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The order parameter and susceptibility of the 3D
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The present work is devoted to the investigation of the 3D Ising-like model in the presence of an external field
in the vicinity of critical point. The method of collective variables is used. General expressions for the order
parameter and susceptibility are calculated as functions of temperature and the external field as well as scaling
functions of that are explicitly obtained. The results are compared with the ones obtained within the framework
of parametric representation of the equation of state and Monte Carlo simulations. New expression for the exit
point from critical regime of the order parameter fluctuations is proposed and used for the calculation.
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Introduction

Most problems of statistical physics are not exactly solvable. Only certain problems of physical
interest have got exact analytical solutions. In particular, this is the two-dimensional Ising model
[1]. However, in the presence of an external field one should resort to some approximate methods
again. Thus, for theoretical description of physical phenomena two types of approaches are used.
The first one is the approximate description for physically reasonable models. Such an approach
does not possess a sufficient mathematical rigour. Nevertheless, it allows one to obtain qualitative,
and sometimes quantitative information on the system behaviour. Another way is to carry out the
investigation of either classical or quantum systems within the framework of some basic exactly
solvable model systems. In many cases this is evidently an effective means. On the one hand, any
mathematical model is only an approach to the real image of the physical system. On the other
hand, those several models, for which rigorous mathematical estimates can be obtained, deserve
careful study. An example of this way of implementation is the approximating Hamiltonian method
devised by N.N. Bogolyubov (Jr.) [2–4], Subject to these models it was argued in [3], that this
method gives rise to asymptotically exact solutions in the thermodynamical limit being sufficient
for many applications.

Nonetheless, so far the available theoretical methods frequently produce mathematical singular-
ities appearing in the vicinity of the second order phase transition point. Thus, the problem needs
to be treated very carefully in this case. From this point of view the Yukhnovskii’s method of a
phase transition description [5] used in this work is quite consistent with Bogolyubov’s(Jr.) ideas of
using the canonical collective variable transformation approach to the corresponding Bogolyubov’s
functional equation [6–8] for the correlation functions of a simple magnet system Hamiltonian in-
stead of that for the standard Ising model. The related functional equation splitting, compatible
with the Bogolyubov’s principle of correlations weakening, proves to be equivalent to the suitable
mean-field approximation of higher order, giving rise to a closed solution in the thermodynamical
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limit. Thereby, the both methods enable one to obtain a complete solution of the problem (at least
approximately) starting with specifying a Hamiltonian and finishing with calculating thermody-
namic functions [9]. In the present paper, the study of physical characteristics is performed at near
phase transition temperature Tc in the presence of external field.

1. The model

The properties of spin systems are known to be very well described by the Ising model. The
Hamiltonian of this model in the external field is written in the form

H = −1

2

∑

i,j

Φ(ri,j)σiσj −H
∑

i

σi . (1.1)

Here Φ(ri,j) is a short-range interaction potential between spins located at the i-th and j-th sites
of a simple cubic lattice with a lattice constant c. The spin variables σi take on two values ±1, and
H is an external field.

The partition function of the three-dimensional (3D) Ising model can be expressed in terms of
the collective variables (CV) [5]

Z =

∫

exp

(

1

2

∑

k∈B

βΦ̃(k)ρkρ−k

)

Jh(ρ)(dρ)
N (1.2)

where Jh(ρ) is the transition Jacobian from the spin variables σi to the CV ρk and β = 1/kBT is
the inverse temperature. The summation in (1.2) is performed over the wave vectors k within the
first Brillouin zone

B =

{

k = (kx, ky, kz)|ki = −π

c
+

2π

c

ni

Ni
;ni = 1, 2, . . . , Ni; i = x, y, z

}

(1.3)

that corresponds to the volume of periodicity

Λ = {l = (lx, ly, lz)|li = cni;ni = 1, 2, . . . , Ni; i = x, y, z} (1.4)

and N = NxNyNz is the total number of spins.
In the expression for the partition function (1.2) the Fourier transform of an interaction poten-

tial arises. In the case of exponentially decreasing potential

Φ(ri,j) = A exp(−ri,j/b) (1.5)

its Fourier transform has the form

Φ̃G(k) =
Φ̃(0)

(1 + b2k2)2
, Φ̃(0) = 8πA(b/c)3. (1.6)

Here b is the effective interaction range.
The long-wave (small values of the wave vector k) fluctuations of the spin moment are known to

play a crucial role in the system behaviour near the critical point. Therefore, the explicit dependence
of the Fourier transform of the interaction potential is used only for small values of the wave vector.
For large k, Φ̃(k) is assumed to be constant. In our investigation we will use the so-called parabolic
approximation for Φ̃G(k) with “small” values of the wave vector k and an averaged estimation in
the short-wave region

Φ̃(k) =

{

Φ(0)(1− 2b2k2), k ∈ B0 ,
Φ0 = Φ(0)Φ̄, k ∈ B\B0 .

