УДК 541.127+ 542.943.73 + 546.73

© 2006

Кинетика окисления монооксида углерода на биметаллосодержащем катализаторе Co-Pd/ZSM-5

В.К. Яцимирский, Л.П. Олексенко, Л.В. Луценко

Киевский Национальный университет имени Тараса Шевченко, Украина, 01033 Киев, ул. Владимирская, 64; факс (044) 239-33-58

Исследованы кинетические закономерности окисления монооксида углерода на цеолитном катализаторе Co–Pd/ZSM-5. Проанализированы кинетические схемы, учитывающие образование промежуточных соединений на поверхности за счет адсорбции кислорода в молекулярной или (и) атомарной формах. Доказано, что полученные кинетические зависимости скорости реакции от концентрации реагентов можно описать механизмом Или – Ридила, который предусматривает возможность адсорбции кислорода на поверхности катализатора как в атомарной, так и в молекулярной формах и последующее взаимодействие монооксида углерода из газовой фазы с адсорбированным кислородом.

Металлосодержащие системы на основе цеолитов в последнее время интенсивно изучаются как катализаторы различных гетерогенных процессов [1–3], в частности газофазных реакций окисления [4]. Цеолиты благодаря своим свойствам - регулярной канальной структуре, высокой термической и механической устойчивости, строению поверхностного слоя, ионообменным свойствам и наличию кислотных центров двух типов – являются перспективными носителями для получения нанесенных катализаторов. Высококремнеземный синтетический цеолит ZSM-5 – один из самых широко исследуемых в настоящее время носителей. Катализаторы на основе ZSM-5 находят применение во многих каталитических реакциях [7], например в окислении метана [8, 9], восстановлении NO_x углеводородами [10-12]. Исследованию каталитической активности ZSM-5-цеолитных систем в экологически важной реакции окисления монооксида углерода посвящено незначительное количество работ [13], при этом практически не изучены активность и кинетические закономерности его окисления на биметаллосодержащих цеолитных катализаторах. Исследование каталитической активности биметаллосодержащих цеолитных Co-Pd и Pd-Co катализаторов на основе ZSM-5 в реакции окисления монооксида углерода [14] показало, что биметаллосодержащие Со-Рd-системы имеют более высокую активность по сравнению с монометаллосодержащими (Со- и Pd/ZSM-5) катализаторами. Наибольшую активность среди изученных нанесенных Со-Рd-содержащих систем имеет образец 0,8 % Co-0,5 % Pd/ZSM-5 (далее Co-Pd/ZSM-5), предварительно обработанный в токе водорода при 350 °C в течение 1 ч. В данной работе исследована кинетика окисления монооксида углерода на биметаллосодержащем цеолитном катализаторе Co-Pd/ZSM-5.

Экспериментальная часть

Кобальт-палладиевый катализатор на основе пентасила (Co–Pd/ZSM-5) получали пропиткой водородной формы цеолита растворами Co(NO₃)₂ и [Pd(NH₃)₄]Cl₂ соответствующей концентрации. Катионы металлов вводили последовательно: сначала наносился палладий, а затем кобальт. После каждого этапа введения металла образец высушивали; обработку в токе водорода проводили при 350 °C в течение 1 ч.

Для исследования кинетики гетерогенной каталитической реакции окисления монооксида углерода использовали безградиентный реактор с поршневым турбулизатором [15]. Состав реакционной газовой смеси анализировали хроматографическим методом с использованием детектора по теплопроводности. Смесь газов разделяли при 40 °С в колонке, заполненной активированным углем СКТ с нанесенным на него сульфатом никеля NiSO₄ (длина колонки l = 3м, ток детектора I = 100 мА). Расход газовой смеси составлял 0,1 л/мин. Навеска катализатора 0,25 г.

Перед исследованием кинетики для установления стабильного состава поверхности образец прогревали при 110–150 °C в течение 1 ч в реакционной газовой смеси (1 % CO + 10 % O₂ + 89 % He). Концентрацию монооксида углерода изменяли в объемных процентах от 0,25 до 2, объемная доля O₂ при этом составила 20 %; при постоянной концентрации монооксида углерода ($C_{\rm CO} = 1$ % об.) концентрацию кислорода в объемных процентах изменяли от 5 до 25.

Скорость каталитической реакции (r, моль CO₂/ (r·c)) рассчитывали по формуле: $r = (C_{CO_2} U)/g$, где $C_{CO_2} -$ концентрация образовавшейся двуокиси углерода, моль/л; U – скорость потока реакционной смеси, 1,667·10⁻³ л/с; g – навеска катализатора, r.

