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The symmetrized lattice Kirkwood-Salsburg (KS) equation for the Gibbs grand canonical correlation functions
of the lattice oscillators, interacting via positive infinite-range manybody potentials, is solved. The symmetriza-
tion is based on the superstability condition for the potentials.
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We consider Gibbsian (equilibrium) systems of oscillators, whose one-dimensional coordinates
¢ € R are indexed by sites « of the hyper-cubic lattice Z¢ with the potential energy (see also [1])

Uclar) = Y ulgz) +Ulaa),  Ulan) = Y, éx(ax),

€A |X|>1,XCA

where the summation is performed over the one-point sets and sets with greater then 1 number of
sites in the first and second sums, respectively, gx = (¢, € X C A), u is an external potential,
¢x is a | X|-body positive interaction potential, A C Z¢ and the number of sites in A is finite, that
is |A| < co. States of these systems are described in the thermodynamic limit by the sequence p
of grand canonical correlation functions p = {p(gx), X C Z%,1 < |X| < oo} satisfying the lattice
oscillator Kirkwood-Salsburg (KS) equation (we derive it in the Appendix)

p=z2Kp+ za,

where 2 is the activity(a thermodynamic parameter), a(gx) = dx|,1 = 0,|X| # 1,0;x)1 = 1,| X[ =
1. The linear KS operator K is defined on sequences of measurable functions F = {F(gx), X C
73,1 < |X| < oo}as follows

(KF)(qx) = Z /K(q:c|QX\x§QY) {F(QX\qu) - /V(dQJL‘)F(QXUY)] v(dgy), 1<|X]|< o0,
yCXe

where the integrations are performed over R and RIY! in the integral within the square brackets
and the other, respectively,

-1
v(dgy) = H v(dgy), v(dg) = e Aul® (/ e_ﬂ”(‘”dq) dg, X¢=70X,
yey

and 8 > 0 is the inverse temperature. If X = z, then the first term in the square bracket is missing.
The KS kernels are defined as follows

Y] n

K(qzlqx\oi gv) =e PV (orlaxa) Z Z H (e_ﬂw(qx;qyi =) _ 1) =e AWl [ (g5 qy),
n=1UY;=Y,Y;#0 j=1
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W(galay) =Ulgaav) = Ulgy) 20, Wilgxsavle) = > uzuy(gzoy).
2E€ZCX

Where the summation in the expression for the KS kernel is performed over n subsets whose union
is Y. We will also demand that the superstability condition |2] for positive potentials should hold

uy (qv) < Jy Z v(gy), No = /eBWU(Q)V(dq) < 00, v >0,

yey

[|J]l1 = max 3> Jy < oo and the summation is performed over subsets of Z? containing a site x.
Y,x2€eY

Usually the considered systems are described by canonical correlation functions [3, 4] which
are determined in the high-temperature regime by convergent cluster expansions. One hopes to
show that they satisfy the KS equation by analogy with correlation functions of particle systems
[5]. Tt is well known that the canonical ensemble correlation functions generate vacuum averages
in the lattice boson Euclidean quantum field theory for the case of the nearest neighbor bilinear
pair potential [6, [7].

The KS equation for an integer valued spin Ising model with a pair potential, whose solutions
describe vacuum field averages in the two-dimensional lattice Higgs-Villain model, appeared earlier
in [|8]. The case of unbounded spins (oscillator variables sometimes are treated as unbounded
continuous spins) is more complicated than the case of bounded spins or lattice gas and the results
concerning solutions of the KS operator for the latter, exposed in [9], cannot be easily generalized
to unbounded spins either for infinite-range manybody or non-positive potentials (this conclusion
follows from []]).

In [1] we considered the case of finite-range positive manybody potentials and super-stable
pair potentials with a different representation of the KS kernels and showed that for positive
pair potentials the KS equation is easily solved. For a non-positive pair potential we proposed to
symmetrize the KS operator (with respect to the super-stability condition) and established that
the symmetrized KS equation (the KS equation with the symmetrized KS operator) can be solved
proving that the symmetrized KS operator is bounded in a natural Banach space Ef¢ which will
be used by us in this paper. But our method failed for infinite-range manybody potentials. Starting
with the above representation for the KS kernels we are able to derive in this paper the basic bound

