ) fkl(λ)dλ < ∞.

Denote by LL−
2 (F ) the subspace in L2(F ), generated by functions eitλδk,

δk = {δkl}T
l=1 , k = 1, T , t ∈ R\[0, L], where δkk = 1, δkl = 0 for k �= l.

Any linear estimate ÂL
�ξ of the functional AL

�ξ based on observations of the

process �ξ(t) + �η(t) for t ∈ R\[0, L] is of the form

ÂL
�ξ =

∞∫
−∞

h(λ) (Zξ(dλ) + Zη(dλ)) =

∞∫
−∞

T∑
k=1

hk(λ)(Zξ
k(dλ) + Zη

k (dλ)),

where Zξ(Δ) =
{
Zξ

k(Δ)
}T

k=1
and Zη(Δ) = {Zη

k (Δ)}T
k=1 are orthogonal

random measures of the stationary processes �ξ(t) and �η(t) correspondingly,

h(λ) = {hk(λ)}T
k=1 is the spectral characteristic of the estimate ÂL

�ξ. The
function h(λ) ∈ LL−

2 (F +G). The value of the mean square error Δ(h; F, G)

of the estimate ÂL
�ξ is calculated by the formula

Δ(h; F, G) = E
∣∣∣AL

�ξ − ÂL
�ξ
∣∣∣2 =

1

2π

∞∫
−∞

(AL(λ)− h(λ)) F (λ) (AL(λ)− h(λ))∗dλ +
1

2π

∞∫
−∞

h(λ) G(λ) h∗(λ)dλ,

where

AL(λ) =

L∫
0

�a(t)eitλdt.



ESTIMATION PROBLEMS FOR STOCHASTIC PROCESSES 91

The spectral characteristic h(F, G) of the optimal estimate of the functional

AL
�ξ in the case of given spectral density matrices F (λ) and G(λ) is deter-

mined by the extremum condition

Δ(F, G) = Δ(h(F, G); F, G) =

(2) = min
h∈LL−

2 (F+G)
Δ(h; F, G) = min

ÂL
�ξ
E
∣∣∣AL

�ξ − ÂL
�ξ
∣∣∣2 .

The optimal estimate ÂL
�ξ is a solution of the extremum problem (2). It is

determined by two conditions (see, for example, selected works of A. N. Kol-
mogorov (1992))

(3) ÂL
�ξ ∈ H

[
ξk(t) + ηk(t) , k = 1, T , t ∈ R\[0, L]

]
;

(4) AL
�ξ − ÂL

�ξ⊥H
[
ξk(t) + ηk(t) , k = 1, T , t ∈ R\[0, L]

]
,

where H
[
ξk(t) + ηk(t), k = 1, T , t ∈ R\[0, L]

]
is a subspace generated by

the random variables
{
ξk(t) + ηk(t), k = 1, T , t ∈ R\[0, L]

}
in the Hilbert

space H of the second order random variables with zero mean value. These
conditions give a possibility to find the spectral characteristic h(F, G) and
the mean-square error Δ(F, G) of the optimal estimate of the functional

AL
�ξ under the condition that the spectral density matrices F (λ), G(λ) are

known and satisfy the minimality condition (1). In this case

h(F, G) = (AL(λ) F (λ) − CL(λ)) (F (λ) + G(λ))−1 =

(5) = AL(λ) − (AL(λ) G(λ) + CL(λ)) (F (λ) + G(λ))−1,

Δ(F, G) =
1

2π

∞∫
−∞

(AL(λ) G(λ) + CL(λ)) (F (λ) + G(λ))−1 F (λ)×

×(F (λ) + G(λ))−1(AL(λ) G(λ) + CL(λ))∗dλ+

+
1

2π

∞∫
−∞

(AL(λ) F (λ) − CL(λ))(F (λ) + G(λ))−1G(λ) (F (λ) + G(λ))−1×

(6) ×(AL(λ) G(λ) + CL(λ))∗dλ = 〈BLc , c〉 + 〈RLa , a〉 ,

where

CL(λ) =

L∫
0

�c(t)eitλdt, �c(t) = (B−1
L DLa)(t), 0 ≤ t ≤ L,

〈BLc, c〉 =

L∫
0

T∑
k=1

(BLc)k(t) ck(t) dt,
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〈RLa, a〉 =

L∫
0

T∑
k=1

(RLa)k(t) ak(t)dt,

operators BL, DL, RL are determined by the following relations

(BLc)(t) =
1

2π

L∫
0

∞∫
−∞

�c(u)(F (λ) + G(λ))−1ei(u−t)λdλdu,

(DLc)(t) =
1

2π

L∫
0

∞∫
−∞

�c(u)F (λ)(F (λ) + G(λ))−1ei(u−t)λdλdu,

(RLc)(t) =
1

2π

L∫
0

∞∫
−∞

�c(u)F (λ)(F (λ) + G(λ))−1G(λ)ei(u−t)λdλdu,

0 ≤ t ≤ L;

From the preceding formulas we can conclude that the following theorem
holds true.
Theorem 1.1. Let �ξ(t) = {ξk(t)}T

k=1 , E�ξ(t) = 0, and �η(t) = {ηk(t)}T
k=1 ,

E�η(t) = 0, be uncorrelated multidimensional stationary stochastic processes
with the spectral density matrices

F (λ) = {fij(λ)}T
i,j=1 and G(λ) = {gij(λ)}T

i,j=1

that satisfy the minimality condition (1). The value of the mean-square
error Δ(h(F, G), F, G) and the spectral characteristic h(F, G) of the optimal

linear estimate of the functional AL
�ξ =

∫ L

0
�a(t)�ξ(t)dt which depends on the

unknown values of the process �ξ(t) based on observations of the process
�ξ(t) + �η(t) for t ∈ R\[0, L] are calculated by formulas (5), (6).

Corollary 1.1. Let �ξ(t) = {ξk(t)}T
k=1 be a multidimensional stationary

stochastic process with the spectral density matrix F (λ) = {fkl(λ)}T
k,l=1 ,

that satisfies the minimality condition
∞∫

−∞

b(λ)(F (λ))−1b∗(λ)dλ < ∞

for a nontrivial vector function of the exponential type b(λ) =
∫ L

0
�α(t)eitλdt.

The value of the mean-square error Δ(F ) and the spectral characteristic

h(F ) of the optimal linear estimate of the functional AL
�ξ =

∫ L

0
�a(t)�ξ(t)dt

which depends on the unknown values of the process �ξ(t) based on observa-

tions of the process �ξ(t) for t ∈ R\[0, L] can be calculated by the formulas

(7) h(F ) = AL(λ) − CL(λ) (F (λ))−1,
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(8) Δ(F ) =
1

2π

∞∫
−∞

CL(λ) (F (λ))−1(CL(λ))∗dλ = 〈BLa, a〉 = 〈c, a, 〉

where

CL(λ) =

L∫
0

�c(t)eitλdt,

�c(t) = (B−1
L a)(t), 0 ≤ t ≤ L,

〈c, a〉 =

L∫
0

T∑
k=1

ck(t) ak(t)dt,

(BLa)(t) =
1

2π

L∫
0

∞∫
−∞

�a(u)(F (λ))−1ei(u−t)λdλdu, 0 ≤ t ≤ L.

