УДК 547.787+547.79

СИНТЕЗ 2,5-БИС-[2-АРИЛ-5-(3,5-ДИМЕТИЛ-1*H*-ПИРАЗОЛ-1-ИЛ)-1,3-ОКСАЗОЛ-4-ИЛ]ЗАМЕЩЕННЫХ 1,3,4-ОКСАДИАЗОЛОВ И 1,3,4-ТИАДИАЗОЛОВ

В.М.Прокопенко, С.Г.Пильо, Л.П.Голод, В.С.Броварец

Институт биоорганической химии и нефтехимии НАН Украины 02660, г. Киев, ул. Мурманская, 1. E-mail: brovarets@bpci.kiev.ua

Ключевые слова: 2-арил-5-(3,5-диметил-1H-пиразол-1-ил)-1,3-оксазол-4-карбоновые кислоты; 1,3,4-оксадиазол; 1,3,4-тиадиазол; циклоконденсация; хлороксид фосфора; реагент Лоуссона

На основе доступных производных 2-арил-5-(3,5-диметил-1H-пиразол-1-ил)-1,3-оксазол-4-карбоновой кислоты получены неизвестные ранее производные 1,3,4-оксадиазола и 1,3,4-тиадиазола, содержащие в положении 2 и 5 кольца 5-(3,5-диметил-1H-пиразол-1-ил)-1,3-оксазол-4-ильные фрагменты.

SYNTHESIS OF 2,5-BIS-[2-ARYL-5-(3,5-DIMETHYL-1H-PYRAZOL-1-YL)-1,3-OXAZOL-4-YL]SUB-STITUTED 1,3,4-OXADIAZOLS AND 1,3,4-TIADIAZOLS

V.M.Prokopenko, S.G.Pilyo, L.P.Golod, V.S.Brovarets

On the basis of available derivatives of 2-aryl-5-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3-oxazol-4-carboxylic acid the previously unknown derivatives of 1,3,4-oxadiazols and 1,3,4-tiadiazols containing 5-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3-oksazol-4-yl fragments in position 2 and 5 of the ring have been obtained.

СИНТЕЗ 2,5-БІС-[2-АРИЛ-5-(3,5-ДИМЕТИЛ-1H-ПІРАЗОЛ-1-ІЛ)-1,3-ОКСАЗОЛ-4-ІЛ]ЗАМІЩЕНИХ 1,3,4-ОКСАДІАЗОЛІВ ТА 1,3,4-ТІАДІАЗОЛІВ

В.М.Прокопенко, С.Г.Пільо, Л.П.Голод, В.С.Броварець

На основі доступних похідних 2-арил-5-(3,5-диметил-1H-піразол-1-іл)-1,3-оксазол-4-карбонової кислоти одержані невідомі раніше похідні 1,3,4-оксадіазолу та 1,3,4-тіадіазолу, котрі містять у положенні 2 та 5 кільця 5-(3,5-диметил-1H-піразол-1-іл)-1,3-оксазол-4ільні фрагменти.

2,5-Дизамещенные 1,3,4-оксадиазолы и 1,3,4тиадиазолы лежат в основе многих природных и синтетических соединений, которые имеют широкий спектр биологической активности и находят самое широкое применение в синтезе лекарственных препаратов [1-8]. То же самое можно сказать и о производных оксазола и пиразола, интенсивное развитие химии которых в последние десятилетия связано, безусловно, с поисками эффективных биорегуляторов [9-15]. Поэтому очевидно, что соединения, которые сочетали бы в одной молекуле все эти гетероциклы, весьма перспективны для изучения биологического действия. Для их синтеза в настоящей работе нами были использованы два типа производных 2-арил-5-(3,5-диметил-1*H*-пиразол-1-ил)-1,3-оксазол-4карбоновых кислот: хлорангидриды, полученные нами ранее по схеме (1) $\rightarrow \rightarrow$ (5) [16], и гидразиды, синтезированные гидразинолизом соответствующих метиловых эфиров $(3) \rightarrow (5)$ (схема).

Нами доказано, что взаимодействие хлорангидридов (5) с гидразидами (6) (способ a) или с гидразингидратом (способ b) происходит региоселективно и с выходами 85-92% приводит к образованию диацилгидразинов (7), которые при

обработке хлороксидом фосфора или реагентом Лоуссона дают целевые производные 1,3,4-оксадиазола (8) и 1,3,4-тиадиазола (9). Симметричные диацилгидразины (7а,6) удобнее получать взаимодействием хлорангидридов (5) с гидразингидратом при комнатной температуре, тогда как для синтеза диацилгидразина (7в) с разными заместителями в положениях 2 оксазольных колец способ а является незаменимым.

