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ON THE EXIT FROM A FINITE INTERVAL FOR THE

RISK PROCESSES WITH STOCHASTIC PREMIUMS

We consider the almost semicontinuous step-process ξ(t). The conditional character-
istic functions of the jumps of ξ(t) have the form E eiαξk /ξk > 0 = c(c − iα)−1.
For such processes, the boundary functionals related to the exit from a finite interval
are investigated.

The problems on the exit from a finite interval for the process ξ(t) (t ≥ 0, ξ(0) =
0) with stationary independent increments were considered by many authors (see, for
example [1, ch. IV, § 2]). In [1], the joint distributions of extrema and the distributions
of values of the process up to the exit from the interval were expressed in terms of rather
complicate series of the ”convolutions” of

Γ±(s, x, y) = E
[
e−sτ±(±x), γ±(±x) ≤ y

]
,

where

τ±(±x) = inf {t > 0 : ±ξ(t) > x} , γ±(±x) = ±ξ(τ±(±x)) ∓ x, x > 0.

Simpler relations for the Wiener processes are established in [1, p. 463] and in [2,
§ 27]. In [3] - [6], the mentioned problems were investigated for semicontinuous processes
ξ(t) (ξ(t) have jumps of one sign). For these processes, the distribution density of ξ(t) up
to the exit from the interval was represented [7], [8] in terms of the resolvent functions
Rs(x) (introduced by V.S. Korolyuk in [3]).

We consider the compound Poisson process

ξ(t) =
∑

k≤ν(t)

ξk,

where ν(t) is the Poisson process with rate λ > 0. The distributions of ξk satisfy the
next condition (F (x) is a cumulative distribution function)

(1) P {ξk < x} = qF (x)I {x ≤ 0} + (1 − pe−cx)I {x > 0} , c > 0, p + q = 1.

The process ξ(t) is the almost upper semicontinuous piecewise constant process. We
can represent ξ(t) as the claim surplus process ξ(t) = C(t) − S(t) with the stochastic
premium function

C(t) =
∑

k≤ν1(t)

ηk, ηk > 0, E eiαηk =
c

c − iα
, c > 0,

and with the process of claims S(t) =
∑

k≤ν2(t) ξ′k, ξ′k > 0. Here, ν1(t), ν2(t) are the
independent Poisson processes with rates λ1, λ2 > 0, λ1 + λ2 = λ (for details, see [8] ).
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Note that C(t) → 0 and ξ(t) → −S(t) as c → ∞, where −S(t) is a non-increasing
process.

Let Cc(t) be the process with the cumulant

ψc(α) = λc

(
c

c − iα
− 1
)

, λc = ac, a > 0,

then ψc(α) −→
c→∞ iαa, consequently Cc(t) −→

c→∞ at, and ξc(t) = Cc(t) − S(t) → ξ0(t) =

at−S(t), where the limit process ξ0(t) is the classical upper semicontinuous risk process
with the non-stochastic premium function C(t) = at.

Let θs be the exponentially distributed random variable (P{θs > t} = e−st; s, t > 0).
Then the randomly stopped process ξ(θs) has the characteristic function (ch.f.)

ϕ(s, α) = Eeiαξ(θs) =
s

s − ψ(α)
,

where

(2) ψ(α) = λp(c(c − iα)−1 − 1) + λq(ϕ(α) − 1), ϕ(α) =
∫ 0

−∞
eiαxdF (x).

Let us denote the first exit time from the interval (x − T, x), 0 < x < T , T > 0:

τ(x, T ) = inf {t > 0 : ξ(t) /∈ (x − T, x)} ,

and the events

A+(x) = {ω : ξ(τ(x, T )) ≥ x} , A−(x) = {ω : ξ(τ(x, T )) ≤ x − T } .

Then

τ(x, T )=̇
{

τ+(x, T ) = τ+(x), ω ∈ A+(x);
τ−(x, T ) = τ−(x − T ), ω ∈ A−(x).

Overshoots at the moments of the exit from the interval are denoted by the following
relations:

γ−
T (x) = x − T − ξ(τ−(x, T )), γ+

T (x) = ξ(τ+(x, T )) − x.

