© Н. Николов, Т. Колев, 2011

Университет сельского хозяйства, Пловдив, Болгария

ВЫРАЩИВАНИЕ ТВЕРДОЙ ПШЕНИЦЫ НА КИСЛЫХ ПОЧВАХ (PLANOSOL) С ПРИМЕНЕНИЕМ ЧЕРНОМОРСКИХ ГЛУБОКОВОДНЫХ ОРГАНО-МИНЕРАЛЬНЫХ ОСАДКОВ

Использование глубоководных органо-минеральных осадков (ГВОМО) в 2008-2010 г. в микрополевых условиях на коричневых выщелоченных почвах (Planosol) в количестве 20 г/кг показало, что кислотность почвы уменьшается от 4.8 до 6.8 единиц, а твердая пшеница (Triticum Durum), сорт "Белослава" увеличивает урожай зерна на 11.16% по сравнению с контролем.

Введение. Кислотность является важным фактором в плодородии почв, поскольку она непосредственно влияет на подвижность и усвоение питательных веществ и, следовательно, на рост и развитие растений. Большинство культур лучше всего растут на почвах со слабокислой и близкой к нейтральной реакцией — рН 6,0—7,0. Сильно кислая реакция почвы неблагоприятно сказывается на растениях, т.к. подвижные формы алюминия, марганца и других элементов полезны в малых количествах, но вредны в больших. В то же время она затрудняет питание растений такими важными элементами, как кальций, магний, фосфор и молибден. Это приводит к разрушению структуры почвы, ухудшению качества продукции растениеводства и низкой урожайности [1, 6].

На сельскохозяйственных землях с высокой кислотностью, где требуется выращивать важные сельскохозяйственные культуры, нейтрализация кислотности почвы является солидным резервом для повышения урожайности и качества продукции растениеводства. По литературным данным среди 46 млн га обрабатываемых земель в Болгарии 3,5 млн классифицируются как сильнокислые – рН 4,1-4,6, а 4,6-5,0 млн – как кислые рН 4,6-6 (следствие многолетнего употребления азотных удобрений, кислотных дождей, заболачивания почвы и т.д. [1,7]).

Для нейтрализации кислотности почвы в настоящее время в мировой практике используют природные и промышленные известковые мелиоранты, как ${\rm CaCO_3}$, гашеная известь, зола и т.д. К сожалению, они не могут обеспечить долгосрочную стабилизацию рН.

Глубоководные осадки Черного моря (ГВОМО) представляют собой уникальное явление природы. Специальные исследования показали их успешное применение в сельском хозяйстве для повышения плодородия почвы [2, 4, 5]. Пшеница — одна из наиболее важных зерновых культур не только в нашей стране. Ежегодно в Болгарии пшеницей засевают 11—12 млн га. Целью настоящей работы являлось изучение влияния ГВОМО на урожайность зерна твердой пшеницы, сорта "Белослава", культивируемой в коричневой выщелоченной почве (Planosol).

Материал и методы. Элементный анализ. Пробы ГВОМО, взятые с глубины 1200 м, были проанализированы на содержание К, P, Si, Ti, Al, Ca, Na, а также некоторых микроэлементов, как Fe, Mn, Mg, Cr, Mo, Cu, и тяжелых металлов Zn, Ni и Pb. Они были определены в виде оксидов металлов эмиссионной спектрометрии прибором Jobni Yvon Emission – JY 38 S (Франция). Количественные измерения проводились с помощью аппарата ICP (ПМС).

pH анализ. pH в водной вытяжке испытанных образцов был определен pH-метром модель OP-211 / 1, (ISO 10390).

