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GALYNA REPETATSKA

MODIFIED ORTHOGONAL REGRESSION ESTIMATOR
IN THE QUADRATIC ERRORS-IN-VARIABLES MODEL

The quadratic functional measurement error model with equal error variances is
considered. The asymptotic bias of an orthogonal regression estimator is derived. A
modified estimator which has smaller asymptotic bias for small measurement errors
is presented.

INTRODUCTION

We consider a quadratic functional errors-in-variables model

() yi = ao&} + bo&i + co + 0i,

;=& +¢e, 1<i<n,
where (z;,v;), 1 <i < n, are observed, §; are unknown nonrandom parameters, ¢;, §; are
ii.d. normal error terms, and the vector By = (ao, bo, CO)T consists of the parameters
to be estimated. Noise variances are unknown.

The general discussion of the linear error-in-variables model is given in [4]. Concern-
ing the orthogonal regression estimator, it is proved in [1] that, for nonlinear errors-in-
variables models including (1), this estimator is inconsistent. In [2], a new corrected
estimator is presented which has smaller asymptotic bias. In [5], this estimator with
some changes was extended for a model, where all variables are vectors.

In this paper, the next term of the asymptotic bias is derived, and a new estimator is
proposed. A similar estimator can be used for other nonlinear regression models, but we
consider, for simplicity, only the quadratic regression function. In Section 1, the model
assumptions and an orthogonal regression estimator are presented. In Section 2, two
leading terms of the asymptotic bias of the estimator are derived. In Section 3, two
corrected estimators are proposed. The first estimator has been proposed in [2], another
one is original. It has less asymptotic deviation than the first one.

Some calculations were performed with the Mathematica 3.0 program. The proofs of
Theorems 1 and 2 are put in Appendix.

1. MODEL ASSUMPTIONS AND ORTHOGONAL REGRESSION ESTIMATOR

Let g(&,8) = a&? + b€ + ¢ be a regression function, where 3 = (a; b; ¢)T € ©
is the vector of the unknown parameters. In the paper, all the vector values are column
vectors. The derivatives are denoted by superscripts, and the vector derivatives are row
vectors. For example, ¢¢(¢,3) = 2a€ + b, and ¢° = (52; &; 1) is the derivative with
respect to the vector variable 3. The expectation of a random variable  is denoted by
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E ¢, and its variance is denoted by D ¢. A sequence {x,(0),n > 1} of random functions
is denoted by Op(1) if it is uniformly stochastically bounded.
Let G(z,y, 8,u)=(y — g(u. §))° + (z —w)*. Then q(z,y, §) := minyer G(2,y,u, §) is
the squared distance between a point (x,y) and a parabola y = g(u, 8),u € R.
Introduce the objective function Q(8) = %Z?:l q(zi,yi,8). Then the orthogonal

regression estimator B is defined as a measurable solution to the optimization problem:

Q(B)— min, 5 €O,

where O is a parameter set.

Assume that the following conditions hold:

(i) Bo €int®, O is a compact set in R3.

(i) [&]| < A, @ > 1, where A is unknown.

(iii) &;,6; ~ N(0,0?) i.i.d., i > 1, where o > 0 is the unknown parameter.

(iv) ap # 0, i.e., the true regression function is nonlinear.

Consider the problem of existence and uniqueness of a minimum point of the function
G(z,y,B,u), u € R.

1. Euzistence. The function G(z,y,5,u) is continuous and tends to 4+oo as u —
oo. Therefore, there exists at least one minimum point. Denote one of such points by
h(z,y, ). Note that, for any minimum point h,

q(x,y,B) = G(x,y, 8, Mz, y,5)).

2. Uniqueness. For a minimum point, G*(z,y, 5, u)|y=h(z,y,3) = 0 holds. Hence,
h(z,y, 3) is implicitly defined by the normal equation

2) Py, 0,1) =~ G = (5 — 9(h, 9)) 65(h, ) +2— h = 0.

