UDC 519.21

SERGEY YA. MAKHNO

THE LIMIT STOCHASTIC EQUATION CHANGES TYPE

We study the weak convergence of solutions of the Itô stochastic equation, whose coefficients depend on a small parameter. Conditions under which the limit process changes the type and will be a solution of the stochastic equation with a local time are obtained.

We study the solutions of Itô stochastic equations, whose coefficients depend on a small parameter $\epsilon > 0$. We investigate their convergence as $\epsilon \to 0$ without assuming the convergence of the coefficients themselves.Conditions under which these solutions converge in the weak sense to a solution of the Itô stochastic equation are known $[6,7]$. In [11], W.Rosenkrants considered the random processes $x^{\epsilon}(t)$ as solutions of the Itô stochastic equations

$$
x^{\epsilon}(t) = x + \frac{1}{\epsilon} \int_0^t b\left(\frac{x^{\epsilon}(s)}{\epsilon}\right) ds + w(t).
$$

Let we suppose that $\int_{-\infty}^{\infty} b(x)dx \neq 0$. The results of [11, Theorems 1 and 3] show that the limit process $x(t)$ does not possess the Itô stochastic integral representation. By Le Gall [3 , Corollary 3.3], the limit process is a solution of the stochastic equation with a local time, or it is the skew Brownian motion in the terminology of Walsh. On the other hand, Portenko [10] considered the class of random processes he called as generalized diffusion processes. He proved [10, Theorem 3.4] that the random process $x(t)$ described above is also a generalized diffusion process, and it can be represented in integral form with the Dirac delta function in the drift coefficient [10, Corollary of Theorem 3.5]. Thus, if we have Itô stochastic equations with coefficients unbounded in the parameter ϵ , we may have another type of the equation for the limit processes. For a particular form of coefficients in the Itô equations, the same situation arises in $[4,10]$, and the limit process was classified as a generalized diffusion process. In the present paper, we consider a similar problem in the case where the coefficients are not assumed to be smooth and depend irregularly on a small parameter. Moreover, the coefficients may not be uniformly bounded in ϵ at certain points and tend to infinity as $\epsilon \to 0$ or may not have a limit at all. Let $(\Omega, \mathfrak{F}, \mathfrak{F}_t, P)$ denote the main probability space with filtration $\mathfrak{F}_t, t \in [0, T]$, R is the one-dimensional Euclidian space, $(w(t), \mathfrak{F}_t)$ are one-dimensional Wiener processes, and $(C[0, T], C_t), t \in [0, T]$, is the space of continuous functions $f(t)$ on the interval $[0, T]$. We use the following notations: $B_0(R)$ is the space of all measurable bounded functions with compact support on R, and $C_0^{\infty}(R)$ is a subspace of all infinitely differentiated functions from $B_0(R)$. The notations $L_2([0,T] \times R)$, $L_{2,loc}$, and $W_{2,loc}^{1,2}$ (the Sobolev space) have standard sense [5], and $|| \cdot ||_2$ is the norm in L_2 . For the weak convergence in $L_{2,loc}$, we use the symbol \rightarrow . The different positive constants are denoted by L.

Consider the one-dimensional Itô stochastic equations

$$
(1) \quad \xi^{\epsilon}(t)=x+\int_{0}^{t}(b^{\epsilon}(\xi^{\epsilon}(s))+g^{\epsilon}(s,\xi^{\epsilon}(s)))ds+\int_{0}^{t}(a^{\epsilon}(\xi_{\epsilon}(s))+A^{\epsilon}(s,\xi^{\epsilon}(s)))^{\frac{1}{2}}dw(s).
$$

2000 AMS Mathematics Subject Classification. Primary 60H10,60J60. Key words and phrases. Local time, stochastic equation, limit process.