Полевой эксперимент. В период 2008–2010 гг. на опытном поле Пловдивского аграрного университета был проведен двугодичный эксперимент с твердой пшеницей сорта "Белослава". Для этого коричневая выщелоченная почва (Planosol) была отобрана с глубины 0-40 см в окрестности деревни Златосел (Пловдивский район). Образец черноморского сапропеля, взятый с глубины 1200 м, сушат, размалывают в шаровой мельнице и просеивают через сито 1 мм. Сухой Planosol просеивают через сито 2 мм и перемешивают с сапропелем в количестве 20 г/кг. Смесь (вариант І) была помещена в емкость площадью 1 м^2 и глубиной 30 см. Почва периодически орошалась водой для поддержания высокой влажности. После инкубационного периода длительностью 30 дней была определена величина рН. Параллельно была установлена величина pH в контрольном варианте - Planosol без сапропеля. Эксперимент был проведен с трехразовым повторением, каждое из них на площади $0,33\,\mathrm{m}^2\,(100\,\mathrm{cm}\,\mathrm{x}\,33\,\mathrm{cm})$. Посев был сделан $10\,\mathrm{ноября}$, в каждом из повторений было 3 ряда семян, что соответствует плотности 500 шт/м². В течение вегетационного периода были сделаны все необходимые агротехнические мероприятия – подкормка аммиачной селитрой в начале марта и регулярный режим орошения. Урожай был собран 5 июля. Были установлены следующие биометрические показатели: высота центрального стебля, длина колоса, количество колосков в колосе, число зерен в колосе, масса зерна (г).

Содержание гумуса в проанализированных пробах определялось ускоренным методом [3]. Статистическая обработка данных была проведена по программе "BIOSTAT".

Результаты и обсуждение. Результаты элементного анализа сапропеля приведены в табл. 1.

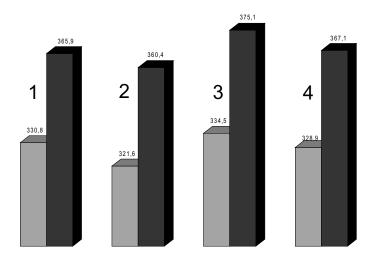
Tаблица 1 Химический состав ГВОМО: содержание макроэлементов и ППП (г/кг); содержание микроэлементов (г/т)

SiO_2	TiO_2	$A1_{2}0_{3}$	FeO	МπО	MgO	CaO	Na ₂ O	K_2O	ППП 1273 К
397,6	7,0	116,9	45,7	0,4	26,8	154,6	21,3	1.83	199,7
Сг		Мо	Zn		Mn	Pl	o	Cu	Ni
50,00		36,40	65,	82	383,42	28.	22	36.63	49.75

Данные показывают, что для некоторых важных для растительных культур микроэлементов, таких, как Cr, Mo, Mn, их содержание в сапропеле во много раз выше, чем в почвах. Это определяет сапропель как природ-

ное микроудобрение. Потеря при прокаливании при 1273 К, (табл. 1) – 199,7 г/кг, что указывает на большое содержание органических веществ. Содержание кальция выше в сравнении с большинством типов почв. Содержание тяжелых металлов – Zn, Ni, Pb – в допустимых пределах. Величина рН определялась три раза – после одного и двух месяцев инкубации сапропеля в почве и через 9 месяцев в конце вегетации. Природные сапропели почти нейтральны рН – 7,2, но после их введения в кислой почве начинается активизация обмена основных катионов – Ca $^{2+}$, Mg $^{2+}$ и др. При варианте (I) рН изменилась от 4,8 до 6,62 в первый месяц после инкубации и до 6,83 единиц в конце вегетации. На контроле рН колеблется в пределах 4,68-4,82 (табл. 2).

Таблица 2 Сравнительная характеристика Planosol, глубоководных органо-минеральных осадков и почвенной смеси Вариант 1


	pН	[(водная витяж	C	g. go		
Варианты	время по	осле начала опы	Содержание гумуса, г/кг	CaCO₃, г/кг		
	1	2	3	Tymyou, 1/101	1 / 101	
контроль	4,68	4,73	4,82	6,70	_	
ГВОМО		7,20	68,6	62,5		
Вариант 1	6,62	6,77	6,83	8,12	1,26	

Средние данные биометрических показателей двухлетних исследований приведены в табл. 3. Высота центрального ствола в варианте (I) на 4,3% более, чем в контрольных растениях.

