УДК 547.789.1 + 547.853.7

СИНТЕЗ 2-ГЕТЕРИЛАМИНО-5-МЕТИЛТИАЗОЛОВ ГАЛОГЕНЦИКЛИЗАЦИЕЙ N-ГЕТЕРИЛ-N'-(2-ПРОПЕНИЛ) ТИОМОЧЕВИН

Ю.Л.Зборовский, В.В.Орысык, В.И.Станинец, М.В.Вовк

Институт органической химии НАН Украины 02094, г. Киев, ул. Мурманская, 5. E-mail: zborovsky@ioch.kiev.ua

Ключевые слова: 2-аминотиазолы; N-гетерил-N'-(2-пропенил)тиомочевины; гетероциклизация

На основе реакции электрофильной гетероциклизиции N-гетерил-N'-(2-пропенил)тиомочевин разработан метод синтеза 2-гетериламинотиазолов.

SYNTHESIS OF 2-HETERILAMINO-5-METHYLTHIAZOLES BY HETEROCYCLIZATION OF N-HETERYL-N'-(PROPENYL)THIOUREAS

Yu.L.Zborovsky, V.V.Orysyk, V.I.Staninets, M.V.Vovk

The synthesis of 2-heterylaminolthiazoles based on electrophilic heterocyclization of N-heteryl-N'-(2-propenyl)thioureas has been developed.

СИНТЕЗ 2-ГЕТЕРИЛАМІНО-5-МЕТИЛТІАЗОЛІВ ГАЛОГЕНЦИКЛІЗАЦІЄЮ N-ГЕТЕРИЛ-N´-(2-ПРОПЕНІЛ)ТІОСЕЧОВИН

Ю.Л.Зборовский, В.В.Орысык, В.И.Станинец, М.В.Вовк

На основі реакції електрофільної гетероциклізації N-гетерил-N´-(2-пропеніл)тіосечовин розроблено метод синтезу 2-гетериламінотіазолів.

Производные тиазола относятся к биологически активным веществам широкого спектра действия. В частности, 2-аминотиазол как структурный фрагмент входит в состав ряда медицинских препаратов [1], а также используется в качестве билдинг-блока в органическом синтезе для получения физиологически активных соединений [2].

Среди соединений, содержащих фрагмент 2-аминотиазола, найдены эффективные ингибиторы ряда специфических киназ – потенциальные противовоспалительные и антиаллергические средства. Установлено, что наиболее высокой активностью обладают производные 2-амино-N-(пиридин-2-ил)тиазола [3] и 2-амино-N-(пиридин-4-ил)бензотиазола [4].

N-гетерилзамещенные 2-аминотиазолы, как правило, получают либо введением гетерильного радикала в аминогруппу гетериламинов, либо формированием тиазольного ядра в гетероциклических тиомочевинах. В частности, известно [5], что нуклеофильное замещение хлора в 2хлортиазолах под действием натриевых солей гетероциклических аминов может служить методом получения N-тиазолилгетериламинов. Однако при этом целевые продукты образуются с низкими выходами, а реакция сопровождается значительным осмолением. Использование палладиевых катализаторов в реакции 2-хлорпиридинов и 2-хлорпиримидинов с 2-аминотиазолом позволяет проводить процесс в мягких условиях, при этом соответствующие N-гетерил-2-аминотиазолы образуются с хорошими выходами [6]. Аналогичные соединения также получают взаимодействием N-гетерилтиомочевин с α-галогенкарбонильными соединениями [7-9] или же конденсацией гетерилцианоаминов с о-аминотиофенолами [10]. Циклизацией N-гетерил-N'-фенилтиомочевин под действием брома или N-бромсукцинимида были синтезированы N-гетерил-2-аминобензотиазолы [11]. Удобным методом синтеза N-замещенных производных 2-аминотиазола может служить гетероциклизация N-замещенных N'-аллилтиомочевин под действием электрофильных реагентов [12-15].