The limit process for the processes $\xi^{\epsilon}(t)$ changes the Itô type and is a solution of the stochastic equation with a local time

(2)
$$
\xi(t) = x + \beta L^{\xi}(t,0) + \int_0^t g(\xi(s))ds + \int_0^t \sigma(\xi(s))dw(s),
$$

where $L^{\xi}(t,0)$ is the symmetric local time of the process $\xi(t)$ at the level 0. The symmetric local time for the continuous semimartingale can be defined in the following way. Let $X(t)$ be a continuous semimartingale with the canonical decomposition $X(t) = X(0) +$ $M(t) + A(t)$, where M stands for a continuous local martingale, and A is a continuous process of finite variation. Then its symmetric local time at the level a is given by the Tanaka formula

$$
L^{X}(t, a) = |X(t) - a| - |X(0) - a| - \int_{0}^{t} \text{sgn}(X(s) - a) dX(s),
$$

where

$$
sgnx = \begin{cases} 1, & \text{for } x > 0, \\ 0, & \text{for } x = 0, \\ -1, & \text{for } x < 0. \end{cases}
$$

Under conditions of the theorem proved below, Eq. (2) has unique weak solution by $[2, 1]$ Theorem 4.35].

Let $Du(x)$ denote the symmetric derivative of the function $u(x)$,

$$
Du(x) = \lim_{h \to 0} \frac{u(x+h) - u(x-h)}{2h},
$$

and the signed measure $n_u(dx)$ on (R, R) is the second derivative of $u(x)$ in the sense of distributions if, for any $\chi(x) \in C_0^{\infty}$,

$$
\int_R \chi''(x)u(x)dx = \int_R \chi(x)n_u(dx).
$$

For every convex real function $u(x)$, the generalized Itô formula

(3)
$$
u(X(t)) = u(X(0)) + \int_0^t Du(X(s))dX(s) + \frac{1}{2} \int L^X(t, y) n_u(dy)
$$

holds. Let

$$
u(x) = \begin{cases} u_1(x), & \text{for } x \le 0, \\ u_2(x), & \text{for } x \ge 0. \end{cases}
$$

Suppose that $u_1(x)$ and $u_2(x)$ are twice continuously differentiable functions for $x \in R$ such that $u_1(0) = u_2(0)$. Then

$$
Du(x) = \frac{u_2'(x) + u_1'(x)}{2} + \frac{u_2'(x) - u_1'(x)}{2}sgnx.
$$

$$
n_u(dx) = (u_2'(0) - u_1'(0))\delta_0(x)dx + N_u(x)dx,
$$

where $\delta_0(x)$ is the Dirac function at point 0 and

$$
N_u(x) = \frac{u_2''(x) + u_1''(x)}{2} + \frac{u_2''(x) - u_1''(x)}{2}sgnx.
$$

Let l and L be constants such that $0 < l \leq L < \infty$. We say that the couple of functions $(r, a) \in \mathcal{L}(\mathcal{L}, l)$, if the functions $r(x)$ and $a(x)$ are measurable functions, and there are the constants $L, l > 0$ such that

$$
|r(x)| + a(x) \le \mathcal{L}, \qquad a(x) \ge l.
$$

Let μ^{ϵ} , μ be the measures on $(C[0,T], \mathcal{C}_t)$ corresponding to the random processes $\xi^{\epsilon}(t)$ and $\xi(t)$, respectively. To indicate the weak convergence of measures, we use the symbol \implies . With the coefficients of Eq. (1), we connected the functions

$$
F^{\epsilon}(x) = \exp\left\{-2\int_0^x \frac{b^{\epsilon}(y)}{a^{\epsilon}(y)}dy\right\}, \qquad f^{\epsilon}(x) = \int_0^x F^{\epsilon}(y)dy.
$$

We introduce the following condition.

Condition (I).

- I_1 . For any $\epsilon > 0$, the functions $b^{\epsilon}(x)$, $g^{\epsilon}(t, x)$, $a^{\epsilon}(x)$, $A^{\epsilon}(t, x)$ are measurable functions, $l \le a^{\epsilon}(x) \le L$, $A^{\epsilon}(t, x) \ge 0$, and Eq. (1) has a weak solution.
- I₂. For any $x \in R$,

$$
\left| \int_0^x \frac{b^{\epsilon}(y)}{a^{\epsilon}(y)} dy \right| \le \mathcal{L}.
$$