 ${\it Taблицa} \ 3$ Биометрические показатели твердой пшеницы

Варианты	Репликации	Высота растений, см	Длина колоса, см	Количество колосков в колосе	Количество зерен в колосе	Маса зерна в колосе, г
Контроль	1 2 3	85 89 87	7,6 7,9 7,4	21,1 $22,5$ $21,9$	45,1 48,3 45,9	1,79 1,74 1,81
	среднее значение	87,0	7,6	21,8	46,4	1,78
Вариант 1	1 2 3	90 93 89	8,1 8,4 7,9	25,1 $28,1$ $26,5$	50,2 52,3 49,1	1,98 1,95 2,03
	среднее значение	90,7	8,1	26,6	50,5	1,99
Разница,%		4,3	6,58	22	8,84	11,8
GI	5%	2,94	0,42	4,56	3,95	0,18

Та же тенденция проявилась в других показателях, как длина колоса— на 6.58%, число колосков в колосе— на 22%, число зерен в колосе— на 8.84% и масса зерна в колосе (г) — 11.8% больше в сравнении с контрольным вариантом. Урожайность зерна, ц/га, в репликациях I, II, III и средняя урожайность проиллюстрированы на рис. 1. Данные показывают, что средняя урожайность в варианте (I) — 36.71 ц/га по сравнению с контролем — 32.89, т.е. на 11.16% больше.

Средняя урожайность зерна (ц/га) твердой пшеницы сорт "Белослава".

1-3 - репликации; 4 средняя величина

Выводы. 1. В количестве 20 г/кг ГВОМО нейтрализуют кислотность коричневой выщелоченной почвы (Planosol) в полевых условиях от 4,7-4,8 до 6,8 единиц.

- $2.~\Gamma BOMO$ увеличивают урожайность зерна твердой пшеницы, сорт "Beloslava" на 11,16% по сравнению с контролем.
- 3. ГВОМО могут быть использованы для нейтрализации кислых почв и как мелиорант для почв с низким содержанием питательных веществ.
- 1. Атанасов Ив. Деградация почв, процессы и возможные меры по устойчивому управлению земельными ресурсами в Болгарии, Изд. Минерва, София, 2006.
- 2. *Бминс Т.Ц.* Черноморский тонкий сапропель. Состав, генезис и перспективы его использования / автореф. дисс., 1994. 258 с.
- 3. Кононова М.М., Белчикова Н. Ускоренный метод определения состава гумуса в минеральных почвах, Почвоведение, $1961. \mathbb{N} 10.$
- 4. Димитров П, Димитров, Солаков Д. Применение Черноморских донных отложений в качестве природных экологических удобрений и для рекультивации истощенных почвы /Междунар. конф. "Геолого-минералогические ресурсы Черного моря", Киев, 24–28 ноября 1999 г. №. 182. 418.
- 5. *Dimitro P., Велев В.* Возможности использования глубоководных сапропелевых илов Черного моря для агробиологических и промышленных целей (англ) // София, Ocealology, 1988. В.17. с. 92-95.
- 6. Gorbanov С., Л. Станчев Agrohimia, София, Publ. Dionis, 2005.
- 7. *Коteva В. Артинова Н*. Влияние минеральных удобрений на содержание гумуса в Cambisol в Юго-Восточной Болгарии. Почвоведения, агрохимии, экологии, 1993. 28. С. 13-16

Використання глибоководних органо-мінеральних осадів у мікропольових умовах на коричневих вилужених ґрунтах (Planosol) у кількості 20 г/кг показало, що кислотність ґрунту зменшується від 4,8 до 6,8 одиниць, а врожай зерна твердої пшениці сорту "Белослава" збільшується на 11,16% порівняно з контролем.

Using the deap-water mineral deposits during the microfield experiments 2008-2010 for Planosol demonstrates that acceding minimizes from 4,8 to 6,8 and crop capacity wheat "Beloslava" increases by 11,16%.

Получено 10.09.2010 г.