В настоящей работе в качестве субстрата для электрофильной гетероциклизации использованы N-гетерил-N'-(2-пропенил)тиомочевины, а как циклизующие реагенты – йод, бром и сульфурилхлорид. Найдено, что N-(4,6-диметилпиримидин-2-ил)-N'-(2-пропенил)тиомочевина 1 под действием двукратного избытка йода в растворе этанола превращается в йодистоводородную соль 2-[(4,6-диметилпиримидин-2-ил)имино]-5-йодметилтиазолидина 2а, которая выделяется из реакционной смеси в виде комплекса с молекулой I_2 . Аналогичный продукт **2b** образуется в результате бромциклизации соединения 1 в растворе хлороформа. Использование же эквимолярных количеств йода или брома приводит к галогеноводородным солям 2d и 2e, выходы которых ниже, чем при избытке галогена.

Применение сульфурилхлорида в качестве циклизующего реагента позволяет получить с высо-

$$R = \frac{1}{N_3} = \frac{N_3}{N_3} = \frac{N_3}{N_3}$$

X = I (a, d); Br (b, e); CI (c). Y = HI+I₂ (a); HBr+Br₂ (b); HCI (c); HI (d); HBr (e)

Схема

ким выходом хлористоводородную соль 5-хлорметилтиазолидина **2c**.

Обработка диметилсульфоксидных растворов солей **2а-с** водным раствором сульфита натрия приводит к соответствующим основаниям **3a-с**, которые при нагревании с избытком ацетата натрия в растворе ДМСО отщепляют молекулу галогеноводорода и превращаются в 2-[(4,6-диметилпиримидин-2-ил)имино]-5-метилидентиазолидин **4**. С учетом ранее выявленной закономерности миграции экзоциклической двойной связи в азольное ядро [16, 17] осуществлена щелочная изомеризация соединения **4** в 2-амино-N-(4,6-диметилпиримидин-2-ил)-5-метилтиазол **5**, который можно получить также обработкой оснований **3a-с** гидроксидом натрия.

Йодциклизация N-(тиазол-2-ил)- 6 и N-(бензтиазол-2-ил)-N'-(2-пропенил)тиомочевин 7 приводит к образованию йодистоводородных солей 8а и 9а соответственно. Бромциклизация соединения 7 протекает аналогично йодциклизации и дает соль 9b, а в случае соединения 6 состав и строение продукта циклизации зависят от количества взятого в реакцию брома: при эквимолярных соотношениях регентов образуется соединение 8е, а при двукратном избытке брома процесс сопровождается бромированием тиазольного ядра и дает продукт 10е. Использование эквимолярного количества сульфурилхлорида приводит к образованию хлористоводородных солей 8c и 9c. Обработка солей 8a, 8c, 8e, 9a-c и 10e раствором сульфита натрия позволяет получать соответствующие основания 11а-с, 12а-с и 13b.

Состав и строение синтезированных соединений подтверждены данными элементного анализа и спектров ЯМР ¹Н. Физико-химические характеристики синтезированных соединений приведены в таблице.

Экспериментальная часть

Спектры ЯМР 1 Н получены на спектрометре Varian VXR-300 (300 МГц) в растворе ДМСО- d_6 с внутренним стандартом ТМС.

N-(4,6-Диметилпиримидин-2-ил)-N'-(2-пропенил)тиомочевина 1. Смесь 4,92 г (0,04 Моль) 2амино-4,6-диметилпиримидина и 7,0 мл (0,07 Моль) аллилизотиоцианата нагревали на водяной бане при температуре $80-82^{\circ}$ С в течение 15-18 час. Образовавшийся после охлаждения кристаллический продукт отфильтровали, промыли охлажденным этанолом и высушили при температуре $50-60^{\circ}$ С. Выход – 6,3 г (71%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5-йодметилтиазолидин гидройодид (комплекс с I₂) 2а. К 30 мл этанола добавили 0,444 г (2 ммоль) тиомочевины 1 и суспензию перемешивали при температуре 40-45°С до полного растворения осадка. После охлаждения до температуры 18-25°С к полученному раствору при перемешивании в течение 2,5-3 ч добавили из капельной воронки раствор 1,016 г (4 ммоль) йода в 50 мл этанола. Красно-коричневый раствор продолжали перемешивать еще 3-4 ч, а затем упарили при температуре 35-40°С и пониженном давлении. Маслообразный остаток растерли с 3-4 каплями этанола. Образовавшийся твердый продукт корич-