Hence, h is a solution to the cubic equation (y —ah? — bh — c) (2ah + b)+x—h = 0. The
equation can have from one to three solutions, some of them can not be a global minimum

point. Note that F (£,9(¢,0),8,€) =0 and F* (&,9(&,5),6,¢) = -1 — [95(%5)]2 # 0.

Then the Implicit Functions Theorem implies the following: there exists a neighbourhood
Of a pOiIlt (fag(faﬂ)vﬂ)v UV(fvﬂ) = BV(f) X Bl/ (g(§7ﬂ)) X BV(ﬂ)? v = V(f?ﬂ)? SUCh
that h: U,(§,8) — R is a uniquely defined infinitely differentiable function. Since £
and (8 belong to compact sets, it is possible to find a common value vy > 0 for all
BeB, Ec[-A-1,A+1].

If the absolute value of both error terms ¢;, d; is less than vy, then there exists only
one perpendicular from (z;,y;) to any of the curves y = g(&,5), £ € R; 5 € U,y (Bo). Let
v be a fixed positive constant, v € (0, 1], such that U, (8y) C ©. We define the index set
B,(v)={i=T1,n:|g| <v,|6| < v} and divide the objective function into two parts:

QA=A+ @B =+ Y aww ) Y ey,

i€B, (V) i¢ B (v)

Here, Q1(f) is the leading term and @Q2(5) is the remainder one. Now we find an
asymptotic expansion of Q1(fy) and its derivatives in o2.

We will widely use the following statement.

Lemma 1. Let {¢;:i > 1} be an i.i.d. sequence with D¢ =1, and let {a; : i > 1} be a
bounded sequence of real numbers. Then

1 — E( — 1
— Qs — ——— i —O 1).
n;aC - ;a—i—\/ﬁ p(1)

The derivatives g°, g%, g%¢¢ are row vectors. For a couple of row vectors @, l;, we
define a symmetric matrix @ x b = %(C_I:Tb + l_JTEi). For a triple a,b,c, let @« b*c be a
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cubic matrix corresponding to a symmetric trilinear form which acts on a vector ¥ as
(@ ) (b,7)- (. 7).
Define the following functions:
MEB) = e VIES) = ey
IR TODE T

__945(¢°)? s 3a89°  ge ao see
CO = e T ar e zareyt

G (16° =2) oy 80

_ By oBE B 4 o8¢

W(¢,B) 1+ (95)2)4 1+ (95)2)39 g+ (1+ (95)2)9 g,
I 0 T T T 205 5, g8 g
T(g,@)_mg * g~ kg —Wg * go ok goo.

For an arbitrary function F(&, (), let F,, = %Z?Zl F(&,0B). In this way, we can
define the quantities k,, Vi, pn, Wa, Th.

Definition 1. A sequence of random vectors n,,(8,0) = 0,p (1), if, for each ¢ > 0,

lim sup P (sup 90 (B, v, 0)|| > c) =0.
Bee

o—0+ n>1

The following theorem gives the asymptotic expansions of the function Q1(3) and its
derivatives.

Theorem 1. Suppose that, for model (1), assumptions (i)-(iii) are satisfied. Then
(3) Q(B) = Q1(B) + 0®0,p (1),

4 2

ot €62
Q(BO) — 0,2 Z (g )

g
- =Y ————80) + —=0p(1) + 0% 0,p(1),
S (1 (o) @ Ve
(4) Www:¥m+#m+&m+&%ﬂu+%pﬂm
Qfﬁ(ﬂo) =2V, + 20'2Wn + O'4R2 + 0'40013(1) —+ %Op(l),
n

Q77 (By) = 6T + 0*R3 + 020,p(1) + %OF’(U’

Q%9%(3y) = Ry + 020, p(1) + %Op(lh

where Ry, Ro, R3, Ry are bounded nonrandom terms.

The inconsistency of an orthogonal regression estimator was proved in [1] in the case
where k,, is separated from zero. Theorem 1 helps us to find two leading terms of the
asymptotic expansion of 3 — 3y in powers of o2.