 I_3 . There exist functions $r^{\epsilon}(x)$, $\alpha^{\epsilon}(t)$, $\alpha^{\epsilon}(t)$, and $h^{\epsilon}(t,x)$ such that $|r^{\epsilon}(x)| \leq L$, $|g^{\epsilon}(t,x)-r^{\epsilon}(x)|+(|b^{\epsilon}(x)|+1)A^{\epsilon}(t,x)\leq \alpha^{\epsilon}(t)+h^{\epsilon}(t,x),$

and

$$
\lim_{\epsilon \to 0} \left(||h^{\epsilon}||_2 + \int_0^T \alpha^{\epsilon}(t) dt \right) = 0
$$

 I_4 . There exists

$$
\leq f^{\epsilon}(x) = f(x) = \begin{cases} f_1(x), & \text{for } x \leq 0, \\ f_2(x), & \text{for } x \geq 0, \end{cases}
$$

where $f_1(x)$ and $f_2(x)$ are twice continuously differentiable monotonically increasing functions for $x \in R$ such that $f_1(0) = f_2(0)$.

By $\phi^{\epsilon}(x)$, we denote the function inverse to the function $f^{\epsilon}(x)$. Then

$$
\leq \phi^{\epsilon}(x) = \phi(x) = \begin{cases} \phi_1(x), & \text{for } x \leq 0, \\ \phi_2(x), & \text{for } x \geq 0, \end{cases}
$$

where $\phi_i(x)$ is the inverse function for $f_i(x)$, $i = 1, 2$. Set $\beta_1 = f'_1(0)$, $\beta_2 = f'_2(0)$.

Theorem. Let condition (I) be satisfied and

$$
\begin{aligned}\ni) &\leq \int_R \chi(y) \frac{1}{F^\epsilon(y) a^\epsilon(y)} dy = \int_R \chi(y) a(y) dy & \text{for any} \quad \chi \in B_0(R) \\
ii) &\leq \int_R \chi(y) \frac{r^\epsilon(y)}{a^\epsilon(y)} dy = \int_R \chi(y) r(y) dy & \text{for any} \quad \chi \in B_0(R),\n\end{aligned}
$$

iii) the couple of functions $(r + N_{\phi}(f), a) \in \mathcal{L}(L, l)$.

Then $\mu_{\epsilon} \implies \mu$, and

$$
\beta = \frac{\beta_1 - \beta_2}{\beta_1 + \beta_2}, \qquad \sigma(x) = \frac{1}{\sqrt{a(x)}}, \qquad g(x) = \frac{r(x)}{a(x)} + N_{\phi}(f(x)).
$$

To prove the theorem, we use Theorem 2.1 from [9]. For convenience, we present a complete formulation of this theorem for d=1.

Lemma (Theorem 2.1 [9]). Let $x^{\epsilon}(t)$ and $x(t)$ be solutions of the stochastic equations $x^{\epsilon}(t) = x^{\epsilon} + \int^{t}$ 0 $(\gamma^{\epsilon}(s, x^{\epsilon}(s)) + B^{\epsilon}(s, x^{\epsilon}(s)))ds + \int^{t}$ 0 $(q^{\epsilon}(s, x^{\epsilon}(s)) + Q^{\epsilon}(s, x^{\epsilon}(s)))^{\frac{1}{2}} dw(s)$ and

$$
x(t) = x + \int_0^t \gamma(s, x(s))ds + \int_0^t q(s, x(s))dw(s).
$$

Suppose that the couple $(\gamma^{\epsilon}, q^{\epsilon}) \in \mathcal{L}(L, l)$ and the functions $\gamma^{\epsilon}(t, x)$ and $q^{\epsilon}(t, x)$ satisfy the following conditions (V) and (N) .

Condition (V): There exists a function $V^{\epsilon}(t,x) \in W^{1,2}_{2,loc}$ such that

$$
V_1) \qquad \hat{\gamma}^{\epsilon} \stackrel{def}{=} : \gamma^{\epsilon} + \frac{1}{2} q^{\epsilon} \frac{\partial^2 V^{\epsilon}}{\partial x^2} \to \gamma;
$$

\n
$$
V_2) \qquad \lim_{\epsilon \to 0} \sup_{t \in [0,T], x \in D} |V^{\epsilon}(t, x)| = 0, \text{ for any bounded } D \in R;
$$