Таблица

Физико-химические характеристики соединений 1-13

Соеди-	Т.пл.,	Брутто-	% C,	% H,	% N,	% S,	% Hal,	C GMD 111 S
нение	°C	формула	найд./ выч.	найд./ выч.	найд./ выч.	найд./ выч.	найд./ выч.	Спектр ЯМР ¹Н, δ, м.д.
1	2	3	4	5	6	7	8	9
1	136-137	C ₁₀ H ₁₄ N ₄ S	53,71/ 54,03	6,12/ 6,35	25,15/ 25,20	14,21/ 14,42		2,39 с (6H, 2CH $_3$); 4,31 м (2H, С \underline{H}_2 CH=CH $_2$); 5,18 д (1H, J 10 Гц); и 5,26 д (1H, J 17 Гц) — =CH $_2$; 5,99 м (1H, CH $_2$ C \underline{H} =CH $_2$); 6,95 с (1H $_{\text{пиримидин}}$); 10,41 с (1H, NH); 11,59 уш. с (1H, NH)
2a	169-171	C ₁₀ H ₁₄ I ₄ N ₄ S	16,19/ 16,44	1,81/ 1,92		4,27/ 4,38	68,87/ 69,59	2,51 с (6H, 2CH ₃); 3,67 м (2H), 3,91 м (1H), 4,10 м (1H) и 4,34 м (1H) – 2CH ₂ и CH; 7,21 с (1H _{пиримидин}); 12,0 уш. с (NH)
2b	140-142	C ₁₀ H ₁₄ Br ₄ N ₄ S	21,75/ 22,14	2,35/ 2,58	10,04/ 10,33	5,69/ 5,90	58,49/ 59,02	$2,50$ с (6H, 2CH $_3$); 3,88 м (3H), 4,11 м (1H) и 4,38 м (1H) – 2CH $_2$ и CH; 7,21 с (1H $_{\text{пиримидин}}$); 10,41 уш. с (NH)
2c	155-157	C ₁₀ H ₁₄ Cl ₂ N ₄ S	40,56/ 40,95	4,62/ 4,79	18,89/ 19,11	10,60/ 10,92	23,90/ 24,21	$2,50$ с (6H, 2CH $_3$); 3,97 м (3H), 4,11 м (1H) и 4,34 м (1H) – 2CH $_2$ и CH; 7,19 с (1H $_{\text{пиримидин}}$); 10,91 уш. с (NH)
3a	150-151	C ₁₀ H ₁₃ IN ₄ S	34,05/ 34,48	3,52/ 3,74		9,05/ 9,20	36,21/ 36,47	$2,33$ с (6H, 2CH $_3$); 3,47 м (3H), 3,71 м (1H) и 3,96 м (1H) – 2CH $_2$ и CH; 6,78 с (1H $_{\text{пиримидин}}$); 9,64 уш. с (NH)
3b	154-155	C ₁₀ H ₁₃ BrN ₄ S	39,55/ 39,86	4,15/ 4,33	18,49/ 18,60	10,21/ 10,64	26,07/ 26,56	2,31 с (6H, 2CH $_3$); 3,57 м (1H), 3,73 м (3H) и 3,94 м (1H) – 2CH $_2$ и CH; 6,74 с (1H $_{\text{пиримидин}}$); 9,75 уш. с (NH)
3c	181-182	C ₁₀ H ₁₃ CIN ₄ S	46,25/ 46,78	4,87/ 5,07	21,52/ 21,83	12,11/ 12,48	13,49/ 13,83	2,30 c (6H, 2CH ₃); 3,74 м (4H) и 3,88 м (1H) – 2CH ₂ и CH; 6,73 с (1H _{пиримидин}); 9,61 уш. с (NH)
4	190-191	C ₁₀ H ₁₂ N ₄ S	54,36/ 54,52	5,62/ 5,49	25,39/ 25,43	14,61/ 14,56		2,33 c (6H, 2CH ₃); 4,52 c (2H, CH ₂); 5,21 c (2H, CH ₂); 6,77 c (1H _{пиримидин}); 10,2 уш. с. (NH)