2. ASYMPTOTIC DEVIATION

Definition 2. A sequence of random vectors 7, (¢) = Oy p(1), if

Ve>03C>0: lir&_limsupP(Hnn(a)H >C)<e.

Definition 3. A sequence of random vectors 1, = d,p(1), if

h%l+ limsup P (|9, (o) > C) — 0, C — oc.
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Let M;(zi,yi), MP(&i,9(&, Bo)) be the points on the plane, I'z := {(£, (£, 3)) : € € R}
be a plot of the regression function with a parameter 3, p be the Euclidean metrics, and
p(M,T'3) be the distance between a point M and the plot I'g.

We need the following contrast condition:

(con) V&6>0: liminfu o infig_gyss = > iy p?(M2,Tg) > 0.

This condition makes it possible to estimate consistently the parameter (y by B, as
n — oo and o — 0.

Lemma 2 [2]. Suppose that, for model (1), the contrast condition (con) is satisfied.
Then a.s. Yy >0 oy >0 Iny =ny(w) YR 2n, Vo <oy ||Bn— Bol <.
This implies that B, — Bo = oop(1).

Denote the minimal eigenvalue of a matrix A by Amin(A4). To find the asymptotic

deviation of the estimate, we need the following assumption:
(v)  liminf,— 00 Amin(Vn) > 0.

Theorem 2. Suppose that, for model (1), conditions (i)-(v) and (con) are satisfied.
Then

Bn = 60 + U2Zn + U4OO’P(1)7
Bn = 60 + U2Zn + U4an + U460P(1)7 (5)
where z, == — 3V, kY, ay = =1V, (pn + 22T Wy, 4 3T (20)?).

3. MODIFIED ESTIMATORS

We will construct consequently two estimators which have smaller asymptotic bias
than . We have to estimate the terms z, and a, of the asymptotic expansion in (3).
Let F'(,8), £ € R, 8 € O be an arbitrary twice differentiable function.

1) For F,, = 13" | F(&,80), we introduce the following estimator:

N 1< .
E, = E;F(xi,m-

Thus, we have the estimators of the terms k,, V,,,pn, Wy, T, in the form l%n, Vn, ete.
For o2, we have the estimator 62 := Q(3). Next, we have a new estimator of the
parameter (y:

~ A A2 ~ A~
ﬂn = ﬂn + %Vnilkn-

2) Define the more precise estimators of F}, and o2,

52 = 07 Q2(B) I Yr—11.T l - (9%)?
= Q) + == | Vs kn+n; TENPSE

(z:,8)
T, = L0 (ﬁn W2 + 3Tnz;§) .

no

Let 2, = -4V kY, z,=-1V,
A more precise estimator of [y is
B, =f— 5%, — 6*an.
Theorem 3. Suppose that conditions (i)-(v) and (con) hold for model (1). Then
1) B —Bo=0"6,p(1),

2) B, —fo=0c"6pr(l)
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Proof. We start with some auxiliary statements. In these statements, we suppose that
the conditions of Theorem 3 hold, the function F' is three times differentiable, and, for
some positive C, k, the inequality

IF2E B+ IFE B < CA+[EF), E€R, BeO, (6)
holds. We normalize the error terms to obtain standard normal variables:
é:iZEi/(L Sizéi/a. (7)

Proposition 1. 6% — 0% = ¢%0,p(1), &*—0*=0%0,p(1).

Proof. Theorem 1 states that Q(fo) = o° + 0*04p(1), and formula (11) from Appendix
implies that Q(3) — Q(6o) = o Oc,p( ). Hence, we obtain

0% — 62 = Q) + o*O,p(1) — Q(B) —U4OaP( ), and 3
ot —ot = (62— 0?) (6% +0?) = 010,p(1 ) (207 + (6% — 02)) = 0%0O,p(1). O

Proposition 2. F, = F,, 4+ 6,p(1).
Proof. F,, — F, = DI (F(x“ﬁAn) - F(xi,ﬁo)) + L3 (F(wi,80) — F(&, B0)) =
r1 + ro.