Исследование методом рентгеновской фотоэлектронной спектроскопии (РФЭС) проводили на спектрометре Series 800 XPS фирмы "Kratos Analytical" при использовании излучения AlK $\alpha_{1,2}$ (hv = 1486,6 эВ). Точность определения энергии связи составила 0,1 эВ.

Рис. 1. Зависимость скорости реакции от концентрации монооксида углерода ($C_{02} = 8,93 \cdot 10^3$ моль/л) (*a*) и концентрации кислорода ($C_{CO} = 4,46 \cdot 10^4$ моль/л) (δ) для катализатора Co–Pd/ZSM-5: I - 110 °C, 2 - 130 °C, 3 - 150 °C (светлые точки – повышение концентрации, темные точки – понижение концентрации)

Результаты и их обсуждение

Зависимости скорости реакции от концентрации монооксида углерода (при постоянной концентрации кислорода) для Co–Pd/ZSM-5 при температуре 110, 130 и 150 °C представлены на рис. 1, *а*. Приведенные зависимости скорости реакции от концентрации монооксида углерода при 110, 130 и 150 °C имеют вид кривых с "насыщением", которые совпадают друг с другом в обоих направлениях изменения концентрации. При 110 °C насыщение кривой происходит при более низких концентрациях монооксида углерода, чем при 130 и 150 °C. В исследованном интервале концентраций его полное насыщение на кривой при 150 °C не достигается.

Кривые зависимости скорости реакции от концентрации кислорода (при постоянной концентрации монооксида углерода) на катализаторе Co–Pd/ZSM-5 при 110, 130, 150 °C (рис. 1, б) имеют вид, подобный зависимостям скорости реакции от концентрации монооксида углерода (при постоянной концентрации кислорода) при указанных температурах. Следует отметить, что для исследованной системы Co–Pd/ZSM-5 отсутствуют гистерезис и множественность стационарных состояний на зависимостях скорости реакции от концентрации реагентов при всех исследованных температурах, в отличие от нанесенных Pd-катализаторов, содержащих металлический палладий [16–18].

Известно [19], что значение энергии связи $3d_{5/2}$ электронов палладия в состоянии Pd° равно 335,3 эВ, а Pd²⁺ – 336,1 эВ. Исследование электронного состояния поверхностного слоя катализатора Co–Pd/ZSM-5 методом РФЭС показало, что значение энергии связи $3d_{5/2}$ электронов палладия в системе Co–Pd/ZSM-5 составляет 335,8 эВ (рис. 2), что соответствует энергии связи $3d_{5/2}$ -электронов палладия в состоянии, близком к Pd⁺.

Согласно данным работы [20], протекание реакции окисления монооксида углерода на Pd-нанесенных катализаторах в области температур меньше 220 °C обусловлено наличием слабосвязанных форм монооксида углерода и кислорода, адсорбированных на палладиевых центрах. По данным ИК-спектроскопии адсорбированного монооксида углерода для исследованного катализатора Co-Pd/ZSM-5 также характерна слабая адсорбция СО; практически полная десорбция адсорбированного монооксида углерода происходит после вакуумирования до 6.0⁻³ мм. рт. ст. при 20 °C. Поэтому при анализе полученных зависимостей скорости реакции от температуры на катализаторе Со-Pd/ZSM-5 не рассматривали кинетические схемы, предусматривающие блокировку поверхности Со-Pd/ZSM-5 молекулами монооксида углерода.

Рис. 2. РФЭ-спектры палладия (Pd 3d_{5/2}) для каталізатора Co–Pd/ZSM-5

Таблица 1.	. К	инетические	схемы и	кинетические	уравнения	окисления	монооксида	углерода
------------	-----	-------------	---------	--------------	-----------	-----------	------------	----------