5	231-232*	C ₁₀ H ₁₂ N ₄ S	54,08/ 54,52	5,13/ 5,49	25,15/ 25,43	14,48/ 14,56		2,33 c (3H, CH ₃); 2,37 c (6H, 2CH ₃); 6,76 с (1H _{пиримидин}); 7,05 с (1H _{тиазол}); 11,24 уш. с. (1H, NH)
6	128-129	C ₇ H ₉ N ₃ S ₂	42,01/ 42,20	4,33/ 4,53	20,92/ 21,10	32,04/ 32,16		4,24 м (2H, $C\underline{H}_2$ CH= CH_2); 5,15 д (1H, J 10 Гц) и 5,26 д (1H, J 17 Гц) — = CH_2 ; 5,94 м (1H, CH $_2$ C \underline{H} = CH_2); 7,14 д (1H $_{\text{тиазол}}$, J 4 Гц); 7,43 д (1H $_{\text{тиазол}}$, J 4 Гц); 9,76 уш. с (1H, NH); 11,69 уш. с (1H, NH)
7	170-171	C ₁₁ H ₁₁ N ₃ S ₂	52,93/ 53,00	4,37/ 4,43	16,55/ 16,86	25,49/ 25,71		4,28 м (2H, $C\underline{H}_2$ CH= CH_2); 5,18 д (1H, J 10 Гц) и 5,26 д (1H, J 17 Гц) — = CH_2 ; 5,96 м (1H, CH_2 C \underline{H} = CH_2); 7,28 м (1H); 7,42 м (1H) и 7,90 м (1H) — ArH; 10,00 уш. с (1H, NH); 12,03 уш. с (1H, NH)
8a	156-157	C ₇ H ₉ I ₄ N ₃ S ₂	11,42/ 11,88	1,15/ 1,27		8,89/ 9,06	70,59/ 71,83	3,61 м (3H), 3,87 м (1H) и 4,34 м (1H) – 2CH ₂ и CH; 7,27 д (1H _{тиазол} , J 4 Гц); 7,53 д (1H _{тиазол} , J 4 Гц); 9,50 уш. с (1H, NH)
8c	180-182	C ₇ H ₉ Cl ₂ N ₃ S ₂	30,55/ 31,11	3,15/ 3,33	15,10/ 15,55	23,22/ 23,70	26,42/ 26,30	3,83 м (1H), 3,98 м (3H) и 4,50 м (1H) – 2CH ₂ и CH; 7,40 д (1H _{тиазол} , J 4 Гц); 7,3 д (1H _{тиазол} , J 4 Гц); 10,08 уш. с (1H, NH)
8e	197-199	C ₇ H ₉ Br ₂ N ₃ S ₂	23,15/ 23,40	2,21/ 2,51	11,49/ 11,70	17,32/ 17,84	44,69/ 44,55	3,91 м (3H), 4,02 м (1H) и 4,60 м (1H) – 2CH ₂ и CH; 7.44 д (1H _{тиазол} , J 4 Гц); 7,69 д (1H _{тиазол} , J 4 Гц); 10,09 уш. с (1H, NH)
9a	170-172	C ₁₁ H ₁₁ I ₄ N ₃ S ₂	17,09/ 17,44	1,39/ 1,45		8,31/ 8,46	66,52/ 67,09	3,67 м (3H), 3,99 м (1H) и 4,39 м (1H) – 2CH ₂ и CH; 7,37 м (1H); 7,53 м (1H); 7,65 м (1H) и 7,99 м (1H) – ArH; 9,96 уш. с (1H, NH)
9b	162-164	C ₁₁ H ₁₁ Br ₄ N ₃ S ₂	23,05/ 23,21	1,85/ 1,94	7,18/ 7,38	11,10/ 11,26	56,19/ 56,20	3,92 м (3H), 4,06 м (1H) и 4,60 м (1H) – 2CH ₂ и CH; 7,43 м (1H); 7,54 м (1H); 7,65 м (1H) и 8,03 м (1H) – ArH; 10,52 уш. с (1H, NH)