Выделение продуктов циклизации (8, 9) из реакционных смесей протекает без осложнений с высокими выходами (табл. 1), что указывает на препаративную значимость предложенной нами схемы синтеза подобных соединений.

Состав и строение всех новых соединений подтверждены элементным анализом (табл. 1), данными масс- и ИК-спектров, а также ЯМР ¹Н (табл. 2).

Так, в процессе превращения (3) \rightarrow (6) в спектрах ЯМР ¹Н исчезает сигнал при 3.74-3.79 м.д., который относится к метоксигруппе, а появляются два широких сигнала при 4.48-4.50 м.д. (2H) и 9.65-9.71 м.д. (1H), относящиеся к фрагменту H_2 NNH соединений (6). Об образовании оксадиазольного и тиадиазольного циклов в результате превращений (7) \rightarrow (8) и (7) \rightarrow (9) можно судить

 $\begin{array}{l} (1\text{-}6)\text{: Ar} = C_6H_5(a), 4\text{-}CH_3C_6H_4(6); \\ (7\text{-}9)\text{: Ar} = C_6H_5(a,\text{B}), 4\text{-}CH_3C_6H_4(6); \\ \text{RL} = CH_3O - \\ & \text{P} \\ \text{S} \\ & \text{C} \\ & \text{C} \end{array} \\ \begin{array}{l} \text{OCH}_3. \end{array}$

Схема

Таблица 1 Характеристики синтезированных соединений **(6-9)**

Соеди- нение	Выход,	Т. пл., °С (растворитель для перекристаллизации)	Найдено, %			Брутто-	Вычислено, %		
			С	Н	N	формула	С	Н	N
ба	83	158-162 (толуол)	60.55	5.08	24.10	C ₁₅ H ₁₅ N ₅ O ₂	60.60	5.09	23.55
66	88	173-175 (толуол)	61.79	5.55	21.98	C ₁₆ H ₁₇ N ₅ O ₂	61.72	5.50	22.49
7a	92 (85)*	255-257 (MeCN-DMF, 3:1)	64.21	4.58	19,84	C ₃₀ H ₂₆ N ₈ O ₄	64.05	4.66	19.92
76	86 (89)*	258-261 (DMF)	64.91	5.01	19,18	C ₃₂ H ₃₀ N ₈ O ₄	65.07	5.12	18.97
7в	90	249-252 (DMF)	64.61	4.93	19.40	C ₃₁ H ₂₈ N ₈ O ₄	64.57	4.89	19.43
8a	80	224-226 (MeCN)	66.25	4.34	20.48	C ₃₀ H ₂₄ N ₈ O ₃	66.17	4.44	20.58
86	75	226-229 (EtOH)	67.19	4.81	19.46	C ₃₂ H ₂₈ N ₈ O ₃	67.12	4.93	19.57
8в	80	228-231 (MeCN)	66.72	4.63	19.96	C ₃₁ H ₂₆ N ₈ O ₃	66.66	4.69	20.06
9a	77	261-263 (MeCN-DMF, 3:1)	64.35	4.38	20.69	C ₃₀ H ₂₄ N ₈ O ₂ S**	64.27	4.31	19.99
96	88	243-245 (DMF)	65.01	4.39	19.41	C ₃₂ H ₂₈ N ₈ O ₂ S***	65.29	4.79	19.03
9в	85	230-233 (DMF)	64.46	4.33	19.77	C ₃₁ H ₂₆ N ₈ O ₂ S****	64.79	4.56	19.50

^{*} – В скобках приведены выходы веществ, полученных способом б. ** – Найдено, %: S 5.62. Вычислено, %: S 5.72. *** – Найдено, %: S 5.70. Вычислено, %: S 5.85. Вычислено, %: S 5.85. Вычислено, %: S 5.86.

Спектральные данные синтезированных соединений (6-9)