Кинетическая схема	ì	Кинетическое уравнение		Линеаризованная форма уравнения	
k_1 1. $O_2 + Z \rightarrow ZO_2$ k_2 2. $2CO + ZO_2 \rightarrow Z + 2CO_2$	1 (I) 1	$r = \frac{2k_1k_2C_{0_2}C_{0_2}^2}{k_2C_{0_2}^2 + k_1C_{0_2}}$	(I-1)	$\frac{C_{O_2}}{r} = \frac{1}{2k_1} + \frac{1}{2k_2} \frac{C_{O_2}}{C_{CO}^2}$ $\frac{C_{CO}^2}{r} = \frac{1}{2k_2} + \frac{1}{2k_1} \frac{C_{CO}^2}{C_{O_2}^2}$	(I.1) (I.2)
$1. O_2 + 2Z \underset{k_1}{\leftrightarrow} 2ZO$ k_1 k_2 $2. CO + ZO \rightarrow Z + CO_2$	1 (II) 2	$r = \frac{k_2 C_{\rm CO} \sqrt{K_1 C_{\rm O_2}}}{1 + \sqrt{K_1 C_{\rm O_2}}}$	(II-1)	$\frac{\sqrt{C_{O_2}}}{r} = \frac{1}{k_2 C_{CO} \sqrt{K_1}} + \frac{\sqrt{C_{O_2}}}{k_2 C_{CO}}$ $\frac{C_{CO}}{r} = \frac{1}{k_2} + \frac{1}{k_2 \sqrt{K_1 C_{O_2}}}$	(II.1) (II.2)
k_{1} 1. Z + O ₂ \rightarrow ZO ₂ k_{2} 2. ZO ₂ + Z \leftrightarrow 2ZO k_{-2} k_{3} 3. CO + ZO \rightarrow CO ₂ + Z	1 1 (III) 2	$r = \frac{2k_1k_3C_{co}C_{o_2}}{k_3C_{co} + 2k_1C_{o_2} + \frac{1}{K_2} \cdot \frac{(2k_1C_{o_2})^2}{k_3C_{co}}}$ при $k_2 \gg k_{-2}$ $r = \frac{2k_1k_3C_{co}C_{o_2}}{k_3C_{co} + 2k_1C_{o_2}}$	(III-1) (III-2)	$k_{2} >> k_{-2}$ $\frac{C_{O_{2}}}{r} = \frac{1}{2k_{1}} + \frac{C_{O_{2}}}{k_{3}C_{CO}}$ $\frac{C_{CO}}{r} = \frac{1}{k_{3}} + \frac{C_{CO}}{2k_{1}C_{O_{2}}}$	(III.1) (III.2)
k_{1} 1. Z +O ₂ \rightarrow ZO ₂ k_{2} 2. ZO ₂ + CO \rightarrow CO ₂ + ZO k_{3} 3. ZO + CO \rightarrow CO ₂ + Z	1 (IV) 1 1	$r = \frac{2k_1k_{ef}C_{O_2}C_{CO}}{k_{ef}C_{CO} + k_1C_{O_2}} ,$ где $k_{e\phi} = \left(\frac{k_2k_3}{k_2 + k_3}\right)$	(IV-1)	$\frac{C_{O_2}}{r} = \frac{1}{2k_1} + \frac{1}{2k_{ef}} \cdot \frac{C_{O_2}}{C_{CO}}$ $\frac{C_{CO}}{r} = \frac{1}{2k_{ef}} + \frac{1}{2k_1} \cdot \frac{C_{CO}}{C_{O_2}}$	(IV.1) (IV.2)

Схема	Уравнение (№)	t, ℃	a _o	<i>a</i> ₁	R _{xy}
т	$C / r = f(C / C^2)$	110	$(1,41\pm0,15)\cdot10^4$	0,09±0,02	0,939
1	$C_{0_2}/r = f(C_{0_2}/C_{CO})$	130	$(7,20\pm0,96)\cdot10^3$	$0,06 \pm 0,01$	0,940
	(I.1)	150	$(2,33 \pm 0,33) \cdot 10^3$	$0,03 \pm 0,004$	0,974
	$C_{\rm CO}^2/r = f(C_{\rm CO}^2/C_{\rm O_2})$	110	0,19 ± 0,06	$(1,04 \pm 0,14) \cdot 10^4$	0,972
		130	$0,12 \pm 0,04$	$(4,96\pm0,94)\cdot10^3$	0,943
	(I.2)	150	$0,05 \pm 0,02$	$(1,71\pm0,33)\cdot10^3$	0,939
п	$C_{\rm CO} C_{\rm O_2}^{0,5} / r = f(C_{\rm O_2}^{0,5})$	110	107 ± 38	-115 ± 433	0,140
11		130	43 ± 18	95 ± 202	0,244
	(II.1)	150	13 ± 5	72 ± 52	0,599
	$C_{\rm CO} / r = f(1/C_{\rm O_2}^{0.5})$	110	-142 ± 298	109 ± 23	0,929
		130	78 ± 139	45 ± 11	0,911
	(II.2)	150	58 ± 39	14 ± 3	0,931
III, IV	$C_{O_2} / r = f(C_{O_2} / C_{CO})$ (III.1, IV.1)	110	$(8,63 \pm 0,61) \cdot 10^3$	559 ± 28	0,996
		130	$(3,71\pm0,25)\cdot10^3$	354 ± 12	0,998
		150	579 ± 24	185 ± 11	0,994
	$C_{\rm CO} / r = f(C_{\rm CO} / C_{\rm O_2})$	110	587 ± 36	$(8,20\pm0,41)\cdot10^3$	0,996
		130	372 ± 15	$(3,43\pm0,17)\cdot10^3$	0,996
	(III.2, IV.2)	150	156 ± 12	$(1,05\pm0,14)\cdot10^3$	0,971