Продолжение табл.

1	2	3	4	5	6	7	8	9
9с	183-186	C ₁₁ H ₁₁ Cl ₂ N ₃ S ₂	40,93/ 41,25	3,21/ 3,45	13,01/ 13,12	19,75/ 20,01	22,05/ 22,16	3,88 м (1H), 4,00 м (3H) и 4,45 м (1H) – 2CH ₂ и CH; 7,35 м (1H); 7,49 м (1H); 7,69 м (1H) и 7,97 м (1H) – ArH; 10,25 уш. с (1H, NH)
10e	103-105	C ₇ H ₈ Br ₃ N ₃ S ₂	18,76/ 19,18	1,65/ 1,83	9,33/ 9,59	14,25/ 14,61	54,9/1 54,79	3,85 м (3H), 4,00 м (1H) и 4,49 м (1H) – 2CH ₂ и CH; 7,69 с (1H _{тиазол}); 9,12 уш. с (1H, NH)
11a	149-150	C ₇ H ₈ IN ₃ S ₂	25,61/ 25,85	2,30/ 2,47		19,41/ 19,70	38,90/ 39,05	3,52 м (3H), 3,72 м (1H) и 4,07 м (1H) – 2CH $_2$ и CH; 7,09 д (1H $_{\text{тиазол}}$, J 4 Гц); 7,34 д (1H $_{\text{тиазол}}$, J 4 Гц); 8,55 уш. с (1H, NH)
11b	130-131	C ₇ H ₈ BrN ₃ S ₂	30,01/ 30,21	2,69/ 2,88	14,92/ 15,11	22,85/ 23,03	28,42/ 28,76	3,73 м (4H) и 4,10 м (1H) – 2CH ₂ и CH; 7,10 д (1H _{тиазол} , J 4 Гц); 7,35 д (1H _{тиазол} , J 4 Гц); 8,60 уш. с (1H, NH)
11c	128-129	C ₇ H ₈ CIN ₃ S ₂	35,59/ 35,97	3,19/ 3,44	17,60/ 17,99	27,05/ 27,42	14,98/ 15,19	3,83 м (4H) и 4.06 м (1H) – 2CH ₂ и CH; 7,08 д (1H _{тиазол} , J 4 Гц); 7,34 д (1H _{тиазол} , J 4 Гц); 8,51 уш. с (1H, NH)
12a	169-170	C ₁₁ H ₁₀ IN ₃ S ₂	34,85/ 35,20	2,52/ 2,68		16,91/ 17,09	33,41/ 33,85	3,62 м (3H), 3,81 м (1H) и 4,15 м (1H) – 2CH ₂ и CH; 7,20 м (1H); 7,35 м (1H); 7,62 м (1H) и 7,82 м (1H) – ArH; 9,12 уш. с (1H, NH)
12b	136-137	$C_{11}H_{10}BrN_3S_2$	39,95/ 40,24	2,88/ 3,06	12,55/ 12,80	19,30/ 19,52	24,30/ 24,37	$3,84$ м (4H) и 4,19 м (1H) – 2CH $_2$ и CH; 7,22 м (1H); 7,37 м (1H); 7,63 м (1H) и 7,83 м (1H) – ArH; 9,16 уш. с (NH)
12c	134-135	C ₁₁ H ₁₀ CIN ₃ S ₂	46,28/ 46,56	3,40/ 3,54	14,65/ 14,81	22,12/ 22,58	12,11/ 12,51	3,72 м (1H), 3,90 м (3H) и 4,15 м (1H) – 2CH ₂ и CH; 7,22 м (1H); 7,38 м (1H); 7,64 м (1H) и 7,83 м (1H) – ArH; 9,14 уш. с (NH)
13b	165-166	C ₇ H ₇ Br ₂ N ₃ S ₂	23,03/ 23,53	1,79/ 1,96	11,49/ 11,76	17,57/ 17,94	44,50/ 44,79	3,73 м (4H) и 4,14 м (1H) – 2CH ₂ и CH; 7.41 с (1H _{тиазол}); 8,85 уш. с (1H, NH)

^{* –} Т. пл. 230℃ [18]