(1.7)

Here the quantity Φ0 characterizes the part of the potential averaged with respect to large values
of k ∈ B\B0 which are not essential for describing the critical behaviour. However, the value Φ0 is
essential in calculating non-universal quantities, for example, the critical temperature.
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Figure 1. A sketch for the Fourier transform (1.6) of the interaction potential (1.5)(curve 1)
and its parabolic approximation (1.7) (curve 2). The curve 3 corresponds to Φ0 = Φ(0)Φ̄ with
Φ̄ from (1.10).

In such a way we replace (1.6) with the formula (1.7) where

B0 =

{

k = (kx, ky, kz)|ki = − π

c0
+

2π

c0

ni

N0i
;ni = 1, 2, . . . , N0i; i = x, y, z

}

(1.8)

is the region of validity for the parabolic approximation. Equalities N0xN0yN0z = N0 and N0 =
Ns−d

0 (d = 3 is the space dimension) take place and s0 > 1. The parameter s0 determines an
effective block lattice with a lattice constant c0 = cs0. The parameter s0 itself is determined
differently for different potentials provided that in the region of k ∈ B\B0 the dependence of the
interaction potential on the wave vector should be the weakest. To find numerical value of s0 we
impose the condition (see figure 1)

Φ(B0) = Φ(0)Φ̄. (1.9)

Here B0 = B/s0 with B = π/c being the boundary of Brillouin zone. The quantity Φ̄ is presented
in the form of two terms

Φ̄ = 〈Φ̃G(k)〉B\B0
+Φ∞ (1.10)

where the first one 〈Φ̃G(k)〉B\B0
is the averaged value of Φ(k) in the interval (B/s0, B]

〈Φ̃G(k)〉B\B0
=

∫

B\B0

Φ̃G(k)dk

/
∫

B\B0

Φ(0)dk. (1.11)

It results in

〈Φ̃G(k)〉B\B0
=

3

2π2

s30
s30 − 1

(c

b

)3
[

b

c

(

s−1
0

1 +
(

π
s0

)2
(

b
c

)2
− 1

1 + π2
(

b
c

)2

)

+
1

π
arctan

(

π
b

c

)

− 1

π
arctan

(

π

s0

b

c

)]

. (1.12)
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The second term in (1.10) Φ∞ is determined by the condition that βcΦ(0) → 1 when the ratio
of b/c → ∞. Thereby, taking into account the condition (1.9) as well as the expressions (1.7) and
(1.10) we obtain the equation for finding s0

s0 = π
√
2
b

c
(1− Φ̄)−1/2. (1.13)

As we can see, the quantity s0 depends on the ratio of the effective range b to the lattice constant
c. The calculated values of s0 (for different b/c) are reported in table 1.

Table 1. Numerical values of the parameter s0 depending on b/c.

b/c 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.8 1.0
s0 1.5996 1.7680 1.9429 2.1228 2.3070 2.4947 2.6853 3.4690 4.2741

2. The results of calculating the partition function in the e xternal field

In our calculations we will use the “ρ4-model” approximation [5]. The functional representation
for the partition function in this approximation is as follows

Z = Z0

∫

(dρ)N0 exp

[

a1
√

N0ρ0 −
1

2

∑

k∈B0

d(k)ρkρ−k − a4
4!

N−1
0

∑

ki∈B0

ρk1
. . . ρk4

δk1+...+k4

]

. (2.1)

Here the quantity d(k) contains the Fourier transform of the interaction potential

d(k) = a2 + βΦ(0)Φ̄− βΦ(k) (2.2)

and expressions for an have been obtained in [10].
Computation of (2.1) is performed by using the Kadanoff’s idea of constructing block lattices

[11, 12]. These calculations were first realized by K.Wilson [13, 14]. In our work we will use the CV
method proposed by I.Yukhnovskii [5] being generalized to the case of an external field present in
[15]. Based on it, the step-by-step integration of the partition function over the layers of the CV
phase space leads to the following expression

Z = Z0

[

Q(d)
]N0

( np
∏

n=1

Qn

)

ZLGR . (2.3)