The main task of our paper is the finding of the following moment generating functions
(m.g.f.) of the functionals connected with the exit from the interval:

Q(T, s, x) = E e−sτ(x,T ),

QT (s, x) = E
[
e−sτ+(x,T ), A+(x)

]
,

QT (s, x) = E
[
e−sτ−(x,T ), A−(x)

]
,

V ±(s, α, x, T ) = E
[
eiαγ±

T (x)−sτ±(x,T ), A±(x)
]
,

V±(s, α, x, T ) = E
[
eiαξ(τ±(x,T ))−sτ±(x,T ), A±(x)

]
,

V (s, α, x, T ) = E
[
eiαξ(θs), τ(x, T ) > θs

]
,

Let us denote the extrema ξ±(t) = sup
0≤s≤t

(inf)ξ(s), ξ± = sup
0≤s<∞

(inf)ξ(s), the joint

distribution of {ξ(θs), ξ+(θs), ξ−(θs)}:
Hs(T, x, y) = P

{
ξ(θs) < y, ξ+(θs) < x, ξ−(θs) > x − T

}
= P {ξ(θs) < y, τ(x, T ) > θs} ,
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and

P±(s, x) = P
{
ξ±(θs) < x

}
, x ≷ 0, p±(s) = P

{
ξ±(θs) = 0

}
, q±(s) = 1 − p±(s);

ϕ±(s, α) = ±
∫ ±∞

0

eiαxdP±(s, x),

T±(s, x) = E
[
e−sτ±(x), τ±(x) < ∞

]
, x ≷ 0.

Lemma 1. For the process ξ(t) with cumulant (2), the main factorization identity is
represented by the relations

(3) ϕ(s, α) = ϕ+(s, α)ϕ−(s, α), �α = 0;

(4) ϕ+(s, α) =
p+(s)(c − iα)
ρ+(s) − iα

,

where ρ+(s) = cp+(s) is the positive root of Lundberg’s equation ψ(−ir) = s, s > 0.

(5) P
{
ξ+(θs) > x

}
= T +(s, x) = q+(s)e−cρ+(s)x, x > 0.

If m > 0 :

(6) lim
s→0

ρ+(s)s−1 = ρ′+(0) = m−1, lim
s→0

P−(s, x) = P
{
ξ− < x

}
, x < 0.

If m < 0 :

(7) lim
s→0

ρ+(s) = ρ+ > 0; lim
s→0

s−1P
{
ξ−(θs) > x

}
= E τ−(x), x < 0.

If σ2
1 = Dξ(1) < ∞ and m = λ

(
pc−1 − qF̃ (0)

)
= 0

(
F̃ (0) =

∫ 0

−∞ F (x)dx
)
, then

(8)
lim
s→0

ρ+(s)s−1/2 =
√

2
σ1

; lim
s→0

s−1/2P ′
−(s, x) = f0(x), x < 0,

f0(x) = k0
∂

∂x

(∫ ∞

0

P
{
ξ̃0(t) < x

}
dt

)
= −k0

∂

∂x
E τ0(x), x < 0;

where k0 = cσ1

(√
2
)−1

, τ0(x) = inf
{
t > 0 : ξ̃0(t) < x

}
, x < 0; ξ̃0(t) is the decreasing

process with the spectral measure

Π0(dx) = λq (cF (x)dx + dF (x)) , x < 0.

Proof. Relations (3) - (7) were proved in [7] - [8]. If m = 0
(
p = cqF̃ (0)

)
, then

ϕ(s, α) =
s(c − iα)

s(c − iα) − iαλ(p − qF̃ (α)(c − iα))
, F̃ (α) =

∫ 0

−∞
eiαxF (x)dx.