Example 1. Consider the problem of estimation of the value of the func-

tional A1
�ζ =

∫ 1

0
�a(t)�ζ(t)dt based on observations of the process �ζ(t) =

(ζ1(t), ζ2(t)), t ∈ R\[0, 1], where ζ1(t) = ξ(t) is a stationary stochastic
process with the spectral density f(λ), and ζ2(t) = ξ(t) + η(t), where η(t)
is an uncorrelated with ξ(t) stationary stochastic process with the spectral
density g(λ). In this case

F (λ) =

(
f(λ) f(λ)
f(λ) f(λ) + g(λ)

)
.

The determinant D = |F (λ)| = f(λ) g(λ), and the inverse matrix

F (λ)−1 =

(
f(λ)+g(λ)
f(λ) g(λ)

−1
g(λ)

−1
g(λ)

1
g(λ)

)
.

Let f(λ) = P1

λ2+ α2
1
, g(λ) = P2

λ2+α2
2
, �a(t) = (1, 1). Then A1(λ) = eiλ−1

iλ
�a(t), and

the function �c(t) = (c1(t), c2(t)) are determined by the equation (B1c)(t) =
�a(t), where

(B1c)(t) =
1

2π

1∫
0

∞∫
−∞

�c(u)(F (λ))−1ei(u−t)λdλdu.

We get the following system of integral equations with respect to c1(t) and
c2(t)

1

2π

1∫
0

∞∫
−∞

c1(u)
α2

1 + λ2

P1
ei(u−t)λdλdu = 2,
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1

2π

1∫
0

∞∫
−∞

(c2(u) − c1(u))
α2

2 + λ2

P1

ei(u−t)λdλdu = 1.

Transform these integral equations to the differential ones and get

c1(t) = P1x(t), x′′(t) − α1x(t) + 2 = 0, x(0) = x(1) = 0,

c2(t) = c1(t) + P2y(t), y′′(t) − α2y(t) + 1 = 0, y(0) = y(1) = 0.

Solutions to these equations are of the form

c1(t) =
2P1

α2
1

(
eα1 − 1

e−α1 − eα1
e−α1t − e−α1 − 1

e−α1 − eα1
eα1t + 1

)
,

c2(t) = c1(t) +
P2

α2
2

(
eα2 − 1

e−α2 − eα2
e−α2t − e−α2 − 1

e−α2 − eα2
eα2t + 1

)
.

The spectral characteristic of the optimal estimate of the value A1
�ζ is of

the form h(F ) = A1(λ) − C1(λ) F (λ)−1 = (h1(λ), h2(λ)), where

h1(λ) = (h1 − h2) + (h1 − h2)e
iλ, h2(λ) = h2 + h2e

iλ,

h1 =
2

α1(e−α1 − eα1)
(2 − eα1 − e−α1), h2 =

1

α2(e−α2 − eα2)
(2 − eα2 − e−α2).

The optimal estimate of the value A1
�ζ is of the form

Â1
�ζ = (h1 − h2)ζ1(0) + h2ζ2(0) + (h1 − h2)ζ1(1) + h2ζ2(1).

The mean-square error of the optimal estimate can be calculated by the
formula

Δ(F ) =
4P1

α2
1

(
1 +

2(1 − e−α1)(eα1 − 1)

α1(e−α1 − eα1)

)
+

P2

α2
2

(
1 +

2(1 − e−α2)(eα2 − 1)

α2(e−α2 − eα2)

)
.

Example 2. Consider the problem of estimation of the value A1
�ζ =∫ 1

0
�a(t)�ζ(t)dt, where �a(t) = (1, 1 − t). In this case

c1(t) = P1

(
Ae−α1t + Beα1t − 1

α2
1

t +
2

α2
1

)
,

A =
1

α2
1

2eα1 − 1

e−α1 − eα1
, B = − 1

α2
1

2e−α1 − 1

e−α1 − eα1
;

c2(t) = c1(t) + P2

(
Ce−α2t + Deα2t − 1

α2
2

t +
1

α2
2

)
,

C =
1

α2
2

eα2

e−α2 − eα2
, D = − 1

α2
2

e−α2

e−α2 − eα2
;

A1(λ) =

(
eiλ − 1

iλ
,

1

λ2
− 1

iλ
− eiλ

λ2

)
.

The spectral characteristic of the optimal estimate is of the form

h(F ) = (h1(λ),h2(λ)) , h1(λ) = (h1 −h2)+ (h3 −h4)e
iλ, h2(λ) = h2 +h4e

iλ,
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where

h1 =
2 − 2(e−α1 + eα1)

α1(e−α1 − eα1)
− 1

α2
1

, h2 = − 1

α2

e−α2 + eα2

e−α2 − eα2
− 1

α2
2

,

h3 =
4 − (e−α1 + eα1)

α1(e−α1 − eα1)
+

1

α2
1

, h4 =
2

α2(e−α2 − eα2)
+

1

α2
2

.

The optimal estimate of the value A1
�ζ is of the form

Â1
�ζ = (h1 − h2)ζ1(0) + (h3 − h4)ζ1(1) + h2ζ2(0) + h4ζ2(1).

The mean-square error of the optimal estimate can be calculated by the
formula

Δ(F ) = 2P1

(
1

3α2
1

+ A

(
1

α1
+

e−α1

α2
1

− 1

α2
1

)
+ B

(
− 1

α1
+

eα1

α2
1

− 1

α2
1

))
+

+P2

(
− 1

6α2
2

+ C

(
1

α2
+

e−α2

α2
2

− 1

α2
2

)
+ D

(
− 1

α2
+

eα2

α2
2

− 1

α2
2

))
.

Example 3. Consider the problem of estimation of the value A1
�ζ =∫ 1

0
�a(t)�ζ(t)dt, where �a(t) = (1, eβt). In this case

A1(λ) =

(
eiλ − 1

iλ
,
eiλ+β − 1

iλ + β

)
,

c1(t) = P1

(
Ae−α1t + Beα1t +

eβt

α2
1 − β2

+
1

α2
1

)
,

c2(t) = c1(t) + P2

(
Ce−α2t + Deα2t +

eβt

α2
2 − β2

)
,

A =
1

e−α1 − eα1

(
eα1 − eβ

α2
1 − β2

+
eα1 − 1

α2
1

)
,

B = − 1

e−α1 − eα1

(
e−α1 − eβ

α2
1 − β2

+
e−α1 − 1

α2
1

)
,

C =
1

e−α2 − eα2

eα2 − eβ

α2
2 − β2

, D = − 1

e−α2 − eα2

e−α2 − eβ

α2
2 − β2

.

The spectral characteristic of the optimal estimate is of the form

h(F ) = (h1(λ) , h2(λ)), h1(λ) = (h1−h2)+(h3−h4)e
iλ, h2(λ) = h2+h4e

iλ,

where

h1 =
α1

α2
1 − β2

2eβ − e−α1 − eα1

e−α1 − eα1
+

2 − e−α1 − eα1

α1(e−α1 − eα1)
+

β

α2
1 − β2

,

h3 =
α1

α2
1 − β2

2 − eβ(e−α1 + eα1)

e−α1 − eα1
+

2 − e−α1 − eα1

α1(e−α1 − eα1)
− βeβ

α2
1 − β2

,

h2 =
α2(2e

β − e−α2 − eα2)

(e−α2 − eα2)(α2
2 − β2)

+
β

α2
2 − β2

,
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h4 =
α2(2 − eβe−α2 − eα2)

(e−α2 − eα2)(α2
2 − β2)

− β

α2
2 − β2

eβ.