Here

Z0 = 2N (coshh)N exp(
1

2
NβΦ(0)Φ̄) (2.4)

with the dimensionless field h = βH. The explicit expression for quantities Q(d) and Qn are given
in [15]. Specifically, Qn corresponds with the partial partition function of the n-th layer (or, in
other words, the n-th block structure) and is expressed in the form

Qn =
[

Q(Pn−1)Q(dn)
]Nn

(2.5)

where Nn = N0s
−3n with s being the parameter of splitting the set of CV into subsets. Explicit

expressions for Q(Pn) and Q(dn) can be found in [9]. Every Qn is characterized by its own set of

coefficients dn(k), a
(n)
1 and a

(n)
4 . For them, recurrence relations (RR) take place (the work [10] is

devoted to this problem). By introducing notations

dn(Bn+1, Bn) = dn(0) + qs−2n, q = βΦ(0)q̄,

a
(n)
1 = s−nωn, dn(0) = s−2nrn, a

(n)
4 = s−4nun
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we get RR in the following form

ωn+1 = s
d+2
d ωn ,

rn+1 = s2[−q + (rn + q)N(xn)],

un+1 = sunE(xn). (2.6)

Special functions N(xn) and E(xn) are presented in [15]. Their argument is

xn = dn(Bn+1, Bn)

(

3

a
(n)
4

)1/2

.

One of the solutions of the RR (2.6) is the fixed point given by coordinates

ω∗ = 0, r∗ = −f0βΦ(0), u∗ = φ0(βΦ(0))
2. (2.7)

with coefficients f0 and φ0 [9]

f0 = q̄
N(x∗)− 1

N(x∗)− s−2
, φ0 =

3(q̄)2

(x∗)2

[

1− s−2

N(x∗)− s−2

]2

(2.8)

where

q̄ = 2

(

b

c

)2
π2

s20

〈

k2
〉

(s−1,1]

with s0 from (1.13).
When n 6 np the system possesses renormalization group (RG) symmetry and the solutions of

RR can be written in the form of eigenvalue expansions

wn = s
3/2
0 hEn

1 ,

rn = r∗ + c1E
n
2 + c2REn

3 ,

un = u∗ + c1R1E
n
2 + c2E

n
3 (2.9)

where El are the eigenvalues of a matrix of RG transformation for the RR linearized near the

fixed point (2.7) [16], R = R(0)(u∗)−1/2 and R1 = R
(0)
1 (u∗)1/2. Coefficients cl are defined by initial

values of the quantities ωn, rn and un (at n = 0)

ω0 = s
d/2
0 h, r0 = a2 − βΦ(0)(1 − Φ̄), u0 = a4 .

Thus, np determines the number of iterations while the system belongs to the critical regime of
the order parameter fluctuations. That is why the product in (2.3) is performed up to np only.
Thereby, the quantity np is referred to as the exit point.

The equality c1(Tc) = 0 coincides with the required condition for the critical temperature (in
h = 0) to exist [9]. It yields the equation [16]

Ax2 +Bx+D = 0 (2.10)

where x = βcΦ(0) and for coefficients we have

A = 1− f0 −R(0)φ
1/2
0 − Φ̄, B = −a2, D = a4R

(0)φ
−1/2
0 . (2.11)

Taking into account the above mentioned condition

lim
b/c→∞

βcΦ(0) = 1 (2.12)

we get for Φ∞

Φ∞ = −f0(1 +R(0)φ
−1/2
0 /f0). (2.13)
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Further, we will consider the case when the value of quantity xn in the fixed point reduces
to zero (x∗ = 0). This is achieved by an appropriate choice of the value of the RG parameter
s = s∗ = 3.5862 [9]. Under such conditions, El take on numerical values as follows

E1 = 24.3549; E2 = 8.2551; E3 = 0.3763 (2.14)

and for R(0), R
(0)
1 we get

R(0) = −0.5307, R
(0)
1 = 0.162.

Hence, now we are able to calculate numerical values of s0 from (1.13). The results are listed in
table 1.