On the basis of the factorization identity (3) as s → 0, we get

1√
s
ϕ−(s, α) =

√
s

p+(s)
ρ+(s) − iα

s(c − iα) − iαλ
(
p − qF̃ (α)(c − iα)

) → f̃0(α),

f̃0(α) =
cσ1√

2
1

−λq
[(

F̃ (α) − F̃ (0)
)

c + ϕ(α) − 1
] =

cσ1√
2

1

−ψ̃0(α)
,

ψ̃0(α) =
∫ 0

−∞

(
eiαx − 1

)
Π0(dx), Π0(dx) = λq (cF (x)dx + dF (x)) , x < 0.
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Let’s denote
ϕ0(s, α) = E eiαξ0(θs) =

s

s − ψ̃0(α)
,

where ξ̃0(t) is the decreasing process with the cumulant ψ̃0(α). Since

cσ1√
2

ϕ0(s, α)s−1 → f̃0(α) =
∫ 0

−∞
eiαxf0(x)dx, s → 0,

we get that

f0(x) = k0
∂

∂x

(∫ ∞

0

P
{
ξ̃0(t) < x

}
dt

)
,

or

−f0(x) = k0
∂

∂x

∫ ∞

0

P {τ0(x) > t} dt = k0
∂

∂x
E τ0(x), x < 0.

Let’s introduce the set of boundary functions on the interval I ⊂ (−∞,∞)

L(I) =
{

G(x) :
∫

I

|G(x)|dx < ∞
}

and the set of integral transforms

R0(I) =
{

g0(α) : g0(α) = C +
∫

I

eiαxG(x)dx

}
.

Let’s denote the projection operations on R0((−∞,∞)) by the following relations:[
g0(α)

]
I

=
∫

I

eiαxG(x)dx,
[
g0(α)

]0
I

= C +
∫

I

eiαxG(x)dx,[
g0(α)

]
− =

[
g0(α)

]
(−∞,0)

,
[
g0(α)

]
+

=
[
g0(α)

]
(0,∞)

.

The main results of our paper are included in the following two assertions.

Theorem 1. For the process ξ(t) with cumulant (2), QT (s, x) has the form (0 < x < T )

(9) QT (s, x) = q+(s)e−ρ+(s)x

∫ 0

x−T

eρ+(s)ydP−(s, y)×

×
[
e−ρ+(s)T

∫ −T

−∞
ec(T+y)dP−(s, y) +

∫ 0

−T

eρ+(s)ydP−(s, y)

]−1

.

Theorem 2. For the process ξ(t) with cumulant (2), the joint distributions of{
τ+(x, T ), γ+

T (x)
}

and {τ+(x, T ), ξ(τ+(x, T ))} are determined by the relations

(10)

⎧⎪⎨⎪⎩
V +(s, α, x, T ) =

c

c − iα
QT (s, x), 0 < x < T,

V+(s, α, x, T ) = eiαxV +(s, α, x, T ) =
c eiαx

c − iα
QT (s, x).

The ch.f. of ξ(θs) before the exit time from the interval has the form

V (s, α, x, T ) = ϕ+(s, α) [ϕ−(s, α) (1 − V+(s, α, x, T ))][x−T,∞)

= ϕ+(s, α)
[
ϕ−(s, α)

(
1 − c eiαx(c − iα)−1QT (s, x)

)]
[x−T,∞)

,

(11)
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the corresponding distribution has the density (x − T < z < x, z �= 0)

(12) hs(T, x, z) =
∂

∂z
Hs(T, x, z) =

=
(

p+(s)P ′
−(s, z) − q+(s)ρ+(s)

∫ 0

z

eρ+(s)(y−z)dP−(s, y)
)

I {z < 0}+

+ ρ+(s)QT (s, x)
∫ 0

z−x

eρ+(s)(y−(z−x))dP−(s, y),

and the following atomic probability

P {ξ(θs) = 0, τ(x, T ) > θs} = P {ξ(θs) = 0} = p−(s)p+(s) =
s

s + λ
.