\n
$$
V_3) \qquad \lim_{\epsilon \to 0} \left\| \frac{\partial V^{\epsilon}}{\partial t} + \gamma^{\epsilon} \frac{\partial V^{\epsilon}}{\partial x} + \hat{\gamma}^{\epsilon} - \gamma \right\|_{2, loc} = 0.
$$

Condition (N): There exists a function $N^{\epsilon}(t, x) \in W^{1,2}_{2,loc}$ such that

$$
N_1) \qquad \hat{q}^e \stackrel{def}{=} : q^{\epsilon} + q^{\epsilon} \frac{\partial^2 N^{\epsilon}}{\partial x^2} \to q;
$$

\n
$$
N_2) \qquad \lim_{\epsilon \to 0} \sup_{t \in [0,T], x \in D} |N^{\epsilon}(t,x)| = 0, \text{ for any bounded } D \in R;
$$

$$
N_3) \qquad \lim_{\epsilon \to 0} \left\| \frac{\partial N^{\epsilon}}{\partial t} + \gamma^{\epsilon} \frac{\partial N^{\epsilon}}{\partial x} + \frac{1}{2} (\hat{q}^{\epsilon} - q) \right\|_{2, loc} = 0.
$$

Let the functions $(\gamma, q) \in \mathcal{L}(L, l)$. In addition, we assume that, for any bounded domain $D \in R$, the following conditions are satisfied:

$$
V_4) \lim_{\epsilon \to 0} \sup_{t \in [0,T], x \in D} \left| \frac{\partial V^{\epsilon}(t, x)}{\partial x} \right| = 0;
$$

$$
V_5) \sup_{t \in [0,T], x \in D} \left| \frac{\partial^2 V^{\epsilon}(t, x)}{\partial x^2} \right| \le L;
$$

$$
N_4) \lim_{\epsilon \to 0} \sup_{t \in [0,T], x \in D} \left| \frac{\partial N^{\epsilon}(t, x)}{\partial x} \right| = 0;
$$

$$
|\partial^2 N^{\epsilon}(t, x)|
$$

$$
N_5) \qquad \sup_{t \in [0,T], x \in D} \left| \frac{\partial^2 N^{\epsilon}(t, x)}{\partial x^2} \right| \le L.
$$

Suppose also that

$$
\begin{split} &|B^\epsilon(t,x)|+Q^\epsilon(t,x)\leq \alpha^\epsilon(t)+h^\epsilon(t,x),\\ &\lim_{\epsilon\to 0}\biggl(||h^\epsilon||_2+\int_0^T\alpha^\epsilon(t)dt\biggl)=0. \end{split}
$$

Then $x^{\epsilon} \implies x$.

It is known [7] that the limit coefficients in conditions (V), (N) are uniquely determined.

Proof of the theorem. Denote $\eta^{\epsilon}(t) = f^{\epsilon}(\xi^{\epsilon}(t))$. To use the result of the lemma, we apply the Itô formula for the process $\xi^{\epsilon}(t)$ and for the function $f^{\epsilon}(x)$. We have

(4)
\n
$$
\eta^{\epsilon}(t) = f^{\epsilon}(x) + \int_0^t (\gamma^{\epsilon}(\eta^{\epsilon}(s)) + B^{\epsilon}(s, \eta^{\epsilon}(s))ds + \int_0^t (q^{\epsilon}(\eta^{\epsilon}(s)) + Q^{\epsilon}(s, \eta^{\epsilon}(s))^{\frac{1}{2}}dw
$$

In (4),

$$
\begin{aligned} &\gamma^\epsilon(x)=F^\epsilon(\phi^\epsilon(x))r^\epsilon(\phi^\epsilon(x)),\\ &B^\epsilon(t,x)=F^\epsilon(\phi^\epsilon(x))(g^\epsilon(t,\phi^\epsilon(x))-r^\epsilon(\phi^\epsilon(x)))+\frac{1}{2}(F^\epsilon)^{'}(\phi^\epsilon(x))A^\epsilon(t,\phi^\epsilon(x)),\\ &q^\epsilon(x)=(F^\epsilon)^2(\phi^\epsilon(x)a^\epsilon(\phi^\epsilon(x)),\\ &Q^\epsilon(t,x)=(F^\epsilon)^2(\phi^\epsilon(x))A^\epsilon(t,\phi^\epsilon(x)). \end{aligned}
$$