1) = 1 Z?—l Fﬁ(xlv )( ﬂo) = UQOUP(l)% Z?—l Fﬁ(xHB’L)v Bl € [ﬂ07ﬁn]7 and
C i C-2-1 &
ZF (z:, Bi)|| < —Z(|§i+si| +1)<C+

> (I&lF +o"Elk) <

i=1 i=1

< C (1 + 2tk 4 2k 16k Op (1 )) = 0p(1).
2)rg =230 F(&,Bo) ei =0 230 FE(&, Bo)éi = 0Op(1), similarly to ry. O
Proof of Statement 1) of Theorem 3. Theorem 2 states that

3 &QAflAT o’ —1,T 2~
ﬂ_ﬂ():?vn kn_TVn kn+000P(1)'

The functions k(¢, 3) and V' (€, 8) satisfy inequality (4). Hence,
52
b

2

R 2
VoET - %v,;lkg = 026,p(1). O

Proposition 3. F, — F,, = 0%0,p(1).

Proof. By the Taylor expansion
1 n
=Y F(xi,3)— =Y F(&,
- ; (s, 8 Z (&, Bo) =

+

3I}—‘
M:

( (24, 8) — F(%wﬁo))-i-

i=1

S|

( (wi7ﬁ0) - F(&ﬁo)) =: Ay 4 As.

i=1

We have A; = %Zf: (@i, B:)(Bn — Bo) = 010up(1) - L0 | FA(x4, B;), where
LS FA(xi, ;) = Op(1) similarly to ry from Proposition 2. Hence, A; = 626,p(1).
Next,

1« 1«
Ay == F(&.fo) et 5= > F(&6o) i+
i=1 i=1

1 & _
— N FY(E,Bo) €)= Ry + Ry + R
+ n.: (gvﬂo) g; 1+ Ro + 35
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where Rl = %Z?:l F£(§i7ﬁ0) cEp = 0+ %Op(l) = 0’2501:)(1);
Ry = 3 Y0, F(&, Bo) - €7 = G FSE + 2=0p(1) = S FE + 0%6,p(1);

o3 n ey o3 n — ~ ~
[Rsll < G220, (1 +[&l%)ed < G320, (142871 (|&]* + 0¥ [&il*) &]* = o%0p ().
Summarizing we have

LS P2, 8) = Fy + S F5 4 0%5,p(1) = F + S FE + 025,p(1). O

Proposition 4. 52 — 02 = 046, p(1).

Proof. Formulae (11) and A — z, = d,p(1) from the proof of Theorem 2 (see below)
imply that Q(3) — Q(Bo) = 0 (knzn + Vii(2n)?) + 0%6,p(1), whence
Q(Bo) = Q(B) — o* (L, V7 Ykr + 1k, Vo k) + 0%G,p(1) =
=2+ Tk, V, L 4 0%5,p(1).
We replace 02, k,, and V,, by their estimators. Then, by Propositions 1 and 2,
Q(Bo) = 62 + L& ken V' kY + 0%60p, (1)
and the second formula from the condition of Theorem 1 takes the form
o'~ (%)
Qo) =0 =13 s
An = (1+(99)?)
From the last two expansions, we obtain
4 [ 1 <& (gEE )2 N
=52+ (knvnlk,’f +=y —2 2 | . |+0%,p(1), where 6% = Q(3). O
! w2 o G
Proof of Statement 2) of Theorem 3.
Theorem 2 states that 8y = 3 — 022, — o*a,, + 0*6,p(1). The functions k, V, p, W, and
T satisfy inequality (6). Therefore, in view of Propositions 2 and 4, a, — a, = 6,p(1),
Zn — 2n = 0%0,p(1). Hence, 6%*a, — o*a, = 0%0,p(1), 5°2, — 022, = 0%6,p(1). Then
we obtain

@iy + o'o,p(1).