Proof of Theorem 1. From the stochastic relations for τ+(x, T ), γ+
T (x) (ξ = ξ1 has the

cumulative distribution function F1(x), ζ is the moment of the first jump of ξ(t)),

τ+(x, T )=̇
{

ζ, ξ > x,

ζ + τ+(x − ξ, T ), x − T < ξ < x,

γ+
T (x)=̇

{
ξ − x, ξ > x,

γ+
T (x − ξ), x − T < ξ < x,

we have the following equation for V +(s, α, x) = V +(s, α, x, T ):

(13) (s + λ)V +(s, α, x) =
λpc

c − iα
e−cx + λ

∫ x

x−T

V +(s, α, x − z)dF1(z), 0 < x < T.

If α = 0, then, from (13), we obtain the equation for QT (s, x)

(14) (s + λ)QT (s, x) = λpe−cx + λ

∫ x

x−T

QT (s, x − z)dF1(z), 0 < x < T.

Since P (A+(x)) = 1 for x < 0, we have the boundary conditions

QT (s, x) =
{

0, x > T,

1, x < 0.

After the replacement
Q T (s, x) = 1 − QT (s, x)

, relation (14) yields the equation for Q T (s, x) (0 < x < T )

(s + λ)Q T (s, x) = s + λF (x − T ) + λ

∫ T

0

Q T (s, z)F ′
1(x − z)dz,

which, after prolonging for x > 0, has the form

(15) (s + λ)Q T (s, x) = sC(x) + λ

∫ ∞

−∞
Q T (s, z)F ′

1(x − z)dz + C>
T (s, x),

C(x) = I {x > 0} , C>
T (s, x) = CT (s)e−cx, x > 0,

(16) CT (s) = λp
[
ecT − cQ ∗

s(T )
]
, Q ∗

s(T ) =
∫ T

0

ecxQ T (s, x)dx.

Let’s introduce the function Cε(x) = e−εxC(x), x > 0, and consider, instead of (15), the
equation for Yε(T, s, x) (ε > 0):

(17) (s + λ)Yε(T, s, x) = sCε(x) + λ

∫ ∞

−∞
Yε(T, s, x − z)dF1(z) + C>

T (s, x), x > 0.
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Denote

yε(T, s, α) =
∫ ∞

0

eiαxYε(T, s, x)dx, C̃ε(α) =
∫ ∞

0

eiαxCε(x)dx,

C̃T (s, α) =
∫ ∞

0

eiαxC>
T (s, x)dx.

By performing the integral transformation of (17), we obtain the equation

(s − ψ(α))yε(T, s, α) = sC̃ε(α) + C̃T (s, α) − [yε(α)ϕ(α)]−

or

(18) syε(T, s, α)ϕ−1(s, α) = sC̃ε(α) + C̃T (s, α) − [yε(α)ϕ(α)]− .

After using the factorization decomposition (3) and the projection operation [ ]+, relation
(18) yields

syε(T, s, α)ϕ−1
+ (s, α) =

[
ϕ−(s, α)

(
sC̃ε(α) + C̃T (s, α)

)]
+

or

(19) syε(T, s, α) = ϕ+(s, α)
[
ϕ−(s, α)

(
sC̃ε(α) + C̃T (s, α)

)]
+

.

By inverting relation (19), we obtain

(20) sYε(T, s, x) = s

∫ x

0

Bε(x − y)dP+(s, y) +
∫ x

0

B(s, x − y, T )dP+(s, y),

Bε(x) =
∫ x

−∞
e−ε(x−y)dP−(s, y) =

∫ 0

−∞
e−ε(x−y)dP−(s, y) =

= e−εxE eεξ−(θs),

B(s, x, T ) = CT (s)
∫ x−T

−∞
e−c(x−y)dP−(s, y), x > 0.

Taking into account that Cε(x) → I {x > 0} as ε → 0, Yε(T, s, x) → Q T (s, x) as ε → 0,
0 < x < T . So Eq. (20) yields

sQ T (s, x) = sP+(s, x) + p+(s)B(s, x, T ) +
∫ x

+0

B(s, x − z, T )P ′
+(s, z)dz.