невого цвета отфильтровали, промыли пентаном и высушили при температуре 40-50°C. Выход – 1,36 г (93%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5-бромметилтиазолидин гидробромид (комплекс с Br₂) 2b. К раствору 0,444 г (2 ммоль) соединения 1 в 15 мл хлороформа при температуре 18-25°С и непрерывном перемешивании в течение 2-3 ч добавляли из капельной воронки раствор 0,21 мл (4 ммоль) брома в 10 мл СНСІ₃. Полученный оранжевый раствор продолжали перемешивать еще 4-5 ч, а затем упарили при температуре 35-40°С и пониженном давлении. К маслообразному остатку добавили 2-3 капли ацетона и тщательно растерли. Образовавшийся твердый продукт оранжевого цвета отфильтровали и промыли пентаном. Выход – 0,99 г (92%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5- хлорметилтиазолидин хлорид 2с. К раствору 0,444 г (2 ммоль) соединения **1** в 15 мл хлороформа при температуре 18-25°С и непрерывном перемешивании в течение 2 ч добавили из капельной воронки раствор 0,16 мл (2 ммоль) сульфурилхлорида в 10 мл CHCl₃. Раствор перемешивали еще 2 ч, после чего упарили при температуре 35-40°С и пониженном давлении. Остаток растерли с 3-5 каплями ацетона. Через 3 сут. обра-

зовался бесцветный мелкокристаллический продукт, который отфильтровали и промыли пентаном. Выход – 0,55 г (95%).

Общий метод получения оснований За-с. К раствору 1 Моль соответствующей соли **2а-с** в смеси 20 мл этанола и 5 мл ДМСО при охлаждении (5- 10° С) и перемешивании в течение 2-3 ч добавили небольшими порциями 20-30 мл 20%ного водного раствора Na_2SO_3 . Через 2-3 ч образовавшийся осадок отфильтровали и тщательно промыли водой, после чего перекристаллизовали из этанола.

2-[(4,6-Диметилпиримидин-2-ил)имино]-5-йодметилтиазолидин За. Выход – 0,295 г (85%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5- бромметилтиазолидин 3b. Выход – 0,262 г (87%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5- хлорметилтиазолидин 3с. Выход – 0,202 г (79%).

2-[(4,6-Диметилпиримидин-2-ил)имино]-5-метилидентиазолидин 4. К раствору 1 ммоль соответствующего соединения 3а-с в 7 мл ДМСО добавили 0,328 г (4 ммоль) измельченного ацетата натрия и нагревали на водяной бане при 78-82°С в течение 2-3 ч, после чего охладили и добавили 70 мл воды. Образовавшийся через 5-6 ч осадок отфильтровали, промыли водой и перекристаллизовали из этанола. Получили бесцвет-

ный мелкокристаллический продукт. Выход – 0,11-0,14 г (49-61%).

2-Амино-5-метил-N-(4,6-диметилпиримидин-2-ил)тиазол 5.

А. К раствору 0,441 г (2 ммоль) соединения 4 в 8 мл ДМСО добавили раствор 0,16 г (4 ммоль) гидроксида натрия в 8 мл этанола. Смесь нагревали на водяной бане при 80-85°С в течение 1-1,5 ч, после чего охладили и добавили 50 мл воды. Образовавшийся через 5-6 ч осадок отфильтровали, промыли водой и перекристаллизовали из этанола. Получили бесцветный мелкокристаллический продукт. Выход – 0,215 г (49%).

Б. К раствору 2 ммоль соединения **3а-с** в 8-10 мл ДМСО добавили раствор 8 ммоль (для соединения **3a)** или 10 ммоль (для **3b,c**) гидроксида натрия в 10 мл этанола. Смесь нагревали на водяной бане (80-85°С) в течение 2 ч (для **3a)** или 4 ч (для **3b,c**). К охлажденному раствору добавили 50 мл воды. Образовавшийся осадок отфильтровали и промыли водой. Перекристаллизовали из этанола. Выход – 0,20-0,26 г (47-59%).

N-(Тиазол-2-ил)-N'-(2-пропенил)тиомоче- вина 6 получена аналогично соединению **1** нагреванием 2-аминотиазола с аллилизотиоцианатом в течение 4 ч. Выход – 83%.