Таблица 2. Параметры линеаризованных (*y* = *a*₀ + *a*₁*x*) уравнений в кинетических моделях (I–IV) реакции окисления монооксида углерода на 0,8 % Co-0,5 % Pd/ZSM-5

Для установления механизма реакции окисления монооксида углерода на биметаллосодержащем цеолитном катализаторе Co–Pd/ZSM-5 были рассмотрены приведенные в табл. 1 кинетические схемы (I–IV), которые учитывают образование промежуточных соединений на его поверхности за счет адсорбции кислорода в молекулярной и (или) атомарной формах и дальнейшего взаимодействия их с монооксидом углерода из газовой фазы. Критерием адекватности определенного кинетического уравнения эксперимен-тальным данным при анализе кинетических схем были коэффициенты корреляции (R_{xy}) линеаризованных форм кинетических уравнений.

Проведенный анализ экспериментальных зависимостей скорости реакции от концентрации реагентов для нанесенного биметаллосодержащего цеолитного катализатора Со–Pd/ZSM-5 показал, что кинетическая схема (II) не описывает экспериментальные данные – полученные значения коэффициентов корреляции линеаризованных уравнений (II.1) и (II.2) не отвечают уравнению прямой. При температуре 110 и 130 °С рассчитанные величины a_0 и (или) a_1 линеаризованных уравнений (II.1) и (II.2) не этого, отрицательные значения параметров (a_0 и a_1) для этих уравнений при 110 °С (табл. 2) лишены физического смысла.

Для линеаризованных форм уравнений (I.1) и (I.2) кинетической схемы (I), в соответствии с которой на поверхности катализатора образуется только промежуточное соединение ZO₂, коеффициенты корреляции в целом несколько выше по сравнению с таковыми для уравнений (II.1) и (II.2), но низкие для удовлетвори-

тельного описания экспериментальных данных кинетической схемой (I).

Линеаризованные формы уравнений (III.1, III.2) и (IV.1, IV.2) кинетических схем (III) и (IV) характеризуются самыми высокими значениями коэффициентов корреляции, что свидетельствует об адекватности этих схем экспериментальным данным. Следует отметить, что линеаризация уравнения (III.1) кинетической схемы (III) возможна при условии, что стадия 2 в ней практически необратима, т. е. $k_2 >> k_2$. При этом кинетические схемы (III) и (IV) практически неразличимы, а уравнения (III.1, III.2) идентичны, соответственно, выражениям (IV.1, IV.2).

Поскольку кинетическая схема (IV) описывает экспериментальные данные без введения в нее каких-либо дополнительных условий, исходя из полученных значений параметров линеаризованных уравнений IV.1 и IV.2, для кинетической схемы (IV) были рассчитаны константы скорости k_1 и k_{ef} (табл. 3). Значения энергии активации, определенные по температурным зависимостям констант скорости в координатах уравнения Аррениуса, составляют $E_1 = 69 \pm 6$ кДж/моль и $E_{ef} =$ = 37 ± 1 кДж/моль. Используя величины энергий активации и констант скорости при разных температурах для схемы (IV), были рассчитаны энтропии активации взаимодействия кислорода и монооксида углерода с катализатором (табл. 3).