Taking into account that

q+(s)ρ+(s)
∫ x

0

∫ z−T

−∞
e−c(z−y)dP−(s, y)e−ρ+(s)(x−z)dz =

=q+(s)ρ+(s)
∫ x−T

−∞
e−ρ+(s)x+cydP−(s, y)

∫ x

max(0,y+T )

e−cq+(s)zdz

=p+(s)
[∫ −T

−∞
ecy−ρ+(s)xdP−(s, y)+

+
∫ x−T

−T

eρ+(s)(y+T−x)−cTdP−(s, y) −
∫ x−T

−∞
e−c(x−y)dP−(s, y)

]
,

we have

sQ T (s, x) = sP+(s, x) + p+(s)CT (s)e−ρ+(s)x×

×
[∫ −T

−∞
ecydP−(s, y) +

∫ x−T

−T

e−cT+ρ+(s)(y+T )dP−(s, y)
]
.
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From the last equation, we can find CT (s) and Q ∗
s(T ) and then get (9).

Let’s note that QT (s, x) → P+(s, x) as T → ∞ and QT (s, x) → 0 as c → ∞. If we
consider, instead of ξ(t), the process ξc(t) = Cc(t) − S(t), then relation (9) yields

QT
c (s, x) = qc

+(s)E
[
eρc

+(s)(ξ−
c (θs)+T−x), ξ−c (θs) + T − x > 0

]
×

×
(
E
[
ec(ξ−

c (θs)+T ), ξ−c (θs) + T < 0
]

+ E
[
eρc

+(s)(ξ−
c (θs)+T ), ξ−c (θs) + T > 0

])−1

.

Taking into account that, for x > 0, P {ξ+
c (θs) > x} = qc

+(s)e−ρc
+(s)x −→

c→∞ e−ρ+
0 (s)x,

where ρ+
0 (s) is the positive solution of the equation

ψ0(−ir) := ar − λ2

(∫ 0

−∞
erxdF (x) − 1

)
= 0,

we get QT
c (s, x) → QT

∞(s, x) as c → ∞. If we denote

ξ0
±(t) = sup

0≤u≤t
(inf)ξ0(u),

then

QT
∞(s, x) = E

[
eρ+

0 (s)(ξ0
−(θs)+T−x), ξ0

−(θs) + T − x > 0
]
×

×
(
E
[
eρ+

0 (s)(ξ0
−(θs)+T ), ξ0

−(θs) + T > 0
])−1

=
∫ T−x

0

eρ+
0 (s)(T−x−y)dP

{−ξ0
−(θs) < y

}×(∫ T

0

eρ+
0 (s)(T−y)dP

{−ξ0
−(θs) < y

})−1

= Rs(T − x)R−1
s (T ),

where the last relation is the well-known formula (see [3]) for the upper semicontinuous
processes.

Proof of Theorem 2. The first relation in (10) follows from Eqs. (13) and (14). The
second relation follows from the first one. The first equality in (11) was proved in [9].
After inverting (11), we get

hs(T, x, z) =p+(s)
∂

∂z
P−(s, z)I {z < 0} + q+(s)ρ+(s)

∫ min{z,0}

x−T

e−ρ+(s)(z−y)dP−(s, y)−

− QT (s, x)
[
p+(s)

∂

∂z
P
{
ξ−(θs) + θ′c + x ≤ z

}
+

+ q+(s)ρ+(s)
∫ z

x−T

e−ρ+(s)(z−y)dP
{
ξ−(θs) + θ′c + x < z

}]
.

(21)

Using the integral transformation of (21) with respect to the distribution of θ′c, we get
formula (12).

Corollary 1. For the joint distribution {τ−(x, T ), ξ(τ−(x, T ))}, we have

(22) sE
[
e−sτ−(x,T ), ξ(τ−(x, T )) < z, A−(x)

]
=
∫ x

x−T

Π−(z−y)dHs(T, x, y), z ≤ x−T,

where Hs(T, x, y) is determined by its density (12) and Π−(x) =
∫ x

−∞ Π(dy), x < 0.
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The probability of the lack of exit (non-exit) from the interval (x − T, x) has the form

(23) P {τ(x, T ) > θs} = P
{
ξ−(θs) > x − T

}−
− QT (s, x)

[∫ −T

−∞
ec(z+T )dP−(s, z) + P

{
ξ−(θs) > −T

}]
.

