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Анотація. Метою статті є синтез і дослідження в середовищі  емулятора QCE ряду найпростіших 

традиційних і нових квантових  логічних елементів та алгоритмів. 

Аннотация. Целью статьи является синтез и исследование в среде эмулятора QCE ряда простейших 

традиционных и новых квантовых логических элементов и алгоритмов. 

Abstract. The aim of present paper is emulation and exploration of primitive quantum logical elements by 

QCE emulator tools. This emulator is based on Izing quantum computer hardware model. 
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PROBLEM ACTUALITY AND INVESTIGATION AIM 

Today quantum computation problem is one of key problems of computer sciences [1]. It became actual 

problem after proving of n -tuple quantum register parallelism. Due to this phenomenon n -tuple quantum 

register during single machine instruction may contain and process not one but 
n2  n-digit numbers 

simultaneously. Sense of parallelism is in fact, that quantum bit (QB) is not in fixed state logical 0 or 1 (if its 

state is not fixed especially), but uniformly in two states, thus average bit value is 0.5. Such quantum parallelism 

may be used for quick solving of many problems, such as search in large disordered databases (Grover’s 

algorithm), or big integers factorization (Shore’s algorithm). Actuality of last problem lies in sense of high-

protected computer cryptosystems design. Quantum bits, which role may play different objects, such as electron 

or nuclear spin aggregates, quantum dots massifs, Josephson junctions in superconductors and other, may be 

guided by electric or magnetic fields, optical radiation (e.g. laser beam), etc. But now direct experimental 

researches with such objects are expensive and require special equipment. In other hand theoretical computation 

and physical modeling are essential of every new microprocessor generation design. The aim of present article is 

synthesis and approbation of some quantum logical elements and quantum algorithms. 

QCE PRINCIPLES AND BASIC OPERATIONS 

Especially for quantum computers (QC) and quantum algorithms (QA) designing, study and 

investigation purposes some variants of quantum computer emulators (QCE) are developed. One of it is emulator 

QC on nuclear magnetic resonance (NMR) [1]. It is realized by C++ programming language. Essence of 

emulation process is solving of time-dependent Schrödinger equation (TDSE) by Suzuki product method. This 

method is approximate, but its results are enough exact for most of practical purposes. TDSE is solving for 

aggregate of spins, which are in strong static and radio-frequency (RF) weak magnetic fields and interact one 

another by exchange field, which causes  phenomenon of ferromagnetism. 

As model Hamiltonian we use Izing Hamiltonian, which may be represented as: 

 ( ) ( ) ( )∑ ∑ ∑ ∑
≠ = =

−−=
ji zyx i zyx

jjjiij StHSStJtH
,, ,,α α

ααααα , (1) 

where 
α
ijJ  – exchange coupling integral between spins with numbers i  and j , ( ) −tH

j

α
total magnetic 

field acting on spin number j  along −α axis direction. ( )tH j
α  dependence is: 

 ( ) ( )ααααα ϕπ jjjjj tfHHtH ++= 2cos10
, (2) 

where α
jH 0
– static part of magnetic field, −ααα ϕ jjj fH ,,1

 respectively amplitude, frequency and initial 

phase of RF magnetic field, which acts on spin number j  along −α axis direction. 

All QA, which may be designed and checked by this QCE, are sets of microinstructions (MI) in which 

framework the external static and RF and internal exchange magnetic fields acting on spins (which represent 
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QB) and duration of their acting are determined. 

MIs are the “electronic blanks”, in which corresponding cells we type values of Hamiltonian parameters 

according to desired action on spins. Action of external and internal magnetic fields on spins may be represented 

in terms of their rotations by user defined angles around fixed axes. Model Hamiltonian parameters are not 

enough for rotation angle definition. We must define the MI action time. For this purpose in “electronic blank” 

are the corresponding check boxes named “Main step”, “Intermediate steps” and “Time step”. Usually we take 

Main step=Intermediate steps=1. Thus MI action time is determined by Time step value. 

Basic QC operation is spin (QB) number j rotation by arbitrary angle around fixed axisα . Note, that 

this rotation may be realized if magnetic field is directed along rotation axis. If time is measured in full phase 

units, i.e. π2 , we may take corresponding static magnetic field 10 =α
jH  ( zyx ,,=α ). Thus executing time of 

MI πϕτ 20= , where 
0ϕ  is rotation angle in radians. 

In order to illustrate interaction between QBs we describe operation ( )012 ϕR , which realizes controlled 

spin rotation by predetermined angle around z -axis. It acts in such manner. Guided spin (QB) 1 rotates around 

z-axis by 
0

ϕ  angle if guiding spin (QB) 2 is in logical 1 state and remains in initial state in opposite case. In 

order to include interaction between QBs at first we turn guiding QB by 2π  angle around y-axis clock wise. 