Соеди- нение	ИК-спектр (КВr), v, см ⁻¹	Спектр ЯМР ¹H, δ, м.д. (DMSO- <i>d</i> ₆)
ба	1673*, 3050-3430 (NH, NH ₂)	2.22 с (6H, 2CH $_3$), 4.48 ш.с (2H, NH $_2$), 6.09 с (1H, CH), 7.55-8.05 м (5H, С $_6$ H $_5$), 9.65 ш.с (1H, NH)
66	1665*, 3038-3480 (NH, NH ₂)	2.21 с (6H, 2CH $_3$), 2.41 с (3H, CH $_3$), 4.50 ш.с (2H, NH $_2$), 6.10 с (1H, CH), 7.43-7.95 м (4H, С $_6$ H $_4$), 9.71 ш.с (1H, NH)
7a**	1628*, 2895-3150 (NH)	2.23 ш.с (12H, 4CH $_3$), 6.16 с (2H, 2CH), 7.63-8.09 м (10H, 2C $_6$ H $_5$), 10.63 ш.с. (2H, 2NH)
76	1632*, 2910-3215 (NH)	2.22 ш.с (12H, 4CH $_{\!_3}$), 2.42 с (6H, 2CH $_{\!_3}$), 6.16 с (2H, 2CH), 7.40-7.94 м (8H, 2C $_{\!_6}$ Н $_{\!_4}$), 10.60 д (2H, 2NH)
7в	1646*, 2892-3175 (NH)	2.21 ш.с (12H, 4CH ₃), 2.41 с (3H, CH ₃), 6.15 с (2H, 2CH), 7.41-8.10 м (9H, С ₆ H ₄ , С ₆ H ₅), 10.64 ш.с (2H, 2NH)
8a****	1662***, 3050-3600 (полосы отсутствуют)	2.24-2.28 м (12H, 4CH ₃), 6.18 с (2H, 2CH), 7.63-8.09 м (10H, 2C ₆ H ₅)
86	1658***, 3050-3600 (полосы отсутствуют)	2.22-2.26 м (12H, 4CH $_{_3}$), 2.41 с (6H, 2CH $_{_3}$), 6.18 с (2H, 2CH), 7.44-7.93 м (8H, 2C $_{_6}$ H $_{_4}$)
8в	1655***, 3050-3600 (полосы отсутствуют)	2.23-2.26 м (12H, 4CH $_3$), 2.43 с (3H, CH $_3$), 6.20 с (2H, 2CH), 7.40-8.12 м (9H, C_6 H $_4$, C_6 H $_5$)
9a****	1646***, 3050-3600 (полосы отсутствуют)	2.25 с (12H, 4CH ₃), 6.19 с (2H, 2CH), 7.61-8.09 м (10H, 2C ₆ H ₅)
96	1650***, 3050-3600 (полосы отсутствуют)	2.22 ш.с (12H, 4CH ₃), 2.42 с (6H, 2CH ₃), 6.24 с (2H, 2CH), 7.43-7.96 м (8H, 2C ₆ H ₄)
9в	1648***, 3050-3600 (полосы отсутствуют)	2.24 ш.с (12H, 4CH ₃), 2.41 с (3H, CH ₃), 6.26 с (2H, 2CH), 7.41-8.09 м (9H, С ₆ H ₄ , С ₆ H ₅)

^{* —} Полоса с плечом, которая обусловлена наложением сигналов карбонильной группы и 5-амино-1,3-оксазольного фрагмента [17]. ** — Масс-спектр: m/z 563 (M+). *** — Полоса, которая соответствует замещенному 5-амино-1,3-оксазольному фрагменту [17]. **** — Масс-спектр: m/z 545 (M+). **** — Масс-спектр: m/z 561 (M+)

по масс-спектрам, а также по исчезновению в ИКспектрах полосы поглощения группы HNNH при $3050\text{-}3600~\text{см}^{\text{-}1}$ и в спектрах ЯМР 1 Н сигнала этой группы при 10.60-10.64 м.д. На наличие пиразольного фрагмента во всех соединениях указывают спектры ЯМР 1 Н, в которых в области 2.21-2.28 м.д. находятся сигналы метильных групп, а также синглетный сигнал C^{4} -Н в интервале 6.09-6.26 м.д.

Экспериментальная часть

ИК-спектры веществ записывали на спектрометре Vertex 70 в таблетках с KBr, спектры ЯМР 1 Н записывали на спектрометре Varian VXR-300 в растворе ДМСО- d_6 с ТМС в качестве внутреннего стандарта. Масс-спектры регистрировали на приборе Agilent 1100/DAD/MSD VL G1965. Температуры плавления были измерены на приборе Fisher-Johns.

Гидразиды 2-арил-5-(3,5-диметил-1*H*-пиразол-1-ил)-1,3-оксазол-4-карбоновых кислот (6а,6). К раствору 0,005 Моль одного из соединений (3а,6) [16] в 20 мл метанола добавляли 0,015 Моль гидразингидрата. Раствор кипятили 3 ч и оставляли на 12 ч при 20-25°С. Выпавший осадок отфильтровывали, промывали водой, высушивали и соединения (6а,б) очищали перекристаллизацией.

Гидразиды N'-{[2-арил-5-(3,5-диметил-1H-пиразол-1-ил)-1,3-оксазол-4-ил]карбонил}-2-арил-5-(3,5-диметил-1H-пиразол-1-ил)-1,3-оксазолкарбоновых кислот (7a-в).

а. К раствору 0,005 Моль одного из соединений (6а,6) в 30 мл безводного ацетонитрила добавляли 0,005 Моль триэтиламина и 0,005 Моль соответствующего хлорангидрида (5а,6) [16]. Смесь кипятили 3 ч и оставляли на 12 ч при 20-25°С, добавляли 80 мл воды, осадок отфильтровывали, высушивали и соединения (7а-в) очищали перекристаллизацией.