2-[(Тиазол-2-ил)имино]-5-йодметилтиазолидин гидройодид (комплекс с I_2) 8а. К суспензии 0,399 г (2 ммоль) соединения **6** в 40 мл этанола при температуре 18-25°С и перемешивании в течение 5-6 ч добавили из капельной воронки раствор 1,016 г (4 ммоль) йода в 35 мл этанола. По мере прибавления раствора I_2 соединение **6** полностью растворилось, после чего постепенно образовался коричневый осадок продукта реакции. Перемешивание продолжали еще 15 ч. Осадок отфильтровали, промыли этанолом и высушили при температуре 50-60°С. Выход – 1,16 г (82%).

2-[(Тиазол-2-ил)имино]-5-бромметилтиазолидин гидробромид 8е. К суспензии 0,399 г (2 ммоль) соединения 6 в 20 мл хлороформа при температуре 18-25°С и перемешивании в течение 2-3 ч из капельной воронки добавили раствор 0,11 мл (2 ммоль) брома в 10 мл СНСІ₃. По мере прибавления раствора брома соединение 6 полностью растворилось, после чего постепенно образовался желтый осадок продукта реакции. Перемешивание продолжали еще 3 ч. Осадок отфильтровали, промыли хлороформом и высушили при температуре 50-60°С. Выход – 0,60 г (83%).

2-[(5-Бромтиазол-2-ил)имино]-5-бромметил- тиазолидин гидробромид 10е получен аналогично соединению **8е** при использовании двукратного избытка брома. Выход – 79%.

2-[(Тиазол-2-ил)имино]-5-хлорметилтиазолидин гидрохлорид (8с) получен аналогично соединению **8е** реакцией 2 ммоль соединения **6** с раствором 0,16 мл (2 ммоль) сульфурилхлорида в 10 мл CHCl₃. Выход – 75%.

Основания 11а-с и 13b получены аналогично соединениям **3a-c**.

- **2-[(Тиазол-2-ил)имино]-5-йодметилти-азолидин 11а.** Выход 72%.
- **2-[(Тиазол-2-ил)имино]-5-бромметилти- азолидин 11b.** Выход 68%.
- **2-[(Тиазол-2-ил)имино]-5-хлорметилти- азолидин 11с.** Выход 69%.
- **2-[(5-Бромтиазол-2-ил)имино]-5-бромметилтиазолидин 13b.** Выход 70%.

N-(Бензотиазол-2-ил)-N'-(2-пропенил)тио-мочевина 7 получена аналогично соединению **1** нагреванием **2**-аминобензотиазола с аллилизотиоцианатом в течение **3** ч. Выход – **85%**.

- **2-[(Бензотиазол-2-ил)имино]-5-йодметилтиазолидин гидройодид (комплекс с I_2) 9а.** Получен аналогично соединению **8а**. Выход 94%.
- **2-[(Бензотиазол-2-ил)имино]-5-бромметилтиазолидин гидробромид (комплекс с Вг₂) 9b.** Получен аналогично соединению **10e**. Выход 96%.
- **2-[(Бензотиазол-2-ил)имино]-5-хлорметилтиазолидин гидрохлорид 9с.** Получен аналогично соединению **8с**. Выход 81%.

Основания 12а-с получены аналогично соединениям **3a-c**.

- **2-[(Бензотиазол-2-ил)имино]-5-йодметил- тиазолидин 12а.** Выход 77%.
- **2-[(Бензотиазол-2-ил)имино]-5-бромметилтиазолидин 12b.** Выход 75%.
- **2-[(Бензотиазол-2-ил)имино]-5-хлорметилтиазолидин 12с.** Выход 74%.

Выводы

Показано, что N-гетерил-N'-(2-пропенил)тиомочевины под действием йода, брома или сульфурилхлорида образуют с высокими выходами соответствующие галоидводородные соли 2-гетерилимино-5-йодметилтиазолидина, которые могут использоваться в качестве синтонов для препаративного получения производных 2-гетериламинотиазолов.

Литература

- 1. Kearney P.C., Fernandez M., Flygare J.A. // J. Org. Chem. −1998. Vol. 63, №1. P. 196-200.
- 2. Bailey N., Dean A.W., Judd D.B. et al. // Bioorg & Med. Chem. Lett. 1996. Vol. 6, №12. P. 1409-1414.
- 3. Das J., Furch J.A., Liu C. et al. // Bioorg. Med. Chem. Lett. 2006. Vol. 16, №14. P. 3706-3712.