The m.g.f. for τ(x, T ) and τ−(x, T ) are determined in the following way:

(24)
{

Q(T, s, x) = 1 − P {τ(x, T ) > θs} , 0 < x < T,

QT (s, x) = Q(T, s, x) − QT (s, x), 0 < x < T.

Proof. Formula (22) follows from [6, Theorem 7.3]. By substituting (12) in (22), we
obtain the relation in terms of QT (s, x) and the truncated distribution of ξ−(θs) + θ′c.
Taking into account that

P {τ(x, T ) > θs} =
∫ x

x−T

dHs(T, x, z) =

= P
{
ξ−(θs) > x − T

}− q+(s)
∫ 0

x−T

eρ+(s)(y−(x−T ))dP−(s, z)+

+ QT (s, x)

[∫ 0

−T

eρ+(s)(z+T )dP−(s, z) − P
{
ξ−(θs) > −T

}]
,

and using formula (9), we obtain (23) after some simple transformations. Substitut-
ing (23) into the first relation of (24), we find the m.g.f. of τ(x, T ), and then we can get
the m.g.f. of τ−(x, T ) (see the second relation in (24)).

On the basis of formulas (6) - (8), we can get the following statement about the limit
behavior of QT (s, x) and hs(T, x, z) as s → 0.

Corollary 2. The function h′
0(T, x, z) = lims→0 s−1hs(T, x, z) (x − T < z < x, z �=

0, 0 < x < T ) according to the sign of m has the following forms:
if m > 0

(25) h′
0(T, x, z) =

1
m

(
c−1 ∂

∂z
P
{
ξ− < z

}− P
{
ξ− > z

})
I {z < 0}+

+
1
m

QT (x)P
{
ξ− > z − x

}
;

if m < 0

(26) h′
0(T, x, z) =

(
−p+

∂

∂z
E τ−(z) + q+ρ+

∫ 0

z

eρ+(y−z)dE τ−(y)
)

I {z < 0}−

− QT (x)ρ+

∫ 0

z−x

eρ+(y−(z−x))dE τ−(y);

if m = 0

(27) h′
0(T, x, z) =

(
− ∂

∂z
E τ0(z) − cλ−1 + c

∫ 0

z

∂

∂y
E τ0(y)dy

)
I {z < 0}+

+ cQT (x)
(

λ−1 −
∫ 0

z−x

∂

∂y
E τ0(y)dy

)
.

The ruin probability
QT (x) = lim

s→0
QT (s, x)
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(according to the sign of m) is determined from (9) in the following way:
(28)

QT (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 0

x−T

dP
{
ξ− < y

}×
×
[∫ −T

−∞
ec(T+y)dP

{
ξ− < y

}
+
∫ 0

−T

dP
{
ξ− < y

}]−1

, m > 0,

q+e−ρ+x

(
1

λp+
−
∫ 0

x−T

eρ+y ∂

∂y
E τ−(y)dy

)
×

×
[

1
λp+

− e−ρ+T

∫ −T

−∞
ec(T+y) ∂

∂y
E τ−(y)dy−

−
∫ 0

−T

eρ+y ∂

∂y
E τ−(y)dy

]−1

, m < 0,

(
λ−1 −

∫ 0

x−T

∂

∂y
E τ0(y)dy

)
×

×
[
λ−1 −

∫ −T

−∞
ec(T+y) ∂

∂y
E τ0(y)dy −

∫ 0

−T

∂

∂y
E τ0(y)dy

]−1

, m = 0.

The distribution of ξ(τ−(x, T )) has the form

(29)
P
{
ξ(τ−(x, T )) < z, A−(x)

}
=

1
λ

Π−(z) +
∫ 0−

x−T

Π−(z − y)h′
0(T, x, y)dy+

+
∫ x

0+

Π−(z − y)h′
0(T, x, y)dy, z < x − T.