The mean-square error of the optimal estimate can be calculated by the
formula

Δ(F ) = 2P1

(
1

α2
1

− A
e−α1 − 1

α1
+ B

eα1 − 1

α1
+

eβ − 1

β(α2
1 − β2)

)
+

+P2

(
C

eβ−α2 − 1

β − α2
+ D

eβ+α2 − 1

β + α2
+

e2β − 1

2β(α2
2 − β2)

)
.

3. Minimax-robust method of interpolation

Formulas (5)-(8) may be used to determine the mean-square error and the

spectral characteristic of the optimal linear estimate of the functional AL
�ξ

when the spectral density matrices F (λ) and G(λ) of multidimensional sta-

tionary stochastic processes �ξ(t) and �η(t) are known. In the case where
the spectral density matrices are unknown, but a set D = DF × DG of ad-
missible spectral density matrices is given, the minimax-robust method of

estimation of the unknown values of the functional AL
�ξ is reasonable (see,

for example, the survey article by S. A. Kassam and H. V. Poor (1985)). By
means of this method it is possible to determine the estimate that minimizes
the mean-square error for all spectral density matrices F (λ) and G(λ) from
the class D = DF × DG simultaneously.
Definition 3.1. For a given class of spectral density matrices D = DF ×DG

spectral density matrices F 0 (λ) ∈ DF , G0 (λ) ∈ DG are called the least

favorable for the optimal linear interpolation of the functional AL
�ξ if the

following relation holds true

Δ
(
F 0, G0

)
= Δ

(
h
(
F 0, G0

)
; F 0, G0

)
= max

(F, G)∈D
Δ (h (F, G) ; F, G) .

Definition 3.2. For a given class of spectral density matrices D = DF ×
DG the spectral characteristic h0(λ) of the optimal linear estimate of the

functional AL
�ξ is called the minimax-robust if the conditions

h0 (λ) ∈ HD = ∩
(F,G)∈D

LL−
2 (F + G) ,

min
h∈HD

max
(F, G)∈D

Δ (h; F, G) = max
(F, G)∈D

Δ
(
h0; F, G

)
.

are satisfied.
Taking into account relations (1)–(8), it is possible to verify the following

propositions.
Proposition 3.1. The spectral density matrices F 0(λ) ∈ DF , G0(λ) ∈ DG

are the least favorable in the class D = DF × DG for the optimal linear

interpolation of the functional AL
�ξ if the density matrix functions (F 0(λ)+

G0(λ))−1, F 0(λ)(F 0(λ)+G0(λ))−1, F 0(λ)(F 0(λ)+G0(λ))−1G0(λ) determine
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operators B0
L, D0

L, R0
L, which give solutions to the conditional extremum

problem
(9)

max
(F, G)∈D

(〈
DLa, B−1

L DLa
〉

+ 〈RLa, a〉) =
〈
D0

La, (B0
L)−1D0

La
〉

+
〈
R0

La, a
〉
.

The minimax-robust spectral characteristic h0 = h(F 0, G0) of the optimal

linear estimate of the functional AL
�ξ can be calculated by formula (5) if the

condition h(F 0, G0) ∈ HD holds true.
Proposition 3.2. The spectral density matrix F 0(λ) ∈ DF which satisfies
the minimality condition is the least favorable in the class D = DF for the

optimal linear interpolation of the functional AL
�ξ based on observations of

�ξ(t), t ∈ R\[0, L], if the density matrix function (F 0(λ))−1 determine the
operator B0

L which gives a solution to the conditional extremum problem

(10) max
F∈DF

〈
(BL)−1a, a

〉
=
〈
(B0

L)−1a, a
〉
.

The minimax-robust spectral characteristic h0 = h(F 0) of the optimal lin-

ear estimate of the functional AL
�ξ can be calculated by formula (7) if the

condition h(F 0) ∈ HD holds true.
The least favorable spectral density matrices F 0(λ) ∈ D, G0(λ) ∈ DG

and the minimax-robust spectral characteristic h0 = h (F 0, G0) ∈ HD form
a saddle point of the function Δ(h; F, G) on the set HD × D. The saddle
point inequalities

Δ
(
h0; F, G

) ≤ Δ
(
h0; F 0, G0

) ≤ Δ
(
h; F 0, G0

)
,

∀h ∈ HD, ∀F ∈ DF , ∀G ∈ DG

hold true if h0 = h(F 0, G0) ∈ HD and (F 0, G0) give a solution to the
conditional extremum problem

(11) sup
(F,G)∈D

Δ
(
h
(
F 0, G0

)
; F, G

)
= Δ

(
h
(
F 0, G0

)
; F 0, G0

)
,

where

Δ
(
h
(
F 0, G0

)
; F, G

)
=

=
1

2π

∞∫
−∞

(AL(λ) G0(λ) + C0
L(λ)) (F 0(λ) + G0(λ))−1 F (λ)×

×(F 0(λ) + G0(λ))−1(AL(λ) G0(λ) + C0
L(λ))∗dλ+

+
1

2π

∞∫
−∞

(AL(λ) F 0(λ) − C0
L(λ))(F 0(λ) + G0(λ))−1G(λ)×

×(F 0(λ) + G0(λ))−1(AL(λ) G0(λ) + C0
L(λ))∗dλ.
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This conditional extremum problem is equivalent to the unconditional ex-
tremum problem

(12) ΔD(F, G) = −Δ(h(F 0, G0); F, G) + δ((F, G)|D) → inf,

where δ((F, G)|D) is the indicator function of the set D = DF ×DG. A solu-
tion to this problem is determined by the condition 0 ∈ ∂ΔD(F 0, G0), where
∂ΔD(F 0, G0) is the subdifferential of the convex functional ∂ΔD(F, G) at
the point (F 0, G0) (see, for example, B. N. Pshenichnyi (1982)).

The following propositions holds true.
Proposition 3.3. Let (F 0, G0) be a solution to the conditional extremum
problem (11). The spectral density matrices F 0(λ) ∈ DF , G0(λ) ∈ DG are
the least favorable in the class D = DF ×DG and the spectral characteristic
h0 = h(F 0, G0) is minimax-robust for the optimal linear interpolation of the

functional AL
�ξ if the condition h(F 0, G0) ∈ HD holds true.

Proposition 3.4. The spectral density matrix F 0(λ) ∈ DF which satisfies
the minimality condition is the least favorable in the class D = DF for the

optimal linear interpolation of the functional AL
�ξ based on observations of

�ξ(t), t ∈ R\[0, L], if the density matrix function F 0(λ) gives a solution to
the conditional extremum problem

(13) sup
F∈DF

Δ
(
h
(
F 0
)
; F

)
= Δ

(
h
(
F 0
)
; F 0

)
,

where

Δ
(
h
(
F 0
)
; F
)

=
1

2π

∞∫
−∞

C0
L(λ)(F 0(λ))−1F (λ)(F 0(λ))−1(C0

L(λ))∗dλ.