Now we verify that the functions $\gamma^{\epsilon}, q^{\epsilon}$ satisfy conditions (V), (N) in the lemma and conditions V_4 , V_5 , N_4 , N_5 are valid for the functions $V^{\epsilon}(x)$ and $N^{\epsilon}(x)$. From condition i) of the theorem, we have

(5)
$$
\int_0^x \frac{1}{q^{\epsilon}(y)} dy = \int_0^{\phi^{\epsilon}(x)} \frac{1}{F^{\epsilon}(y) a^{\epsilon}(y)} dy \xrightarrow[\epsilon \to 0]{} \int_0^{\phi(x)} a(y) dy = \int_0^x a(\phi(y)) D\phi(y) dy.
$$

Denote

(6)
$$
N^{\epsilon}(x) = \int_0^x \int_0^y \left[\frac{1}{q^{\epsilon}(z) a(\phi(z)) D\phi(z)} - 1 \right] dz dy
$$

From (6), we get

$$
q^{\epsilon}(x) + q^{\epsilon}(x) \frac{d^2 N^{\epsilon}(x)}{dx^2} = \frac{1}{a(\phi(x))D\phi(x)}.
$$

From (6) and (5) , we have

$$
\leq \sup_{x \in D} \bigg(|N^{\epsilon}(x)| + \left| \frac{dN^{\epsilon}(x)}{dx} \right| \bigg) = 0.
$$

It is obvious that

$$
\sup_{x \in D} \left| \frac{d^2 N^{\epsilon}(x)}{dx^2} \right| \le \mathcal{L}.
$$

So, conditions (N_1) - (N_5) from the lemma are valid, and the limit coefficient equals

$$
q(x) = \frac{1}{a(\phi(x))D\phi(x)}.
$$

Reasoning similarly and using condition ii) in the theorem, we conclude that the function

$$
V^{\epsilon}(x) = 2 \int_0^x \int_0^y \left[\frac{r(\phi(z))}{q^{\epsilon}(z)a(\phi(z))} - \frac{\gamma^{\epsilon}(z)}{q^{\epsilon}(z)} \right] dz dy
$$

satisfies conditions (V_1) - (V_5) from the lemma with the limit coefficient

$$
\gamma(x) = \frac{r(\phi(x))}{a(\phi(x))}.
$$

For the functions $B^{\epsilon}(t, x)$ and $Q^{\epsilon}(t, x)$ from condition (I_3) , we have

$$
|B^\epsilon(t,x)|+Q^\epsilon(t,x)\leq \mathcal{L}(\alpha^\epsilon(t)+h^\epsilon(t,x)).
$$

Thus, $\eta^{\epsilon}(t) \implies \eta(t)$, where

(7)
$$
\eta(t) = f(x) + \int_0^t \gamma(\eta(s))ds + \int_0^t \sqrt{q(\eta(s))}dw(s).
$$

As follows from condition (I_2) , the limit $\leq f_{\epsilon}(x) = f(x)$ and $\leq \phi_{\epsilon}(x) = \phi(x)$ uniformly on the compact sets. From Theorem 1.5.5 [1], we conclude that $\xi^{\epsilon}(t) \implies \xi(t) = \phi(\eta(t)).$ Observing that $D\phi(f(x)) = 1$ for $x \neq 0$, we can rewrite Eq. (7) as

(8)
$$
\eta(t) = f(x) + \int_0^t \frac{r(\xi(s))}{a(\xi(s))} ds + \int_0^t \frac{1}{\sqrt{a(\xi(s))}} dw(s).
$$

Using formula (3) for the function $\phi(x)$ and for the process $\eta(t)$ from (8), we get the statement of the theorem by Lemma 1 [8]. The theorem is proved.