4

B, — Bo =622, — 02zn + 6%a, — otan = 0%6,p(1).

Theorem 3 is proved. [

APPENDIX

Proof of Theorem 1.
1) Proof of (3). We show that Q2(3) = 0%0,p(1). Consider a component of this sum:

a(@.y.8) = (y = g (h(z,y,0), )" + ( = h(z,9,8))* < (y = (& 9))° + (= — )" <
<2(y - 9(€.0))* +2(9(& 6o) = 9(€.9))° + (1= €)° < 26" + % + const.
Remember that &; and d; were defined in (7). We have

Q2(8) = % Z q(%i,yi,8) < Z (26% + €% + const) <

i¢ By (v0) i¢ Bn(vo)

S|

1 n
<= 24 g2 . 1> 1> )] =
< n;(% +e —|—const) I (lei] = v)+1(]6:] = v)]
n =

= <2S?+éf+const> [I(|51| > V/U)+I<|Si| > V/cr)]
i=1
Let us consider the expectations of the terms in the former expression by using the
following inequality: 1—Fy(x) < %fN(x), x > 0, where fy and Fi are, respectively, the
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standard normal density and the normal distribution function. Hence, P (|&;| > v/o) =

2
2(1—Fy(v/o)) < 22 \/%—ﬂefﬁ and then

2
FPEI(&] >v/o) &2 <o?- ,/6—" (2m) Ve,
v
Similar inequalities can be obtained for other terms, and we have finally
2
EQ2(B) < Coe™ 12 = C10%0(1), as ¢ — 0+. Hence, by the Chebyshev inequality
p <Q2(ﬂ) S C’) < EQ2(3) _ o(1)

pe e ¢ 0 o=
and Q2(3) = 00, p(1), where 0® can be replaced by any positive degree of o.

2) Now consider the case i € B, (v). We denote h; = h(z;, yi, Bo). We omit the index
i for the terms x;, y;, €;, 0;, h;. All these terms belong to a compact set for all i € B, (v).
Introduce A = h — £. Note that A = O (|e| + |9]) . Indeed,

A= (¢ =R <2[(€ )+ (¢ — 0] <2 +2 [(y — g(h o))’ + (@ = 1’| <

<2242 [(y — g(ﬁ,ﬂo))2 + (z— 5)2} = 4e% + 262

We write down the Taylor expansion for the regression function g. When some function
is taken at the point (&, betag), we write it without the argument. Then

9(h, o) = g+ g* A + 59°° A% = g + ¢°A + agA?,
9*(h, Bo) = ¢* + g**A = g* + 2aAA, 8)
9°(h, Bo) = ¢° + g™ A+ 397N, g%(h, o) = ¢”¢ + g"A.
We substitute it into (8) and obtain the equation for A:
(0 — g°A — agA?) (¢° +2a0A) +e —A =0 (9)
with the unknown parameters £ and 5y = (ao, bo, co)T. The equation has a unique solu-
tion A = A(g, d), for any i € B, (v). The function A = A(e, d) is infinitely differentiable

for |e|] < v,]d] < v, and we can find its Taylor expansion. For an arbitrary function
s(e, d), we denote the k-th term of the expansion by s;. Then

A=A+ +86+0 (M +[0]7), Av= Y cVelol.
itj=k
Here, A} is a polynomial of ¢ and § with the coefficients depending of ¢¢ and ag.
Substituting (8) in (9), we find Ay as
(3g° +€) + 2a0A8 — 3agg°A* — 2a3A% = ((¢°)* +1)A &

A (6g° +¢) + 2a0AS — 3agg*A? — 2a2A3
- (9°)* +1 '
Hence,
A, — (595 +e€ - 2&0A15 — 3(1095A%
ECOEESE (P
An — 2&0A25 - 6aogéA1A2 - QQ(Q)A:{
’ (g8 +1 ’
A4 _ 2&0A35 - 3aog§(A§ + 2A1A3) - 6CL(2)A%A2
(g9 +1 '