The spectral characteristic h0 = h(F 0) is minimax-robust for the optimal

linear interpolation of the functional AL
�ξ if the condition h(F 0) ∈ HD holds

true.

4. Least favorable spectral densities in the class D0
F × D0

G

Consider the problem of minimax estimation of the functional AL
�ξ based

on observations �ξ(t) + �η(t), t ∈ R\[0, L] under the condition that spectral
density matrices F (λ), G(λ) of the multidimentional stationary processes
�ξ(t), �η(t) are from the set of spectral density matrices D0

F × D0
G, where

D0
F =

⎧⎨
⎩F (λ)

∣∣∣∣∣∣
1

2π

∞∫
−∞

F (λ)dλ = P1

⎫⎬
⎭ ,

D0
G =

⎧⎨
⎩G(λ)

∣∣∣∣∣∣
1

2π

∞∫
−∞

G(λ)dλ = P2

⎫⎬
⎭ .
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With the help of the Lagrange multipliers method we can find the follow-
ing relations that determine the least favorable spectral density matrices

(F 0(λ), G0(λ)) ∈ D0
F × D0

G

(14) AL(λ)G0(λ) + C0
L(λ) = �α · (F 0(λ) + G0(λ)),

(15) AL(λ)F 0(λ) − C0
L(λ) = �β · (F 0(λ) + G0(λ)),

where �α = (α1, . . . , αT ), �β = (β1, . . . , βT ) are the Lagrange multipliers.

It follows from these relations that the the following theorems hold true.
Theorem 4.1. Let the spectral density matrices F 0(λ) ∈ D0

F , G0(λ) ∈ D0
G

satisfy the minimality condition (1). These spectral density matrices F 0(λ),

G0(λ) are the least favorable in the class D = D0
F × D0

G for the optimal

linear interpolation of the functional AL
�ξ if F 0(λ), G0(λ) are solutions to

the equations (14), (15) and determine a solution to the extremum problem
(9). The spectral characteristic h(F 0, G0) calculated by the formula (5) is

minimax-robust for the optimal linear interpolation of the functional AL
�ξ.

Theorem 4.2. Let the spectral density matrix F (λ) be know and let spectral
density matrices F (λ), G0(λ) ∈ D0

G satisfy the minimality condition (1).

The spectral density matrix G0(λ) is the least favorable in the class D0
G for

the optimal linear interpolation of the functional AL
�ξ if

G0(λ) = max
{
0, �α−1 · (AL(λ)F (λ) − C0

L(λ)) − F (λ)
}

,

where

�α−1 =

(
α1

D
, . . . ,

αT

D

)�
, D = |α1|2 + . . . + |αT |2 ,

and F (λ), G0(λ) determine a solution to the extremum problem (9). The
spectral characteristic h(F, G0) calculated by the formula (5) is minimax-

robust for the optimal linear interpolation of the functional AL
�ξ.

Theorem 4.3. Let the spectral density matrix F 0(λ) ∈ D0
F satisfies the

minimality condition (1). The spectral density matrix F 0(λ) is the least

favorable in the class D = D0
F for the optimal linear interpolation of the

functional AL
�ξ based on observations of �ξ(t) for t ∈ R\[0, L] if �α · F 0(λ) =

C0
L(λ) and F 0(λ) determine a solution to the extremum problem (10). The

spectral characteristic h0 = h(F 0) calculated by the formula (7) is minimax-

robust for the optimal linear interpolation of the functional AL
�ξ.

5. Least favorable spectral densities in the class DU
V × Dε

Consider the problem of minimax estimation of the functional AL
�ξ based

on observations �ξ(t) + �η(t), t ∈ R\[0, L] under the condition that spectral

density matrices F (λ), G(λ) of the multidimensional stationary processes
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�ξ(t), �η(t) are from the set of spectral density matrices DU
V × Dε, where

DU
V =

⎧⎨
⎩F (λ)

∣∣∣∣∣∣V (λ) ≤ F (λ) ≤ U(λ),
1

2π

∞∫
−∞

F (λ)dλ = P1

⎫⎬
⎭ ,

Dε =

⎧⎨
⎩G(λ)

∣∣∣∣∣∣G(λ) = (1 − ε)G1(λ) + εW (λ),
1

2π

∞∫
−∞

G(λ)dλ = P2

⎫⎬
⎭ ,

where V (λ), U(λ), G1(λ) are given fixed spectral density matrices, W (λ)
ia an unknown spectral density matrix, and expression B(λ) ≥ D(λ) means
that B(λ) − D(λ) ≥ 0 (positive definite matrix function). The set DU

V

describes the ‘band’ model of stochastic processes while the set Dε describes
the ‘ε-contaminated’ model of stochastic processes. For the set DU

V × Dε

from the condition 0 ∈ ∂ΔD(F 0, G0) we can get the following relations
which determine the least favorable spectral density matrices

(16) �a0(λ)�a0(λ)∗ = �α · �α∗ + Γ1(λ) + Γ2(λ);

(17) �b0(λ)�b0(λ)∗ = �β · �β∗ + Γ3(λ),

where
�a0(λ) =

(
(AL(λ)G0(λ) + C0

L(λ))(F 0(λ) + G0(λ))−1
)T

,

�b0(λ) =
(
(AL(λ)F 0(λ) − C0

L(λ))(F 0(λ) + G0(λ))−1
)T

.

The coefficients �α = (α1, . . . , αT )T , �β = (β1, . . . βT )T are determined by the
conditions

(18)
1

2π

∞∫
−∞

F 0(λ)dλ = P1,
1

2π

∞∫
−∞

G0(λ)dλ = P2.

The matrix functions Γ1(λ) ≥ 0, Γ2(λ) ≥ 0, Γ3(λ) ≥ 0 are determined by
the conditions

(19) V (λ) ≤ F 0(λ) ≤ U(λ), G0(λ) = (1 − ε)G1(λ) + εW (λ),

(20) Γ1(λ) = 0 if F 0(λ) ≥ V (λ), Γ2(λ) = 0 if F 0(λ) ≤ U(λ),

(21) Γ3(λ) = 0 if G0(λ) ≥ (1 − ε)G1(λ).

It follows from these relations that the the following theorems hold true.
Theorem 5.1. Let the spectral density matrices F 0(λ) ∈ DU

V , G0(λ) ∈
Dε satisfy the minimality condition (1). These spectral density matrices
F 0(λ), G0(λ) are the least favorable in the class DU

V × Dε for the optimal

linear interpolation of the functional AL
�ξ if they satisfy conditions (16) –

(21) and determine a solution to the extremum problem (9). The spectral
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characteristic h(F 0, G0) calculated by the formula (5) is minimax-robust for

the optimal linear interpolation of the functional AL
�ξ.

Theorem 5.2. Let the spectral density matrix F (λ) be known and let spec-
tral density matrices F (λ), G0(λ) ∈ Dε satisfy the minimality condition (1).
The spectral density matrix G0(λ) is the least favorable in the class Dε for

the optimal linear interpolation of the functional AL
�ξ if

G0(λ) = max
{
(1 − ε)G1(λ), �α−1(AL(λ)F (λ) − C0

L(λ)) − G(λ)
}

and (F (λ), G0(λ)) determine a solution to the extremum problem (9). The
spectral characteristic h(F, G0) calculated by the formula (5) is minimax-

robust for the optimal linear interpolation of the functional AL
�ξ.