Consider the model example. Introduce the functions

$$
\alpha^{\epsilon}(t) = \frac{\epsilon^3 |2t - 1|}{[t(t - 1) + \epsilon^2]^2}, \ \ h^{\epsilon}(x) = \frac{\epsilon^{\frac{1}{8}}}{(2\pi\epsilon)^{\frac{1}{4}}} \exp\left\{-\frac{x^2}{4\epsilon}\right\}, \ \ \tau^{\epsilon}(t, x) = \alpha^{\epsilon}(t) + h^{\epsilon}(x),
$$

(9)

$$
\xi^{\epsilon}(t) = x + \frac{1}{\epsilon} \int_0^t b\left(\frac{\xi^{\epsilon}(s)}{\epsilon}\right) ds + \int_0^t \left[g\left(\frac{\xi^{\epsilon}(s)}{\epsilon}\right) + \tau^{\epsilon}(s, \xi^{\epsilon}(s)) \right] ds + \int_0^t \sigma\left(\frac{\xi^{\epsilon}(s)}{\epsilon}\right) dw(s).
$$

It is obvious that, for $t = 0$ or $t = 1$ or $x = 0$, the function $\tau^{\epsilon}(t, x)$ tends to infinity as $\epsilon \to 0$, but condition I_3 is valid.

Suppose that

$$
\left| \int_0^x \frac{b(y)}{\sigma^2(y)} dy \right| < const, \quad \int_{-\infty}^0 \frac{b(y)}{\sigma^2(y)} dy = B_1, \quad \int_0^\infty \frac{b(y)}{\sigma^2(y)} dy = B_2
$$

and that the limits

$$
\lim_{|x| \to \infty} \frac{1}{x} \int_0^x \frac{g(y)}{\sigma^2(y)} dy = A_1,
$$

$$
\lim_{|x| \to \infty} \frac{1}{x} \int_0^x \frac{dy}{\sigma^2(y)} = A_2 > 0
$$

exist. In this case, the conditions of the theorem are valid, and

$$
\beta_1 = \exp(2B_1), \beta_2 = \exp(-2B_2), \beta = th(B_1 + B_2), a(x) = \frac{1}{A_2}, r(x) = \frac{A_1}{A_2}, N_\phi(x) = 0.
$$

Then the limit process for Eq. (9) is

$$
\xi(t) = x + th(B_1 + B_2)L^{\xi}(t, 0) + \frac{A_1}{A_2}t + \frac{1}{\sqrt{A_2}}w(t)
$$

BIBLIOGRAPHY

- 1. P.Billingsley, *Convergence of probability measures*, Wiley, New York, 1968.
- 2. H.J.Engelbert, W.Schmidt., Strong Markov continuous local martingales and solutions of one dimensional stochastic differential equations.I, II, III, Math.Nachr., **143,144,151** (1989, 1989, 1991), 167-184, 241-281, 149- 197.
- 3. J.-F.Le Gall, One-dimensional stochastic equations involving local times of the unknown processes, Lecture Notes in Mathematics **1095** (1983), 51-82.
- 4. G. L. Kulinich, On necessary and sufficient conditions for the convergence of solutions of one dimensional diffusion stochastic equations with a non-regular dependence of coefficients on a parameter, Theory Prob. Appl. **27** (1982), no. 4, 795–802.
- 5. O.A.Ladyzhenskaya, V.A.Solonnikov, N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, AMS, Providence, RI., 1968.
- 6. R.Sh.Liptser, A.N.Shiryaev, Theory of martingales, Kluwer, Dordrecht, 1989.
- 7. S.Makhno, Convergence of diffusion processes, I, II, Ukr. Math. J. **44** (1992), 284 289, 1389 - 1395.
- 8. S.Makhno, Limit theorem for one dimensional stochastic equation, Theory Probab. Appl. **48** $(2002), 156 - 161.$
- 9. S.Makhno, Preservation of the convergence of solutions of stochastic equations under the perturbation of their coefficients, Ukr. Math. Bull. **1** (2004), 251 - 264.
- 10. N.I.Portenko, Generalized Diffusion Processes, AMS, Providence, RI., 1990.
- 11. Rosenkrants W., Limit theorems for solutions to a class of stochastic differential equations, Indiana Univ. Math. J. **24** (1975), 613 - 624.

INSTITUTE FOR APPLIED MATHEMATICS AND MECHANICS, R.LUXEMBURG STR. 74, DONETSK 83114, UKRAINE

E-mail: makhno@iamm.ac.donetsk.ua