This is first МІ 2Y . Second MI ( )012 ϕA  realizes controlled rotation of QB 1.Its parameters 

are: 112 −=
x

J , 5.001 =x
H , and action time is πϕτ 20= . After that guiding QB must be returned to initial state. 

This may be realized by inverse transformation 2Y . Thus we have ( ) ( ) 20122012 YAYR ϕϕ = . 

Another important QC operation is controlled phase shift. Its parameters 

are JJHHJJ
z

j

z

i

z

ij 000 ,2, ϕτ −=−=== . This operation doesn’t influence on logical 0 or 1 probabilities for 

acting QB’s. This property is important for quantum interference using in QA based on discrete Fourier 

transformation (DFT). Quantum interference has full analogy with interference of waves in optics. 

Attractive peculiarities of this emulator are its physical clearness and free of charge circulation in 

Internet for education purposes. 

Emulator has demonstration set of algorithms, but user may design and approbate different QA by using 

graphic user interface and option of generation approbation results as numerical data file for further mathematic 

processing. 

MAIN RESULTS AND ITS DISCUSSION 

Now we describe some synthesized traditional and new primitive elements. They are: CNOT gate, 

swapping gate, 3-QB Toffoli gate, which may be used as AND gate, coincidence circuit and XOR gate on 3-QB 

rotation operation basic, OR gate, trigger and “smart” swapping gate. Yet we synthesized and approbated 

Grover’s database search algorithm for 8 records database and Na
x mod  period “indicator”.         

Consider, e.g. CNOT gate. It’s one of basic quantum gates. If QB 1 is controlling and QB 2 is target, 

that CNOT operation may be represented as 212212 YIYCNOT = , where 22 ,YY  are QB rotations by angles 

2π± around y  axis, 12I - operation with parameters .5.0,5.0,1 0112 ==−= τzz
HJ  Its physical sense is QB 2 

by angle π− rotation around z-axis. Magnetic field compensates exchange field if controlling QB is in logical 0 

state and amplifies it if controlling QB is in logical 1 state. Thus QB 2 inverts if QB 1 is in logical 1 state and 

doesn’t invert in opposite case.  

By CNOT gates combination we can design ordinary SWAP gate as 

12211212 CNOTCNOTCNOTSWAP = . 

We may design the inverse CNOT gate. It may be represented as
2122

)(
12 YIYCNOT

inv
= , where 

12I  is 

operation with parameters .5.0,5.0,1 0112 =−== τzz
HJ This inverse gate inverts target QB if control QB is in 

logical 0 state and not inverts target QB in opposite case. 

Toffoli gate repeats first and second input QB and inverts third input QB if first and second inputs QB 

both are in logical 1 state. In other cases Toffoli gate repeats third input QB too. If input QBs are 1,2,3 and 

output ones are 4,5,6 in reduced form Toffoli gate may be represented as  

 ( )( ) ( )( ) ( )( ) ( )( ) 414452556366266166266456123 4444 YIYYIYYIRIRIRIRLOGTOF
yyyy

−=−
, (3) 

where ( )46

y
R and ( )46 −

y
R are rotations of QB 6 by angles 4π or 4π− respectively. 
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              Fig. 1. CNOT-gate                 Fig.2. Ordinary swapping gate              Fig.3. Toffoli gate for 6 QBs 

 

If initial state of output QB 3 is logical 0 then XOR-NOT gate (coincidence circuit) may be represented as: 

 
31233123)( YIYNOTXOR =− , (4) 

where operation 123I  has parameters .5.0,12313 === τzz
JJ It means, that ordinary XOR gate may 

be represented as: 

 
3123331233123 YIYYIYXOR == . (5) 

 

              

                                  Fig.4. Coincidence circuit                                       Fig. 5. XOR gate 

 

By CNOT and Toffoli gate using we may synthesize elements OR, AND as well as trigger. Let QBs 1, 

2 are input and QB 3 is output. Install QB 3 into logical 0.In this case AND gate may be represented as: 

 
32,1 −= TOFAND . (6) 

Now install QB 3 into logical 1.In this case OR gate may be represented as: 

 2

2

2

13)2,1(

2

2

2

1 YYTOFYYOR −= . (7) 
 

                          
                          Fig. 6. AND or simple Toffoli gate                           Fig. 7. OR gate 

 

Now we describe the trigger. Let QB 1 is information input (D), QB 2 is enable input (E), QB 3 is direct 

output (Q) and QB 4 is inverse output ( Q ). If enable input is in logical 0 state trigger repeats input information 

(QB1) on direct output and inverts it on inverse output. In opposite case outputs 3 and 4 are swapping. This may 

be represented as: 

 
3133414432334244)4,3()2,1( YIYYIYYIYYIYTRG =−
. (8) 

Corresponding between input and output states of trigger may be represented by table 1. 

Let us consider yet “smart swapping gate”, which changes values of two QBs, if they are different and 

not changes it in opposite case. It is really XOR-circuit with feedback. QB 1 and 2 are input. 