K. (gx) < exp{&B(c1 + cov(qa) + W' (2]gx))}, (1)

where c¢1, co do not depend on oscillator variables and lattice sites and

K.(gx) = D, §'Y‘/IK(qxqu\x;qy)IV'(dqy% V' (dgy) —exp{Zf G } (dgy),

YCXxe zEY
Wizlgx) = > vlgy) Y. Jeoyuy(1+No)¥l
veX\e  YC(aUy)©

Note that positivity of W permits to substitute K.(qx;qy) into the expression for the kernel
K, (gx) instead of K,(gx;qy). W’ satisfies the following remarkable inequality

Z Wl(x|qX) = Z 'U(Q:c) Z Z JyU;cUY(l + NO)‘Yl

zeX z€X yeX\z YC(zUy)°
<SS @) Y Y ey NI S wl@), (2)
zeX ye(z)e Y C(xUy)e zeX
where
[l = max (@), (@)= Y Jeuz(l+No)? (2] + 1) I>1.
ZC(x)e
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The basic bound (1) permits to symmetrize the KS operator and prove that the symmetrized oper-
ator is bounded in the Banach space Ey ¢ which is the linear space of sequences F' = {Fx (¢x), X C
Z%,1 < |X| < 0o} of measurable functions with the norm

[1F1]5. = max g™ 'XesssupeXP{ > g }|FX ax)l,  fla) =Bv(a).

reX
Let x.(gx) be the characteristic(indication) function of the set D, where the inequality
W (zlgx) < [J1v(ga) (2)
holds. Then (2) implies that U,cx D, = RXI or
D xalax) 21
zeX

since D, may intersect for different z. It is more convenient to deal with

-1

doxwlax) | xelax), D xilax) =1 (3)

yeX zeX

The symmetrized KS operator K is given by
(KF)(gx) =Y _ xilax) > /K 2| x\2342) [ (QX\xUZ)/V(de)F(QXUZ)} v(dgz),
zeX ZCXe

where for X = z the first term in the square bracket corresponding to Z = () is equal to zero. The
symmetrized KS equation R
p=zKp+ za (4)

is derived after multiplying both sides of the KS equation by the characteristic function x%(gx)
and applying (3). Our main result is formulated in the following theorem.

Theorem. Let v > 2£|J|1, G(§) = EN{|J|2, where N§ = Ny' [v(q)v'(dg). Then the norm
of the symmetrized KS operator in the Banach space Ey ¢ satzsﬁes the followmg bound || K||5¢ <
(€71 + No)e®F©) and the vector p from the space By ¢

p= Z 2K
n=0

determines the unique solution of the symmetrized KS equations in Es¢ if |z| < ||I~(||;é

Proof. If the basic bound (1) holds then the proof is almost trivial since for the norm of the
KS operator we have the following inequality

1K]le.r < (€71 + No)maxesssup K (ax|f),  K(ax|f) = Y xilax)e " Ko (ax).
ax rzeX

As a result of (2') and (3) one obtains for v = {(c2 + |J]1)

K(gx|f) < e Pesssup exp {—vBv(q) + BE(ca + |1 )v(g)} = e“%P,
q

The most simple choice is &€ = (Bc1)~!. The theorem will be proved if we prove the basic bound
(1) and show that ¢; = N§|J|2, ca = |J]1.
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Proof of the basic bound (1). We have the following inequalities which are analogues of the
inequalities for the KS kernels for the lattice gas systems from [9]

|Y] l

Rlox) < 30 3 57T [l
YCXxe I=1UY;=Y j=1
n l
= e 3 35 I [t i)
n>20  |Y|=nYCXcI=1UY;=Y j=1
n
< S| e i)
n>0 = |YyCXe
= ope [l 1)
YCXe

Hence, for positive potentials uy > 0 one derives the following estimate

Rolax) <ep €8 3 [IWlaxiav o/ (dev) § (5)

YyCXe

Moreover,

Wi(gx;qvlr) < Z luzuy (gzuy)| < Z Jzuy Z v(qy)

2€ZCX 2€ZCX yCZUY
= Z Jzuy ZU(Qy)+ Z U(Qy)+v(qx)
z€ZCX yey yeEZ\x

Then the last inequality yields

/IW(qx;qylx)IV’(dqy)<N0‘Y| > Jeozoy | NgIYT+ D vlgy) +v(g)
ZCX\w yeEZ\x

= NS Teozoy INGY Ho(@)] N YT w(e) Y] ueuzoy
ZCX\z yeX\z ZC X\ (zUy)

Here we utilized the equality

SNNY Fysy = > > F(Yuyy).