Theorem 5.3. Let the spectral density matrix F 0(λ) ∈ DU
V satisfies the

minimality condition (1). This spectral density matrix F 0(λ) is the least
favorable in the class D = DU

V for the optimal linear interpolation of the

functional AL
�ξ based on observations of �ξ(t) for t ∈ R\[0, L] if

F 0(λ) = max
{
V (λ), min

{
U(λ), �α−1C0

L(λ)
}}

and F 0(λ) determine a solution to the extremum problem (10). The spectral
characteristic h0 = h(F 0) calculated by the formula (7) is minimax-robust

for the optimal linear interpolation of the functional AL
�ξ.

6. Hilbert space projection method of extrapolation

Let the vector function �a(t) which determines the functional A�ξ satisfies
conditions:

(22)

∫ ∞

0

T∑
k=1

|ak(t)| dt < ∞,

∫ ∞

0

t

T∑
k=1

|ak(t)|2dt < ∞.

Under these conditions the functional A�ξ has the second moment and the
operator A defined below is compact.

Let the spectral density matrices

F (λ) = {fkl(λ)}T
k,l=1 and G(λ) = {gkl(λ)}T

k,l=1

of uncorrelated multidimensional stationary stochastic processes �ξ(t) =

{ξk(t)}T
k=1 , �η(t) = {ηk(t)}T

k=1 satisfy the minimality condition (1), where

b(λ) =
∫∞
0

�α(t)eitλdt, �α(t) = {αk(t)}T
k=1, is a nontrivial vector function of

the exponential type.
Denote by L−

2 (F ) the subspace in L2(F ), generated by functions eitλδk,

t < 0, δk = {δkl}T
l=1 , k = 1, . . . , T , where δkk = 1, δkl = 0 for k �= l. Any

linear linear extrapolation Â�ξ of the functional A�ξ based on observations of

the process �ξ(t) + �η(t) for t < 0 is of the form

Â�ξ =

∞∫
−∞

h(λ) (Zξ(dλ) + Zη(dλ)) =

∞∫
−∞

T∑
k=1

hk(λ)(Zξ
k(dλ) + Zη

k (dλ)),
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where h(λ) = {hk(λ)}T
k=1 is the spectral characteristic of the linear extrap-

olation Â�ξ. The function h(λ) ∈ L−
2 (F + G). The value of the mean square

error Δ(h; F, G) of the linear extrapolation Â�ξ is calculated by the formula

Δ(h; F, G) = E
∣∣∣A�ξ − Â�ξ

∣∣∣2 =

1

2π

∞∫
−∞

(A(λ) − h(λ)) F (λ) (A(λ)− h(λ))∗dλ +
1

2π

∞∫
−∞

h(λ) G(λ) h∗(λ)dλ,

where

A(λ) =

∞∫
0

�a(t)eitλdt.

The spectral characteristic h(F, G) of the optimal linear linear extrapolation

of A�ξ minimizes the mean square error

Δ(F, G) = Δ(h(F, G); F, G)

(23) = min
h∈L−

2 (F+G)
Δ(h; F, G) = min

Â�ξ
E
∣∣∣A�ξ − Â�ξ

∣∣∣2 .

With the help of the Hilbert space projection method proposed by A. N. Kol-
mogorov we can find a solution of the optimization problem (23):

h(F, G) = (A(λ) F (λ) − C(λ)) (F (λ) + G(λ))−1 =

(24) = A(λ) − (A(λ) G(λ) + C(λ)) (F (λ) + G(λ))−1,

Δ(F, G) =
1

2π

∞∫
−∞

(A(λ) G(λ) + C(λ)) (F (λ) + G(λ))−1 F (λ)×

×(F (λ) + G(λ))−1(A(λ) G(λ) + C(λ))∗dλ+

+
1

2π

∞∫
−∞

(A(λ) F (λ) − C(λ))(F (λ) + G(λ))−1G(λ) (F (λ) + G(λ))−1×

(25) ×(A(λ) G(λ) + C(λ))∗dλ = 〈Bc , c〉 + 〈Ra , a〉 ,

where

C(λ) =

∞∫
0

�c(t)eitλdt, �c(t) = (B−1Da)(t),

〈Bc, c〉 =

∞∫
0

n∑
k=1

(Bc)k(t) ck(t) dt,
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〈Ra, a〉 =

∞∫
0

n∑
k=1

(Ra)k(t) ak(t)dt,

operators B,D,R are determined by the following relations

(Bc)(t) =
1

2π

∞∫
0

∞∫
−∞

�c(u)(F (λ) + G(λ))−1ei(u−t)λdλdu,

(Dc)(t) =
1

2π

∞∫
0

∞∫
−∞

�c(u)F (λ)(F (λ) + G(λ))−1ei(u−t)λdλdu,

(Rc)(t) =
1

2π

∞∫
0

∞∫
−∞

�c(u)F (λ)(F (λ) + G(λ))−1G(λ)ei(u−t)λdλdu.

From the preceding formulas we can conclude that the following theorem
holds true.
Theorem 6.1. Let �ξ(t) = {ξk(t)}T

k=1 and �η(t) = {ηk(t)}T
k=1 be uncorrelated

multidimensional stationary stochastic processes with the spectral density
matrices F (λ) = {fij(λ)}T

i,j=1 and G(λ) = {gij(λ)}T
i,j=1 that satisfy the min-

imality condition (1). Let condition (22) be satisfied. The value of the
mean-square error Δ(h(F, G), F, G) and the spectral characteristic h(F, G)

of the optimal linear extrapolation of the functional A�ξ =
∫∞
0

�a(t)�ξ(t)dt

which depends on the unknown values of the process �ξ(t) t ≥ 0, based on

observations of the process �ξ(t) + �η(t) for t < 0 are calculated by formulas
(24), (25).

Corollary 6.1. Let �ξ(t) = {ξk(t)}T
k=1 be a multidimensional stationary

stochastic process with the spectral density matrix F (λ) = {fkl(λ)}T
k,l=1 ,

that satisfies the minimality condition
∞∫

−∞

b(λ)(F (λ))−1b∗(λ)dλ < ∞

for a nontrivial vector function of the exponential type b(λ) =
∫∞

0
�α(t)eitλdt.

Let condition (22) be satisfied. The value of the mean-square error Δ(F )
and the spectral characteristic h(F ) of the optimal linear extrapolation of

the functional A�ξ =
∫∞
0

�a(t)�ξ(t)dt based on observations of the process �ξ(t)
for t < 0 are calculated by the formulas

(26) h(F ) = A(λ) − C(λ) (F (λ))−1,

(27) Δ(F ) =
1

2π

∞∫
−∞

C(λ) (F (λ))−1(C(λ))∗dλ = 〈Ba, a〉 = 〈c, a〉
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where �c(t) = (B−1a)(t),

(Ba)(t) =
1

2π

∞∫
0

∞∫
−∞

�a(u)(F (λ))−1ei(u−t)λdλdu.