- 4. Das J., Moquin R.V., Lin J. et al. // Bioorg. & Med. Chem. Lett. 2003. Vol. 13, №15. P. 2587-2590.
- 5. Detweiler W.K., Amstutz E.D. // J. Amer. Chem. Soc. 1952. Vol. 74, №3. P. 829-830.
- 6. Yin J., Zhao M.M., Haffman M.A., McNamara J.M. // Org. Lett. 2002. Vol. 4, №20. P. 3481-3484.
- 7. Bödeker V.J., Rösch H.P.D. // J. Pract. Chem. 1975. Bd. 317, №6. S. 953-958.
- 8. Каплан Г.М., Фролов А.Н., Ельцов А.В. // ЖОрХ. 1991. Т. 27, №1. С. 201-202.
- 9. Beyer H., Berg G. // Chem. Ber. 1956. Bd. 89, №7. S. 1602-1608.
- 10. Verčer B., Ogorevc B., Stanovnik B., Tišler M. // Monatsh. Chem. 1983. Vol. 114. P. 789-798.
- 11. Garin J., Meléndez E., Merchán F.L. et al. // Synthetic Comm. 1990. Vol. 20, №15. P. 2327-2334.
- 12. Зборовский Ю.Л., Орысык В.В., Станинец В.И. и др. // ЖОрХ. 2007. Т. 43, вып. 7. С. 1036-1040.
- 13. Gakhar H.K., Bhardwaj S., Baveja P. // Ind. J. Chem. 1977. Vol. 15B, №4. P. 347-348.
- 14. Greeke P.I., Mellor J.M. // Tetrahedron Lett. 1989. Vol. 30, №33. P. 4435-4438.
- 15. Ткаченко С.Е., Пушин А.Н., Соколов В.Б. и др. // ХГС. 1998. №3. С. 381-384.
- 16. Зборовский Ю.Л., Орысык В.В., Добош А.А. и др. // ХГС. 2003. №4. С. 1255-1262.
- 17. Зборовский Ю.Л., Орысык В.В., Станинец В.И. и др. // ЖОФХ. 2003. Т. 1, №1-2. С. 80-86.
- 18. Beyer H., Hantschel H. // Chem. Ber. 1962. Jahrg. 95, №4. S. 902-906.

Надійшла до редакції 08.09.2010 р.

ГОЛОВНА ПОДІЯ ФАРМАЦЕВТИЧНОЇ ГАЛУЗІ

III Міжнародний форум фармацевтичної індустрії

25-27 вересня 2012

25-27 вересня 2012 року відбудеться головна подія фармацевтичної галузі України – III Міжнародний форум фармацевтичної індустрії PHARMComplEX за адресою: м. Київ, ВЦ «КиївЕкспоПлаза» (вул. Салютна, 2-Б)

РНАРМСотрІЕХ – це щорічна міжнародна подія, яка відображає зокрема стан фармацевтичної галузі України та консолідує інтереси операторів фармацевтичного ринку, представників наукового, освітнього, інвестиційного секторів і держави. Форум проходить за підтримки Комітету Верховної Ради України з питань охорони здоров'я, Міністерства охорони здоров'я України, Державної служби України з лікарських засобів, Національної академії медичних наук України, Національної академії наук України при сприянні громадських та бізнесових організацій фармацевтичної галузі.

У рамках Форуму:

- 3-я Міжнародна спеціалізована виставка комплексного забезпечення фармацевтичної промисловості PHARMPROM-2012;
- 3-я Міжнародна спеціалізована виставка фармацевтичної продукції РНАRMEX-2012.

Діловою програмою Форуму передбачено проведення **III Міжнародної конференції «Дні фармацевтичної промисловості»**, де будуть представлені інноваційні рішення та технології для фармацевтичних виробників на всіх етапах їх розробки, виробництва і реалізації. Також відбудуться науково-практичні конференції «Побудова системи якості в аптечних установах», «Сучасні підходи до розробки ефективних фармакологічних препаратів для корекції ендокринної патології».

Детальна інформація:

Тел.: +380 (44) 361-07-21, 526-92-89, 526 90 25

E-mail: marketing@lmt.kiev.ua www.pharmcomplex.com

www.lmt.kiev.ua