Similarly, one can find As and Ag.
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3) We now find the Taylor expansions of ¢, ¢, ¢?® and ¢%? at the point (z,y, o) as
functions of ¢ and § and their expectations. The expectations of odd terms are zeros,
and those of even terms are certain functions of o, &, Gy.

a) Consider q(z,y, 5o):
a(z,y, Bo) = (y — g(h, o)) + (x = h)* = (§ — g°A = 395 A?) + (e = A)? =
= q2(£,6) + q3(2,6) + qua(e,0) + O([e]” + [8]°), where
@2(2,6) = (6 — g°A1)? + (e — Ar)?,
qa(g,0) = (QSAQ + %Q&Aff —2(6— ggAl)(ggAg + gffAlAg).
The expectations of these terms are E g2(¢, 6) = 02, E q4(¢,0) = —%2(955)2 (1+ (95)2)73.

b) Consider ¢°(z,y, Bo).
qﬁ(x7y7ﬁ) = Gﬁ(x7y767 u)|u:h + Gu(x7y767 u)|u:h . hﬁ(x7y76) =

=—-2(y—g(h,PB)) gﬁ(h7B)7 because G*|,—p, = 0.
From (8), we obtain
¢®(z,y,50) = (6 — g*A — 3¢5 A?) (g7 + g% A + 1g7¢A?), whence

0 = (2050 + g€(A2 + 20, A)) P + (395 AZA, + 205 A2 — 2(6 — 29 A1) Ay) g%+
+ (%gffAil — A1 A(25 — 395A1)) gﬁﬁﬁ'

The expectations of the expansion terms are Egb(e,0) = o2k(¢,50), Edl(e,6) =

U4p(€a ﬂo)
¢) Consider ¢°(z,y, o).

4P (z,y, B) = GO8 + (G)" 1P = GPB — (GP) " @GP (Gue)=t, P = —(Gm) LGP,
We write down the expansion terms of G, G#*, and G** at the point (z,v, Bo, h):
Gy, Bo, h) = 29° T (h, fo)g" (R, Bo).
Gy =29""g% G5 =2019% T g™ + 4 (97 + 7€) + 247 (97 % g7
G (,y, Bo, h) = 29° (. B0)g” (h, Bo) — 2(6 = g(h, o)) g” (h o),
Go' =29%¢", GV =29 A1g” — (5 —2¢°A1)g™,
Ggu =2¢%Ay9% +2 (2g5A2 + %g&A%) 9" — (20 — 3g° A1) AP,
Gy, Fo.h) = 2 (1 + (9°(h, Bo))* = (y — g(h. Bo))g** (h. o)) .
Ge =2 (1+(g%)?), G =2¢% (3g°A1 —6), GY" =60 (¢°As + 1g*AY).
Then the Taylor expansion of (G¥*)~! is
@) = ghe (1- (G + 5) + (8 + 5
whence three first terms of the expansion are

2
) +0(eP +157) ).
uu\— uu\— wu\— G wu\ — quu\ 2 GQuv
(@5t = G (@ = o @ = e ((8R) - ).
The terms of degrees 0 and 2 for ¢%%(z,y, By) are as follows:
u u £)2
qgﬁ = Ggﬁ - G(}Jw (Gg )TGg =2 (1 - 1£L£?(g)§)2> gﬁTgﬁ = 1+(2g§)29ﬁTgﬁ =2V(&, Bo);
6" =G5 — (GG + GG+ GG ) (G -

(GG T (@ — (TR gt
The expectation of ¢5° is E¢5”(e,6) = 202W (€, fo).
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d) Consider ¢°8%(z,y, Bo). The third order derivatives of G at the point (z,y, 3,u)
are as follows:
GPBE =0, GOPv =2 (gPT g% + g% TgP) (g, G = (66505) |(up)s
GPwn = (2955 + 265668 + 205 9% — (y — 9) 956 |(u.5), and
hP = —(Gue)~1 (GPPY + 2GPv RS + G . (WP THP)), as a derivative of the implicit
function. Differentiating the function ¢°(z,y, 8) = G#8 + GP* - hP, we have
q7PP = GPPP 1 GPPY s 1P + 1P« GP w hP + GPY  hPP = —3(Gv™) ™ (GPP" % GPY) +
+3(GY) 2 (G7 G GIY) — (G PG (GP x GP  GPY)