Let the process �ξ(t) admits the canonical moving average representation

(28) �ξ(t) =

∫ t

−∞
d(t − u) d�ε(u),

where d(s) = {dij(s)}j=1,m

i=1,T
is a matrix function and �ε(u) = {εk(u)}m

k=1 is

a multidimensional stationary stochastic process with uncorrelated incre-
ments. In this case the spectral density matrix F (λ) = {fij(λ)}n

i,j=1 of the

process �ξ(t) admits the canonical factorization:

(29) F (λ) = ϕ(λ) ϕ∗(λ), ϕ(λ) =

∫ ∞

0

d(u)e−iuλdλ.

If the process �ξ(t) admits the canonical moving average representation (28),

then the optimal linear extrapolation of the functional A�ξ =
∫∞
0

�a(t)�ξ(t)dt

based on observations of the process �ξ(t) for t < 0 is determined by the
spectral characteristic h(F ) ∈ L−

2 (F ) that minimizes the mean square error

(30) Δ(h(F ), F ) = min
h∈L−

2 (F )
Δ(h, F ) = ‖Ad‖2 ,

where

(Ad)(t) =

∫ ∞

0

�a(t + u)d(u)du, ‖Ad‖2 =

∫ ∞

0

m∑
k=1

|(Ad)k(t)|2 dt.

Note, that ‖Ad‖2 < ∞ under condition (22). The spectral characteristic
h(F ) is calculated by the formula

(31) h(F ) = A(λ) − r(λ)ψ (λ), r(λ) =

∫ ∞

0

(Ad)(t)eitλdt.

Here ψ (λ) = {ψij(λ)}j=1,T

i=1,m
is a matrix function which satisfies the equation

ψ (λ)ϕ(λ) = Im,

where Im is the identity matrix of order m.

For the functional AL
�ξ =

∫ L

0
�a(t)�ξ(t)d(t) the value of the mean square

error and the spectral characteristics of the optimal linear extrapolation are
determined by the following formulas

(32) ΔL(h(F ), F ) = ‖ALd‖2 ,

(33) h(F ) = AL(λ) − rL(λ)ψ (λ),
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where

ALd(t) =

∫ L−t

0

�a(t + u)d(u)du, ‖AT d‖2 =

∫ L

0

m∑
k=1

|(ALd)k(t)|2dt,

AL(λ) =

∫ L

0

�a(t)eitλdt, rL(λ) =

∫ L

0

(ALd)(t)eitλdt.

As a corollary we can get the following formulas for calculation the mean
square error of the optimal linear extrapolation ξ̂k(L) of the unknown values
ξk(L), k = 1, . . . , T :

(34) E
∣∣∣ξk(L) − ξ̂k(L)

∣∣∣2 =

∫ L

0

m∑
l=1

|dkl(t)|2dt.

The following theorem holds true.

Theorem 6.2. Let �ξ(t) = {ξk(u)}n
k=1 be a stationary stochastic process that

admits the canonical moving average representation (28) with the spectral
density matrix F (λ) that admits the canonical factorization (29) and let
condition(22) be satisfied. The value of the mean-square error Δ(h(F ), F )

of the optimal linear extrapolation of the functional A�ξ from observations

of the process �ξ(t) for t < 0 is calculated by formula (30) (by formula (32)

if the functional AL
�ξ is estimated). The spectral characteristics h(F ) of the

optimal linear extrapolation can be calculated by formula (31) (by formula

(33) if the functional AL
�ξ is estimated).

7. Minimax-robust method of extrapolation

Taking into account relations (22)–(27), we can verify the following propo-
sitions.
Proposition 7.1. The spectral density matrices F 0(λ) ∈ DF , G0(λ) ∈ DG

are the least favorable in the class D = DF × DG for the optimal linear

extrapolation of the functional A�ξ if the density matrix functions (F 0(λ) +
G0(λ))−1, F 0(λ)(F 0(λ)+G0(λ))−1, F 0(λ)(F 0(λ)+G0(λ))−1G0(λ) determine
operators B0, D0, R0, which give solutions to the conditional extremum
problem

(35) max
(F, G)∈D

(〈
Da,B−1Da

〉
+ 〈Ra, a〉) =

〈
D0a, (B0)−1D0a

〉
+
〈
R0a, a

〉
.

The minimax-robust spectral characteristic h0 = h(F 0, G0) of the optimal

linear extrapolation of the functional A�ξ is calculated by formula (24) if the
condition h(F 0, G0) ∈ HD holds true.
Proposition 7.2. The spectral density matrix F 0(λ) ∈ DF which satisfies
the minimality condition is the least favorable in the class D = DF for the

optimal linear extrapolation of the functional A�ξ based on observations of



106 MIKHAIL MOKLYACHUK AND ALEKSANDR MASYUTKA

�ξ(t), t < 0, if the density matrix function (F 0(λ))−1 determine the operator
B0 which gives a solution to the conditional extremum problem

(36) max
F∈DF

〈
(B)−1a, a

〉
=
〈
(B0)−1a, a

〉
.

The minimax-robust spectral characteristic h0 = h(F 0) of the optimal lin-

ear extrapolation of the functional A�ξ is calculated by formula (26) if the
condition h(F 0) ∈ HD holds true.

The least favorable spectral density matrices F 0(λ) ∈ D, G0(λ) ∈ DG

and the minimax-robust spectral characteristic h0 = h (F 0, G0) ∈ HD form
a saddle point of the function Δ(h; F, G) on the set HD × D. The saddle
point inequalities hold true if h0 = h(F 0, G0) ∈ HD and (F 0, G0) gives a
solution to the conditional extremum problem

(37) sup
(F,G)∈D

Δ
(
h
(
F 0, G0

)
; F, G

)
= Δ

(
h
(
F 0, G0

)
; F 0, G0

)
,

where
Δ
(
h
(
F 0, G0

)
; F, G

)
=

=
1

2π

∞∫
−∞

(A(λ) G0(λ) + C0(λ)) (F 0(λ) + G0(λ))−1 F (λ)×

×(F 0(λ) + G0(λ))−1(A(λ) G0(λ) + C0(λ))∗dλ+

+
1

2π

∞∫
−∞

(A(λ) F 0(λ) − C0(λ))(F 0(λ) + G0(λ))−1G(λ)×

×(F 0(λ) + G0(λ))−1(A(λ) G0(λ) + C0(λ))∗dλ.

This conditional extremum problem is equivalent to the unconditional ex-
tremum problem

(38) ΔD(F, G) = −Δ(h(F 0, G0); F, G) + δ((F, G)|D) → inf,

where δ((F, G)|D) is the indicator function of the set D = DF × DG.
The following propositions hold true.