б. К раствору 0,005 Моль одного из соединений (5а,6) [16] в 25 мл безводного диоксана добавляли по каплям 0,01 Моль гидразингидрата при интенсивном перемешивании. Смесь перемешивали 12 ч при 20-25°С, осадок отфильтровывали, высушивали и соединения (7а,6) очищали перекристаллизацией. Проба смешения образцов соединения (7а) или (76), полученных способами а и б, не давала депрессии температуры плавления. ИК- и ЯМР ¹Н спектры этих образцов были идентичны.

2,5-Бис-[2-арил-5-(3,5-диметил-1*H*-пир-азол-1-ил)-1,3-оксазол-4-ил]-1,3,4-оксадиазолы (8а-в). Раствор 0,002 Моль одного из соединений (7а-в) в 5 мл РОСІ_з кипятили 6 ч, охлаждали до 20-25°С, выливали на лёд, выпавший осадок отфильтровывали, высушивали и соединения (8а-в) очищали перекристаллизацией.

2,5-Бис-[2-арил-5-(3,5-диметил-1*H*-пир-азол-1-ил)-1,3-оксазол-4-ил]-1,3,4-тиадиазолы (9а-в). Смесь 0,002 Моль одного из соединений (7а-в) и 0,002 Моль реагента Лоуссона в 10 мл безводного диоксана кипятили 8 ч, оставляли на 12 ч при 20-25°С. Выпавший осадок отфильтровывали, промывали 5% водным раствором

гидроксида натрия, высушивали и соединения **(9а-в)** очищали перекристаллизацией.

Выводы

При обработке гидразингидрата или гидразидов 2-арил-5-(3,5-диметил-1*H*-пиразол-1-ил)-1,3-оксазол-4-карбоновых кислот хлорангидридами этих же кислот получены диацилгидразины, при взаимодействии которых с хлороксидом фосфора или реагентом Лоуссона впервые синтезированы ранее неизвестные производные 1,3,4-оксадиазола и 1,3,4-тиадиазола с 2-арил-5-(3,5-диметил-1*H*-пиразол-1-ил)-1,3-оксазол-4-ильными фрагментами в положениях 2 и 5.

Литература

- 1. Schlecker R., Thieme P.C. // Tetrahedron. 1988. Vol. 44. P. 3289-3294.
- 2. Ogata A., Atobe H., Kushida H., Yamamoto R. // J. Antibiot. 1971. Vol. 24. P. 443-451.
- 3. Yamamoto T., Fujita K., Asari S. et al. // Bioorg. Med. Chem. Lett. 2007. Vol. 17. P. 3736-3740.
- 4. Wankhede K.S., Vaidya V.V., Sarang P.S. et al. // Tetrahedron Lett. 2008. Vol. 49. P. 2069-2073.
- 5. Li Z., Chen W., Hale J. et al. // J. Med. Chem. 2005. Vol. 48. P. 6169-6173.
- 6. Turpin J.A., Song Y., Inman J.K. et al. // J. Med. Chem. 1999. Vol. 42. P. 67-86.
- 7. Vaillancourt V.A., Cudahy M.M., Staley S.A. et al. // Bioorg. Med. Chem. Lett. 2000. Vol. 10. P. 2079-2081.
- 8. Matysiak J., Opolski A. // Bioorg. Med. Chem. 2006. Vol. 14. P. 4483-4489.
- 9. Palmer D.C. Oxazoles: Synthesis, Reactions and Spectroscopy. Part A. New Jersey: John Wiley, 2003. P. 255-357.
- 10. Chamberlin J.W., Chen S.J. // Antibiot. 1977. Vol. 30, №3. P. 197-201.
- 11. Jansen R., Kunze B., Reichenbach H. et al. // Liebigs Ann. Chem. 1992. №4. P. 357-359.
- 12. Moody C.J., Bagley M.C. // J. Chem. Soc. Perkin Trans I. 1998. №3. P. 601-607.
- 13. Bertram A., Pattenden G. // Synlett. 2001. №12. P. 1873-1874.
- 14. Вовк М.В., Братенко М.К., Чорноус В.О. 4-Функціональнозаміщені піразоли. Чернівці: Прут, 2008. 285 с.
- 15. Братенко М.К., Панімарчук О.І., Чорноус В.О. та ін. // Фармац. журн. 2007. №6. С. 64-69.
- 16. Драч Б.С., Свиридов Э.П., Кисиленко А.А., Кирсанов А.В. // ЖОрХ. 1973. Т. 9, №9. С. 1818-1824.

Надійшла до редакції 05.02.2010 р.