Рассчитанные энтропии активации $\Delta S^{*}O_2$ стадии взаимодействия кислорода с катализатором (табл. 3) – это большие отрицательные величины, которые отвечают частичной потере поступательных степеней свободы газообразного кислорода. В табл. 3 также приведе-

Таблица 3. Кинетические параметры стадий схемы IV (уравнение IV-1) реакции окисления монооксида углерода на 0,8 % Со-0, 5% Pd/ZSM-5

<i>t</i> ,°C	$k_1, k_{\rm ef},$	$E_1, E_{\rm ef}$	ΔS*,	S°,	S*,
	л/(г ⋅ с)	қДж/моль	Дж/(моль•К)	Дж(мольК)	Дж/(моль-К)
	$k_1 \cdot 10^4$	E_1	ΔS^*_{O2}	S ^o O2	S* ₀₂
110	0,6±0,1	69 ± 6	-114	212	98
130	$1,5 \pm 0,2$		-115	214	99
150	$4,8 \pm 0,7$		-115	215	100
	$k_{\rm ef} 10^4$	$E_{\rm ef}$	ΔS^*_{CO}	SoCO	S*CO
110	8,9±0,9	37 ± 1	-175	205	30
130	$14 \pm 0,9$		-176	207	31
150	$27 \pm 3,2$		-176	208	32

ны энтропии газообразных реагентов (S°) и абсолютные энтропии (S^{*}) активных комплексов с кислородом и монооксидом углерода. Значение S^{*} активного комплекса кислорода при его взаимодействии с поверхностью 0,8 % Co – 0,5 % Pd/ZSM-5 отвечает сохранению в нем одной поступательной степени свободы и вращательных степеней свободы. Это может свидетельствовать о значительной подвижности активного комплекса кислорода на поверхности 0,8 % Co0,5 % Pd/ZSM-5 и, возможно, обусловливать его высокую каталитическую активность.

Изменение энтропии ΔS^*_{CO} для взаимодействия монооксида углерода с адсорбированным кислородом по абсолютной величине несколько меньше, чем значение энтропии газообразного монооксида углерода (табл. 3). Небольшие величины абсолютных энтропий ($S^*_{...}$) активного комплекса с монооксидом углерода при всех температурах свидетельствуют, что в нем могут сохраняться одна поступательная степень свободы и колебательные степени свободы. Это обусловливает определенную подвижность активных комплексов с монооксидом углерода на поверхности катализатора.

Исходя из приведенных данных, можно сделать вывод, что реакция окисления монооксида углерода на катализаторе Co-Pd/ZSM-5 в изученных условиях может протекать согласно схеме IV, в соответствии с которой на поверхности биметаллосодержащей цеолитной системы Co-Pd/ZSM-5 может образовываться два типа промежуточных соединений ZO2 и ZO. При этом в ходе реакции сначала адсорбируется кислород с образованием промежуточных хемосорбированных частиц ZO₂. Поверхностные соединения ZO образуются при взаимодействии монооксида углерода с ZO₂. Активация монооксида углерода может происходить при образовании промежуточного карбоксилатного [ZOCO*] комплекса, локализованного на поверхности катализатора. При этом монооксид углерода хемосорбируется на поверхности цеолитной системы Со-Pd/ZSM-5 в слабой форме, что согласуется с ИКспектрами адсорбированного монооксида углерода [14]. Взаимодействие последнего с поверхностными Таким образом, в результате проведенного сравнительного кинетического анализа механизмов окисления монооксида углерода установлено, что полученные кинетические зависимости скорости реакции от концентрации реагентов на цеолитном катализаторе Co–Pd/ZSM-5 можно описать механизмом Или – Ридила (кинетическая схема (IV)), которая предусматривает наличие кислорода на поверхности катализатора как в атомарной, так и в молекулярной формах и дальнейшее взаимодействие монооксида углерода из газовой фазы с адсорбированным кислородом.

1. Regalbuto J.R., Zheng T., Miller J.T., *Catal. Today*, 1999, **54** (4), 495.

2. Хусид Б.Л., Чукин Г.Д., Ростанин Н.Н. и др., *Ки*нетика и катализ, 1990, **31** (4), 906.

3. Миначев Х.М., Дергачев А.А., *Успехи химии*, 1990, **59** (9), 1522.

4. Lin J.-N., Chen J.-H., Hsiao C.-Y. et al., *Appl. Catal. B: Environmental*, 2002, **36** (1), 19.

5. Hala'sz J., Nya'ri W., Meretei E. et al., *J. Mol. Structure*, 2003, **651–653** (1), 315.

6. Tung C.-H., Wang H., Jing Y.-M., J. Amer. Chem. Soc., 1998, **120** (21), 5179.

7. Kucherov A.V., Kucherova T.N., Slinkin A.A., *Catal. Microporous Mater.: Proc. Zeocat'95. Amsterdam*, 1995, 657.

8. Горященко С.С., Алимов М. А., Федоровская Э.А. и др., *Кинетика и катализ*, 1994, **35** (4), 588.