Proposition 7.3. Let (F 0, G0) be a solution to the conditional extremum
problem (37). The spectral density matrices F 0(λ) ∈ DF , G0(λ) ∈ DG are
the least favorable in the class D = DF ×DG and the spectral characteristic
h0 = h(F 0, G0) is minimax-robust for the optimal linear extrapolation of the

functional A�ξ if the condition h(F 0, G0) ∈ HD holds true.
Proposition 7.4. The spectral density matrix F 0(λ) ∈ DF is the least
favorable in the class DF for the optimal linear extrapolation of the func-

tional A�ξ based on observations of �ξ(t), t < 0, if F 0(λ) admits the canonical
factorization

(39) F 0(λ) =

[∫ ∞

0

d0(t)e−itλdt

]
·
[∫ ∞

0

d0(t)e−itλdt

]∗
,
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where d0(t) is a solution to the conditional extremum problem

(40) ‖Ad‖2 → max, F (λ) =

[∫ ∞

0

d(t)e−itλdt

]
·
[∫ ∞

0

d(t)e−itλdt

]∗
∈ D.

The process �ξ(t) in this case admits the canonical moving average represen-
tation

(41) �ξ(t) =

∫ t

−∞
d0(t − u)d�ε(u).

The minimax spectral characteristic h0 = h(F 0) is calculated by the formula
(31) under the condition h(F 0) ∈ HD.
Proposition 7.5. The spectral density matrix F 0(λ) ∈ DF is the least fa-
vorable in the class DF for the optimal linear extrapolation of the functional

AL
�ξ based on observations of �ξ(t), t < 0, if F 0(λ) admits the canonical

factorization

(42) F 0(λ) =

[∫ L

0

d0(t)e−itλdt

]
·
[∫ L

0

d0(t)e−itλdt

]∗
,

where d0(t), 0 ≤ t ≤ L, is a solution to the conditional extremum problem

(43) ‖ALd‖2 → max, F (λ) =

[∫ L

0

d(t)e−itλdt

]
·
[∫ L

0

d(t)e−itλdt

]∗
∈ D.

The process �ξ(t) in this case admits the canonical moving average represen-
tation

(44) �ξ(t) =

∫ t

t−L

d0(t − u)d�ε(u).

The minimax spectral characteristic h0 = h(F 0) is calculated by the formula
(33) under the condition h(F 0) ∈ HD.

8. Least favorable spectral densities in the class DU
V × Dε

Consider the problem of minimax extrapolation of the functional A�ξ

based on observations �ξ(t) + �η(t), t < 0, under the condition that spectral
density matrices F (λ), G(λ) of the multidimensional stationary processes
�ξ(t), �η(t) are from the set of spectral density matrices DU

V × Dε, where

DU
V =

⎧⎨
⎩F (λ)

∣∣∣∣∣∣V (λ) ≤ F (λ) ≤ U(λ),
1

2π

∞∫
−∞

F (λ)dλ = P1

⎫⎬
⎭ ,

Dε =

⎧⎨
⎩G(λ)

∣∣∣∣∣∣G(λ) = (1 − ε)G1(λ) + εW (λ),
1

2π

∞∫
−∞

G(λ)dλ = P2

⎫⎬
⎭ ,

where V (λ), U(λ), G1(λ) are given fixed spectral density matrices, W (λ)
ia an unknown spectral density matrix, and expression B(λ) ≥ D(λ) means
that B(λ) − D(λ) ≥ 0 (positive definite matrix function). For the set
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DU
V × Dε from the condition 0 ∈ ∂ΔD(F 0, G0) we can get the following

relations which determine the least favorable spectral density matrices

(45) �a0(λ)�a0(λ)∗ = �α · �α∗ + Γ1(λ) + Γ2(λ);

(46) �b0(λ)�b0(λ)∗ = �β · �β∗ + Γ3(λ),

where

�a0(λ) =
(
(A(λ)G0(λ) + C0(λ))(F 0(λ) + G0(λ))−1

)T
,

�b0(λ) =
(
(A(λ)F 0(λ) − C0(λ))(F 0(λ) + G0(λ))−1

)T
.

The coefficients �α = (α1, . . . , αT )T , �β = (β1, . . . βT )T are determined by the
conditions

(47)
1

2π

∞∫
−∞

F 0(λ)dλ = P1,
1

2π

∞∫
−∞

G0(λ)dλ = P2.

The matrix functions Γ1(λ) ≥ 0, Γ2(λ) ≥ 0, Γ3(λ) ≥ 0 are determined by
the conditions

(48) V (λ) ≤ F 0(λ) ≤ U(λ), G0(λ) = (1 − ε)G1(λ) + εW (λ),

(49) Γ1(λ) = 0 if F 0(λ) ≥ V (λ), Γ2(λ) = 0 if F 0(λ) ≤ U(λ),

(50) Γ3(λ) = 0 if G0(λ) ≥ (1 − ε)G1(λ).

From these relations we can conclude that the following theorems hold
true.
Theorem 8.1. Let the spectral density matrices F 0(λ) ∈ DU

V , G0(λ) ∈ Dε

satisfy the minimality condition (1). Let condition (22) be satisfied. These
spectral density matrices F 0(λ), G0(λ) are least favorable in the class DU

V ×
Dε for the optimal linear extrapolation of the functional A�ξ if they satisfy
conditions (45)–(50) and determine a solution to the extremum problem
(35). The spectral characteristic h(F 0, G0) calculated by the formula (24)

is minimax-robust for the optimal linear extrapolation of the functional A�ξ.
Theorem 8.2. Let the spectral density matrix F (λ) be known and let spec-
tral density matrices F (λ), G0(λ) ∈ Dε satisfy the minimality condition (1).
Let condition (22) be satisfied. The spectral density matrix G0(λ) is least fa-
vorable in the class Dε for the optimal linear extrapolation of the functional

A�ξ if

G0(λ) = max
{
(1 − ε)G1(λ), �α−1(A(λ)F (λ) − C0(λ)) − G(λ)

}
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and (F (λ), G0(λ)) determine a solution to the extremum problem (35). The
spectral characteristic h(F, G0) calculated by the formula (24) is minimax-

robust for the optimal linear extrapolation of the functional A�ξ.

9. Least favorable spectral densities in the class D0.

Consider the problem of minimax extrapolation of the functional A�ξ

based on observations �ξ(t) for t < 0 under the condition that spectral den-
sity matrix F (λ) is from the set of spectral density matrices

D0 =

{
F (λ) :

1

2π

∫ ∞

−∞
F (λ)dλ = P

}
.

With the help of the Lagrange multipliers method we can find that solutions
to the conditional extremum problem (36) that determine the least favorable
density matrix F 0(λ) ∈ D0 of the maximal rank is of the form

(51) F 0(λ) = �β

[∫ ∞

0

(Ad)(t)eitλdt

]
·
[∫ ∞

0

(Ad)(t)eitλdt

]∗
�β∗.

The unknown �β = (β1, . . . , βn)� and {d(t), t ≥ 0} are determined by the
canonical factorization (39) of the density matrix F 0(λ) and the condition
F 0(λ) ∈ D0.
For solutions d = d(t), t ≥ 0 to the system of equations

(52) (Ad)(t) = �c d∗(t), t ≥ 0, �c = (c1, . . . , cn),

such that

(53)
1

2π

∫ ∞

0

d(t)d∗(t) dt = P,

the following equality holds true

(54) F (λ) =

[∫ ∞

0

d(t)e−itλdt

] [∫ ∞

0

d(t)e−itλdt

]∗

= �β

[∫ ∞

0

(Ad)(t)eitλdt

] [∫ ∞

0

(Ad)(t)eitλdt

]∗
�β∗.