It can be easily found from the above-written that

6% (gt 12¢¢
a6 = it 5975975 g7 = =975 g7 g7 = 6T (¢, o)
(1+(g9)%)° (1+(9%)?)
(Remember that the notation @ b € was given just after Lemma 1).
4) Proof of the statements of Theorem 1. The first of them has been already proved,
and the rest ones are easily inferred from the formulas stated above. We derive expansion

(4) for Q7 (Bo):
Q=% 3 o i o) ZAH— SSO(el 1), Av= 3 g (e b,

i€B, (V) i€B, (V) i€EBy, (V)

We use Lemma 1 several times. Start with A;. The term ¢! (¢, 6) is a linear form of
¢ and 0 with bounded coefficients. It follows from (ii) that, for arbitrary ¢, 1 <14 < n,
2(g; — i)
Ble. §) = —2(8: — aAq(e:.6)) ¢f = LA VApN}
q1 (517 1) ( [ g 1(517 1)) g a (95)2 + 1 g

To apply Lemma 1, we divide A; into two sums:
I 1
== > dl (@i yi Bo) — - > @ (@i,yi Bo) =: S1 — Sa,
=1 i¢ Bn(v)

where S7 = \/LEOp(l), and S = 0%0,p(1) like a sum in 1). Other Aj can be expanded
in a similar way. Consider Ag separately. Introduce

6
6l . 76—
=0 " ZE% £, 0;) ch &, o) - EEL6T.

It is a bounded nonrandom vector depending only on (fi, Bo). Dividing Ag into two sums
similarly to A;, we obtain

qu €i,0;) + 0%0,p(1) = <R1+ O\/(ﬁl)

n

z:l

)+aﬁogp(1).

Now consider the last term. We get

\ S 0=l +187)

1€ By (V)

o7 & -
’ const— Z <|<§¢|7 + |(5i|7> =0'0p(1).
=1

The expansion of Q? (Bo) follows from the preceding formulas. In a similar way, we
can obtain the expansions for Q(fp), Qfﬁ7 Qfﬁﬁ, and QP9PP. The last two derivatives
are considered as the matrices corresponding to tri- and four-linear forms. O
Proof of Theorem 2.

1) We find an expansion of Q(). Consider the case where (3, € U,(8p). It occurs for
some o < 0¢, n = n. with probability at least 1 — ¢, where € can be an arbitrary positive
quantity.
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2) Write the Taylor expansion of Q1(8) in A8 = 8 — fo:
Q1(8) = Qu(50) + QF (Bo)AB + Q5 () (A9)* + 3.@57(8) (A0)° +

4 5 2
2°Q1(B)

AB)Y, .
41 9pt (AB)*, B € [Bo,fl
The derivative = 35— Is bounded because all the partial derivatives of Q1(3) are

bounded. Take the expansions from Theorem 1 and denote Ay = 02A3. We obtain
Q(B) — Q(Bo) = Q1(8) — Q1(Bo) + 0%0sp(1) = 0* (knAp + Vi (Ap)?) +
+ o9 (pnAga + Vo(Ap)? + Tn(Ago)?’) + 0% R(p) + rest(Ay),

where R(p) := R1Ap + Ra(Ap)? + R3(Ap)3 + Ra(Ap)?, A A

rest = o (14 |1Ag]") Gap (1) + |AG]{[ABIO()). Let Ap = 0*(3 - f) = *AB.