If they are different, that XOR(1,2)=1 and XOR(1,2)=0 in opposite case. If QB3 (auxiliary), which is 

output for XOR we use as controlling QB for QBs 1 and 2, we obtain such resulting representation for “smart 

swapping gate”: 

 
3123322321131123231 YIYYIYYIYXORCNOTCNOTSmSWAP == . (9) 

Table 1. 

Corresponding between input and output states of trigger 

QB1 (D) QB2 (E) QB3 (Q) QB4 ( Q ) 

0 0 0 1 

1 0 1 0 
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0 1 1 0 

1 1 0 1 
 

                     
                                         Fig. 8. Trigger                                  Fig. 9. “Smart” swapping gate 

 

Now we consider Grover’s algorithm [2] for 3-QB database, which contains 8 3-QB words (records). Its 

basic operation is controlled phase shift by 8π  angle. Parameters of corresponding MI 
12g  are 112 =

z
J , 

.25.0=τ  QA consist of 3 stages: preparing 3-tuple register superposition state, labeling of records and search of 

records. This may be represented as: 

 2
33

2
22

2
11

3
12

3
12112233 XYXYXYgfgXYXYXYGROV jj = . (10) 

Here 
jf  are the labeling functions for records with numbers 0, 1…7. They may be represented as it’s shown in table 2 

 

Table 2. 

Labeling functions for different records 

Number of record, j  Labeling function jf  representation 

0 
112233 XYXYXY  

1 
112233 XYXYXY  

2 
112233 XYXYXY  

3 
112233 XYXYXY  

4 
112233 XYXYXY  

5 
112233 XYXYXY  

6 
112233

XYXYXY  

7 
112233 XYXYXY  

 

Now consider alternative version of Grover’s algorithm for 3 QBs. It has the form: 

 2
33

2
22

2
11231312231312112233

~
XYXYXYgggfgggXYXYXYGROV jj = . (11) 

Labeling functions for it are represented in table 3.  

Table 3. 

Labeling functions for records in alternative algorithm 

Number of record, j  Labeling function  representation
jf

~
 

0 
112233 XYXYXY  

1 
112233 XYXYXY  

2 
112233 XYXYXY  

3 
112233 XYXYXY  

4 
112233 XYXYXY  

5 
112233 XYXYXY  

6 
112233 XYXYXY  

7 
112233 XYXYXY  

But last algorithm is not exact. Simulation shows, that algorithm represented by (10) generates numbers 

of records { }7,6,5,4,3,2,1,0  in binary notation. Algorithm (11) generates “average” numbers {0.875, 1.625, 

2.375, 3.125, 3.875, 4.625, 5.375, 6.125}, or numbers { }7,6,5,4,3,2,1,0  with probability 0.67. It’s quantum 

effect, which hasn’t classical analog.  

Consider yet “quantum emulator” of classical Shore’s algorithm. It’s not quantum Shore’s algorithm in 

the true sense. But it’s “indicator” of period Na
x mod  function. Since 1mod =Na

x , if 0=x , then period of 
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this function is first positive integer, for which 1mod =Na
x .  Let ,15=N  2=a . Hence we have .4=x Now 

we obtain 35)12)(12(15 22 ⋅=−+= . In binary notation 1004 = , 0011 = . Let use QBs 4, 5, 6 for indication of 

Na
x mod  period and QBs 1,2,3 for indication Na

x mod  value if 1mod =Na
x . Thus for the case ,15=N  

2=a  indicator performance algorithm may be represented as: 

 2
2

3
363325221411 YYIYYIYYIYf = . (12) 

Values of cubits for this case are represented in table 4. 
 

Table 4. 

Values of cubits for different x if ( ) 15mod2 xxf =  

x  QB1 QB2 QB3 QB4 QB5 QB6 

1 0 0 1 1 0 0 

2 1 1 1 0 1 0 

3 0 1 1 1 1 0 

4 1 0 0 0 0 1 
 

From this table we see, that period of ( ) 15mod2 xxf =  is equal to 4 because only for this case we 

obtain 1 (in binary notation) in “indicating” QBs 1, 2, 3. 

CONCLUSIONS 

1. Іn Izing quantum computer hardware model framework we emulated and investigated some primitive 

quantum logical elements. Standard ones are CNOT and TOFFOLI GATE. Last one may be considered as 

universal logical element. New ones are “traditional” classical computer logical elements, as coincidence 

circuit XOR-NOT, XOR, AND, OR, trigger and introduced by authors “smart” swapping gate.  

2. For XOR-NOT, XOR and “smart” swapping gate synthesis we introduced the new 3-QB rotation 

operation 123I .  

3. Yet we emulated and explored some algorithms, as two Grover’s algorithm versions for 8 records 

database and period indication algorithm for Na
x mod  function in case 15,2 == Na . 
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