Corollary 3. For the process ξ(t) with the cumulant function

(30) ψ(α) = λp(c(c − iα)−1 − 1) + λq(b(b + iα)−1 − 1),

QT (x) is represented in the following way (0 < x < T ):
(31)

QT (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − q−eρ−(x−T )

)(
1 − q−c (c + ρ−)−1

e−ρ−T
)−1

, m > 0,

q+e−ρ+x
(
1 − b(ρ+ + b)−1eρ+(x−T )

) (
1 − b(ρ+ + b)−1q+e−ρ+T

)−1
, m < 0,

c(1 + b(T − x))
b + c + bcT

, m = 0.

If ξ(t) is a symmetric process (p = q = 1/2, b = c), then

QT (x) =
1 + c(T − x)

2 + cT
, QT (x) =

1 + cx

2 + cT
, (0 < x < T ).

Proof. Let’s note that the process with cumulant (30) is the almost upper and lower
semicontinuous process. Then, in addition to relations (4) - (5), we have

(32) ϕ−(s, α) =
p−(s)(b + iα)
ρ−(s) + iα

,

where −ρ−(s) = −bp−(s) is the negative root of the equation ψ(−ir) = s, s > 0,

(33) P
{
ξ−(θs) < x

}
= T−(s, x) = q−(s)eρ−(s)x, x < 0.



80 D. V. GUSAK AND E. V. KARNAUKH

If m > 0, then

(34) P
{
ξ−(θs) < x

} −→
s→0

P
{
ξ− < x

}
= q−ebp−x, x < 0, p−(s) −→

s→0
p− > 0.

Taking into account that p+(s)p−(s) = s (s + λ)−1, we have, for m < 0, q′−(s) =
−p′−(s) → −(λp+)−1 as s → 0. Hence,

(35) E τ−(x) = − ∂

∂s
T−(s, x)|s=0 =

1 − bx

λp+
, x < 0.

If m = 0, then we have, for ξ̃0(t), Π0(dx) = λ0be
bxdx, x < 0, λ0 = λq(c + b)b−1.

Moreover,

ξ̃−0 (t) = ξ̃0(t), p0
−(s) = P

{
ξ̃0(θs) = 0

}
=

s

s + λ0
.

Hence, the m.g.f. of τ0(x) has the form

T−
0 (s, x) = E e−sτ0(x) = q0

−(s)ebp0
−(s)x, x < 0.

Since (p0
−)′(s) = −(q0

−)′(s) → λ−1
0 as s → 0, we get

(36) E τ0(x) = − ∂

∂s
T−

0 (s, x)
∣∣
s=0

=
1 − bx

λ0
, x < 0.

Substituting formulas (34) - (36) into the corresponding relations of (28), we get (31).

Remark. We should note that it is easy to get the representation of the m.g.f. of the
functionals related to the exit from the interval for the almost lower semicontinuous
process η(t) (with the parameter b > 0, by considering that ξ(t) = −η(t)). Particularly,

QT (s, x) = q−(s)
∫ x

0

eρ−(s)(x−y)dP+(s, y)×

×
[∫ ∞

T

eb(T−y)dP+(s, y) +
∫ T

0

eρ−(s)(T−y)dP+(s, y)

]−1

.

Let ξ(t) be the almost upper semicontinuous piecewise constant process. Then ξ1(t) =
at + ξ(t), a < 0, is the almost upper semicontinuous piecewise linear process. For the
process ξ1(t) on the basis of the stochastic relations for τ+(x, T ),

τ+(x, T )=̇
{

ζ, ξ + aζ > x,

ζ + τ+(x − ξ − aζ), x − T < ξ + aζ < x,

we have the integro-differential equation for QT (s, x)

a
∂

∂x
QT (s, x) = λ

∫ x

x−T

QT (s, x − z)dF1(z) − (s + λ)QT (s, x) + λpe−cx, 0 < x < T.

Introducing the function Q T (s, x) = 1 − QT (s, x) and following the reasoning analo-
gous to that for the piecewise constant process ξ(t), we can get the representation of
the functionals related to the exit from the interval (x − T, x) for the piecewise linear
processes.

Two boundary-value problems for the integer-valued random walks are considered
in [10] and, for the process with stationary independent increments, are treated in [11].
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