Denote by νP
0 the maximal value of ‖Ad‖2, where d = {d(t), t ≥ 0} are

solutions to equation (52) that satisfy condition (53) and determine the
canonical factorization (39) of the density matrix of the maximal rank
F (λ), F (λ) ∈ D0. Denote by μP

0 the maximal value of ‖Ad‖2, where
d = {d(t), t ≥ 0} satisfy condition (53) and determine the canonical fac-
torization (39) of the density matrix F 0(λ) ∈ D0. If there exists a solution
d0 = {d0(t), t ≥ 0} to the equation (52) that satisfy condition (53) and

such that νP
0 = μP

0 = ‖Ad0‖2
, then the least favorable in D0 is the density

matrix of the maximal rank (39). The stationary process �ξ(t) in this case
admits the moving average representation (28). The minimax (robust) spec-

tral characteristics of the optimal linear extrapolationof the functional A�ξ
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is calculated by formula (31) since the functions A(λ) and r(λ) are bounded
and h(F 0) ∈ HD.

The following theorem holds true.
Theorem 9.1. If there exists a solution d0 = {d0(t), t ≥ 0} to equation

(52) that satisfy condition (53) and such that νP
0 = μP

0 = ‖Ad0‖2
, then the

least favorable in D0 for the optimal linear extrapolation of the functional

A�ξ is the density matrix of the maximal rank (39). If νP
0 < μP

0 , then the
least favorable in D0 density matrix is determined by conditions (39), (40).

The corresponding stationary process �ξ(t) in this case admits the moving
average representation (28). The minimax spectral characteristics h(F ) of
the optimal linear extrapolation is calculated by formula (31).

For the functional AL
�ξ the density matrix (51) is of the form

(55) F 0(λ) = �β

⎡
⎣ L∫

0

(ALd)(t)eitλdt

⎤
⎦
⎡
⎣ L∫

0

(ALd)(t)eitλdt

⎤
⎦

∗

�β∗.

In this case the equality holds true

rL(λ)r∗L(λ) =

[
L∫
0

(ALd)(t)eitλdt

] [
L∫
0

(ALd)(t)eitλdt

]∗
=

=

[
L∫
0

(ÃLd)(t)eitλdt

] [
L∫
0

(ÃLd)(t)eitλdt

]∗
,

where

(ÃLd)(t) =

t∫
0

�a(L − t + u)d(u)du.

For these reasons for all solutions d = {d(t), 0 ≤ t ≤ L} to equations

(56) (ALd)(t) = �cd∗(t), 0 ≤ t ≤ L, �c = (c1, . . . , cT ),

(57) (ÃLd)(t) = �bd∗(t), 0 ≤ t ≤ L, �b = (b1, . . . , bT ),

such that

(58)

L∫
0

d(t)d∗(t)dt = P,

the equality holds true

F (λ) =

⎡
⎣ L∫

0

d(t)e−itλdt

⎤
⎦
⎡
⎣ L∫

0

d(t)e−itλdt

⎤
⎦
∗

= �β rL(λ)r∗L(λ)�β∗.

Denote by νLP
0 the maximal value of ‖ALd‖2 =

∥∥∥ÃLd
∥∥∥2

, where d = {d(t),

0 ≤ t ≤ L} are solutions to equations (56), (57) that satisfy condition (58)
and determine the canonical factorization (29) of the density matrix F 0(λ).
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Denote by μLP
0 the maximal value of ‖ALd‖2, where d = {d(t), 0 ≤ t ≤ L}

satisfy condition (58) and determine the canonical factorization (29) of the
density matrix F 0(λ) with F 0(λ) of the form (55). If there exists a solution
d0 = {d0(t), 0 ≤ t ≤ L} to equation (56), or equation (57), that satisfy

condition (58) and such that νLP
0 = μLP

0 = ‖ALd0‖2
, then the least favorable

in D0 is the density matrix

(59) F 0(λ) =

⎡
⎣ L∫

0

d0(t)e−itλdt

⎤
⎦
⎡
⎣ L∫

0

d0(t)e−itλdt

⎤
⎦
∗

.

The following theorem holds true.
Theorem 9.2. If there exists a function d0 = {d0(t), 0 ≤ t ≤ L}, that

satisfy condition (58) and such that νLP
0 = μLP

0 = ‖ALd0‖2
, then the least

favorable in D0 for the optimal linear estimation of the functional AL
�ξ is

the density matrix (59). The corresponding stationary process �ξ(t) in this
case admits the moving average representation (44). If νLP

0 < μLP
0 , then the

density matrix (55), that admits the canonical factorization (42), is the least

favorable in D0. The vector �β and the function d0 = {d0(t), 0 ≤ t ≤ L} are
determined by conditions (43), (58). The minimax spectral characteristics

h(F ) of the optimal linear estimate of the functional AL
�ξ is calculated by

formula (33).
Example 4. Consider the problem for the functional

A1
�ξ =

1∫
0

�a(t)�ξ(t)dt,

where �ξ is a two-dimensional stochastic process. The least favorable in D0

for the optimal linear estimation of the functional A1
�ξ is the density matrix

F (λ) =

⎡
⎣ 1∫

0

d(t)e−itλdt

⎤
⎦ ·

⎡
⎣ 1∫

0

d(t)e−itλdt

⎤
⎦
∗

,

where the matrix function d = {dkj(t), 0 ≤ t ≤ 1; k, j = 1, 2} is a solution
to the conditional extremum problem

1∫
0

1∫
0

min(x,y)∫
0

�a(y)d(y − u)d∗(x − u)�a∗(x)dydx → max,

1∫
0

d(t)d∗(t)dt = P.
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The corresponding process �ξ(t) in this case admits the canonical moving
average representation of the form

�ξ(t) =

t∫
t−1

d(t − u)d�ε(u).

For more results on minimax-robust extrapolation of multidimensional
stationary processes in the case of observations without noise see article [16].
For the corresponding results for multidimensional stationary sequences see
article [15].

10. Conclusions

We propose formulas for calculation the mean square errors and the spec-
tral characteristic of the optimal linear estimate of the unknown value of the

functional AL
�ξ =

∫ L

0
�a(t)�ξ(t)dt which depends on the unknown values of a

multidimensional stationary stochastic process �ξ(t) based on observations of

the process �ξ(t) + �η(t) for t ∈ R\[0, L], where �η(t) is uncorrelated with �ξ(t)
multidimensional stationary process, and formulas for calculation the mean
square error and the spectral characteristic of the optimal linear extrapo-

lation of the unknown value of the functional A�ξ =
∫∞

0
�a(t)�ξ(t)dt which

depends on the unknown values of a multidimensional stationary stochas-

tic process �ξ(t) based on observations of the process �ξ(t) + �η(t) for t < 0
under the condition that spectral density matrices F (λ) and G(λ) of the

signal process �ξ(t) and the noise process �η(t) are known exactly. Formu-
las are proposed that determine the least favorable spectral densities and
the minimax-robust spectral characteristics of the optimal estimates of the
functionals for some classes D = DF ×DG of spectral density matrices un-
der the condition that spectral density matrices F (λ), G(λ) are not known,
but classes D = DF × DG of admissible spectral matrices are given.
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