YCA yeY YEA\X YCA\y

As a result

> / W (ax: av )/ (day) < NolJla + 1T 110(az) + W (lx)-
YCXe

The last inequality and (5) prove the basic bound. The theorem is proven.

The analogue of the theorem can be easily proven for the quantum lattice oscillator KS equation
generalizing the result of |10] where only finite-range manybody potentials (special non-positive)
were considered. The theorem can be also easily generalized to the classical case of special non-
positive infinite-range manybody potentials from [10].
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1. Appendix

To derive the KS equation one has to start from the following expression for the grand canonical
correlation functions in a compact set A

pMax) = Y N [uageye e,

YCA\X

where Y is the characteristic function of A, the grand partition function =, coincides with the nu-

merator of the right-hand side of the empty set X. The usual Gibbs correlation functions are derived

by multiplying the righthand side of the last equality by the exp{—8 > u(q.)}([ e ?*@dg)~1XI
FASHIN

and renormalizing the activity by the multiplier [ e~ P49 dq. We have the equality

Ulgxuy) = Ulgxuy\z) + W(gzlgx\zuy)- (6)

In order to derive the finite-volume KS equation one has to represent the exponent of
—BW (qz|gx\2uy) in terms of the KS kernels. Let

W(qx,qy|:c Z Z uzus(qzus) Z W(qx;qs|z).

2€ZCX 9£SCY P£SCY
Then
W(gelax\ar av) = W(gzlax\a) + Wax; qv|z),
and
e*ﬁw(QX;qY\I) — H (1 + ( —BW (gx;gs|z) )) Z K.(qx;4s), K.(gx;q9) = 1.

P£SCY SCY

Then, using (6) and substituting this equality into the expression of the finite volume grand canon-
ical correlation functions one obtains

pA(qX) — Exle Z ZlYUXl/ dqy) —BU(gxuy\z) Z K(QQL|qX\:qu)
YCA\X S5Cy
= ShaX) Yo MY / (dgy ) K (ga|qx a5 g5 )e~ PV (0xom )
YCA\X sCy

z Z / (dgz) K (gzlqx\ai 42)Ex ' XA (X U 2)
ZCA\X

% Z Z|YUXUZ|—1/V(dqy)e—BU(QX\mQY).

Y CA\(ZUX)

The equality

PMaxie) = Ex xa(X\e) Y Zlyux‘il/V(qu)efﬁU(qx\”q”
Y C(A\X)Uz

leads to

Exle(XU Z) Z Z\YuXuZ\—l/V(dqy)e—BU(qX\mqy)
Y CA\(ZUX)

= xa(@) (P (gxeuz) — / v(dg)0™ (@xuz))-
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It is clear that the terms with z € Y in the sum, representing the first term in the round brackets,
are canceled by the same terms in the sum representing the second term in the brackets. That is,
the KS equation is given for z € X, |X| > 1 by

pMax) = zxa () Z /K(Qz|QX\w;QZ) {PA(QX\QLUZ) - /V(d%)PA(unz)} v(dgz)

ZCA\X

and for X =z by
PMas) = zXA(x){l - / oM g (dgs)

+ ) /K(qxlqz) [PA(QZ) /V(de)pA(QZUz):| V(qu)}-

1Z|21,2CA\&

The infinite volume KS equation is derived if one puts A = Z<.
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[0 piBHSHHSA piBHOBarm rpaTkoBoro ocuuaaTopa 3 N0O3MTUBHUMMU
HeCKiH4eHHOCS)KHUMU OaraTto4yacTUHKOBUMM NOTEHLianamm

B.1. CkpunHik

IHCTUTYT maTemaTtuku, Kuis, YkpaiHa

Po3B’a3aHO cMMeTpu3oBaHe rpaTkoBe piBHAHHA KipkByaa-3anb3bypra ons ri6bCciBCbknx BENMKOKAHOHIY-
HUX KOPENsLUiiHNX GYHKLI MPaTKOBMX OCLIMASTOPIB, L0 B3AEMOA|IOTb Yepes NO3UTUBHI HECKIHYEHHOCSXKHI
6araTo4yacTUHKOBI NOTeHUian. CumMeTpr3aLia 'pyHTYETLCS HA YMOBI CyNnepCTIlKOCTi 415 MOTEHLianiB.

Knou4oBi cnoBa: rpatkoBi ocUMISITOPY, BESINKUI KaHOHIYHUY aHcambsib [66ca, cynepCTivikicTb,
piBHsIHHS KipkByaa-3anb36ypra

43702-6



	Appendix