Since AS = 6,p(1), relation (10) yields that

M = knA@ + Vi (A@)? + 6,p(1) (1 4 [|Ag]%) < 0. (11)

Let ¢ = liminf,, oo Amin(Vy) > 0; ¢ > 0, as follows from (v). Then, for n > ng, V,,Ap? >
£ Ag|? and Ve > 030. >0V0o € (0,02 Ineo VYn2neo: P(|o,p(1)] < c/4) > 1—c.
Then (10) implies that, for o € (0,0¢], n > max{ng, e ¢},
SAQ|? + knA@ + 6,p(1) <O
with probability at least 1 — e. This implies Ap = O,p(1).
3) Write expansions (10) for A¢ and Ap = z, and subtract them. We recall that
Ap =O0,p(1) and z, are some nonrandom bounded vectors. We obtain

Q) — Q (o + 0°2n)
ol
= Vi (A@ — 20)% + (2Vi2n + k) (AQ — 2,) + 020,p(1) < 0.
Let z, = —2V,'kT. Then (12) changes into V,, (A — )’ = 0204,p(1), and condi-
tion (v) implies that A — z, = 00p(1) = d5p(1).
4) Let Ap = z, +t, Ap = 2, +t, where t = 06,p(1). Subtract expansions (10) for
zn and Ap = z, + t.

Lt):=0"% [Q(ﬂo +0%(zn + 1) — Q(Bo + 02zn)] =
knt + Vi ((zn + ) — 2121) +0? [Pt + Wh ((zn + ) — 2121) +Th ((zn +t)° — zi)]—i—
0 R(zn +t) — R(2)] + 0 4[rest(z, + 1) — rest(z,)],

where j, = pp + 2W,z, + 3T, 22. Since 2, +t = ng(l), we have
rest(z, +t) — rest(z) = 0%0,p(1). R(z, +1t) — R(2n) = 0,p(1) by the definition of R.
Then L(t) has an expansion

L(t) = Vot? 4+ 0%jipt + 0% (Wit + 3T, 20t + Tnt?) + 06,p(1). (13)
Prove that A@ = O,p(1), ie., £ = 025, where § = O, p(1). We have
Q(B)—Q(Bo+0%2n) = L(f) = 0 [Viu8® + jnd+ (Wyét + 3Tn2,8t + T,,8%1) +6,p(1)] < 0.

Hence,

(10)

= kn A + Vi (AR — kpzp — Vi (20)° + 0204p(1) =

(12)

Vod® < —jnd+60p(1) (1+ [|3]%),
and we have from (v) that § = Oy p(1).
5) The first leading term of the asymptotic deviation is 022,. Show that the second

leading term is o%a,. Note that a, is a bounded nonrandom vector. Then (13) implies
L(c%ay) = 0* (Vaal + jnan + 6op(1)) .
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From (11) and § = O, p(1), we obtain
L(c?8) = o* (V,8° + jns + 6op(1)) .
Subtracting these equalities, we have
L(023) — L(c%ay)

por =V, (8% —a2) + ju(8 — an) + 0op(1) =
= V(8 —an)? + (2Vhan + jn) (3 — an) + 6,p(1) < 0.
Remember that a,, = —%Vn_l Jn, then we have the inequality

Vn (§ - an)2 < 60P(1)7

whence § = a,, + 0,p(1). Theorem 2 is proved. O

CONCLUSION

We have found the second term of the asymptotic bias of the orthogonal regression
estimator. It is possible to find the subsequent terms in a similar way and then, with
sufficiently precise estimates, to construct more accurate estimators. The corrected es-
timators can be found for any nonlinear regression function in the way like that used in
the proof of Theorem 1.

The condition of normality of the error terms ¢;, d; is important for calculations. The
results can be extended to the non-normal case where the error terms have a symmetric
distribution with finite fourth-order moments. The deviation of the proposed estimators
is less than the deviation of 3 for sufficiently small but fixed o and n — oc.

We intend to test the quality of the proposed estimators by simulations and to consider
an implicit regression model. In such models, there are no dependent and independent
variables, and x; and y; appear in a symmetric way, see [3].
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