9. Некрасов Н.В., Слинкин А.А., Кучеров А.В., *Там же*, 1997, **38** (1), 90.

10. Mosqueda-Jime'nez B.I., Jentys A., Seshan K. et al., J. Catal., 2003, **218** (2), 348.

11. Cruz R.S., Mascarenhas A.J.S., Andrade H.M.C., *Appl. Catal. B: Environmental*, 1998, **18** (3/4), 223.

12. Correa C.M., Villa A.L., *Catal. Lett.*, 1998, **53** (4), 205. 13. Bi Y., Lu G., *Appl. Catal. B: Environmental*, 2003, **41** (3), 279.

14. Yatsimirsky V.K., Oleksenko L.P., Lutsenko L.V. et al., *Eur. Catal. Forum – EuropaCat VI. 2003*, A2.049.

15. Корнейчук Г.П., Остапюк В.А., Болдырева Н.А., *Катализ и катализаторы*, 1984, **22**, 77.

16. Яцимирский В.К., Болдырева Н.А., Ищенко Е.В. и др., *Теорет. и эксперим. химия*, 1998, **34**, 118.

17. Болдырева Н.А., Назаренко В.А., Мельниченко Г.П. и др., *Междунар. конф. "Нестационарные явления в катализе"*, 1990, 109.

18. Kaya S., Uner D., Eur. Catal. Forum – EuropaCat VI. 2003, 3179.

19. Нефедов В.И., Черепин В.Т., *Физические методы исследования поверхности твердых тел*, Москва, Наука, 1983.

20. Радкевич В.З., Ивко А.А., Егиазаров Ю.Г., *Кинетика и катализ*, 2001, **42**, 574

Поступила в редакцию 05.07.2005г.

Кінетика окиснення монооксиду вуглецю на біметаловмісному каталізаторі Co–Pd/ZSM-5

В.К. Яцимирський, Л.П. Олексенко, Л.В. Луценко

Київський Національний університет імені Тараса Шевченка, Україна, 01033 Київ, вул. Володимирська, 64; факс (044) 239-33-58

Досліджено кінетичні закономірності окиснення монооксиду вуглецю на цеолітному каталізаторі Co–Pd/ZSM-5. Проаналізовано кінетичні схеми, які враховують утворення проміжних сполук на поверхні за рахунок адсорбції кисню в молекулярній або (і) атомарній формах. Доведено, що отримані кінетичні залежності швидкості реакції від концентрації реагентів можна описати механізмом Ілі-Ріділа, який передбачає можливість адсорбції кисню на поверхні каталізатора як в атомарній, так і в молекулярній формах і наступну взаємодію монооксиду вуглецю з газової фази з адсорбованим киснем.

Kinetics of carbon monooxide oxidation at bimetallcontaining catalyst Co-Pd/ZSM-5

V.K. Yatsimirsky, L.P. Oleksenko, L.V. Lutsenko

Kyiv Taras Shevchenko National University, Vladimirskaya Str. 64, Kyiv 01033, Ukraine, Fax: (044) 239-33-58

Kinetic regularities of CO oxidation at Co-Pd/ZSM-5 zeolite catalyst were investigated. Kinetic schemes accounting for formation of intermediate compounds at a surface layer due to adsorption of oxygen in molecular or (and) atomic forms were analyzed. It was proved that revealed kinetic dependences of reaction rate on concentra-tion of reagents can be described with the Eley-Rideal mechanism which envisages an opportunity of oxygen ad-sorption at a catalyst surface both in atomic and in the molecular forms and further CO interaction from the gas phase with oxygen adsorbed.

Покращуємо екологію!

Розроблено ефективні способи знешкодження висококонцентрованих залишків, отриманих після очищення стічних вод різного походження, трансформацією їх у твердий практично водонерозчинний стан. Одержані матеріали можуть бути використані під час виконання робіт з планування території під будівництво споруд нежитлового призначення, доріг, промислових майданчиків тощо. Показана можливість істотного зменшення вологості висококонцентрованих залишків при їх зневодненні методами вакуумної фільтрації або центрифугування (на 17,1 і 6,9 % відповідно).

Розроблено спосіб одержання із шламових відходів глиноземного заводу залізоалюмінійвмісних коагулянтів, які показали високу ефективність при очищенні річкових і промислово-побутових стічних вод.

Розроблено оригінальний спосіб переробки відходів поліетилентерефталату, який дає змогу одержувати конструкційні матеріали з заданими експлуатаційними властивостями.

Телефон: 559-20-71