The last factor in (2.3) corresponds to the limit Gaussian regime (LGR) of the order parameter
fluctuations in the case of T > Tc (Tc is the critical temperature) or to the inverse Gaussian regime
(IGR) when T < Tc. The explicit expression for ZLGR is presented in [15] and for ZIGR in [17],
respectively. Especially,

ZLGR = 2(Nnp+1−1)/2Q(Pnp
)Nnp+1Znp+1 , (2.15)

where

Znp+1 =

∫

(dρ)Nnp+1 exp

(

a
(np+1)
1 N

1/2
np+1ρ0 −

1

2

∑

k∈Bnp+1

dnp+1(k)ρkρ−k

−a
(np+1)
4

4!
N−1

np+1

∑

ki∈Bnp+1

ρk1
. . . ρk4

δk1+...+k4

)

. (2.16)

In this work we make use of somewhat different (in comparison with [15–17]) expressions for
the exit point

np = − ln (h̃+ hc)

lnE1
− 1 (2.17)

where
h̃ = h s

d/2
0 /h0, hc = |τ̃ |p0 , τ̃ = τ c1k/f0 (2.18)

with reduced temperature τ = (T − Tc)/Tc. Quantities h0 and c1k are presented in [18, 19]. As
was mentioned in [16] there is a difference between exit points in the cases of T > Tc and T < Tc.
This implies the presence at T < Tc of a certain internal field conjugate to the spontaneous order
parameter. Let n0 denote this difference in the absence of the external field. Therefore, in the
region of temperatures less than the critical one the exit point is written

n′
p = − ln (h̃+ hcm)

lnE1
− 1 (2.19)

where the following notations are introduced

hcm = |τ1|p0 , τ1 = −τ
c1k
f0

En0

2 (2.20)

and prime denotes that T < Tc and

p0 = lnE1/ lnE2 = ν/µ, µ =
2

d+ 2
, ν =

ln s∗

lnE2
= 0.605.

Here the critical exponents ν and µ describe the field (at T = Tc) and temperature (in h = 0)
behaviour of correlation length, respectively. Due to (2.17) the following relationships take place

s−(np+1) = (h̃+ hc)
2

d+2 , E
np+1
1 = (h̃+ hc)

−1,

τ̃E
np+1
2 = Hc , Hc = τ̃(h̃+ hc)

− 1
p0 ,

E
np+1
3 = H3 , H3 = (h̃+ hc)

∆
p0 (2.21)
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where ∆ = − lnE3/ lnE2. Similar equalities result from (2.19). In the first and the third line of
(2.21) we need to substitute np and hc with n′

p and hcm, respectively. Instead of Hc we have

τ̃E
n′

p+1

2 = −Hcm, Hcm = −τ̃(h̃+ hcm)
− 1

p0 . (2.22)

In contrast to recent papers [15, 17], in the present work for calculations of partition function
we use slightly smaller values of the system exit point from CR order parameter fluctuations. In
[15] the expression

np = − ln (h̃2 + h2
c)

2 lnE1
− 1 (2.23)

was used as the exit point. Here we prefer a little bit changed dependence

np = − ln (h̃2 + 2h̃hc + h2
c)

2 lnE1
− 1 (2.24)

that coincides with (2.17). Note that (2.23) as well as (2.24) equally well characterize the properties
of the exit point from CR. Each of them in the limit of H → 0 takes the form [16]

np(H = 0) = mτ = − ln |τ̃ |
lnE2

− 1 (2.25)

and when T = Tc one obtains

np(T = Tc) = nh = − ln h̃

lnE1
− 1. (2.26)

Generally speaking, a choice of np only reshuffles the contributions in (2.3). Increasing np leads to
an increase of the factor number in

∏np

n=1 Qn and to a decrease of the number of variables ρk in
the expression for ZLGR (2.15). In the case of exact partition function calculations the total result
does not depend of this. The purpose of introducing this quantity is to optimize the mathematical
evaluations near phase transition point. Operating with expression (2.17) turned out to be more
convenient than with (2.23) due to simplification of derivatives of free energy with respect to the
field as well as to temperature. The same applies to the expression for n′

p (2.19) that is used for a
description of the model critical behaviour at T < Tc.

3. Scaling functions of the 3D Ising-like model in the vicini ty of phase tran-
sition point

3.1. Free energy

The scheme for calculating the free energy near Tc is presented in works [15, 17] in detail. Thus,
here we present only final expressions for free energy in the case of the exit points stated by (2.17)
and (2.19). Let us write the free energy as a sum of three terms

F = Fa + F (±)
s + F

(±)
0 (3.1)

where the superscript “±” denotes the case of τ > 0 and τ < 0, respectively. The first term is the
same for the entire temperature interval and contains the analytical dependence on temperature τ
and field h

Fa = −kBTN(ln coshh)− 1

2
NΦ(0)Φ̄− kBTN(γ0 + γ1τ + γ2τ

2). (3.2)

All coefficients included in (3.2) are presented in [15].
The next term in (3.1) represents a non-analytical dependence of free energy on temperature

and field
F (±)
s = −kBTNγ(±)

s (h̃+ hc)
dν
βδ (3.3)
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where β = ν/2 is the temperature critical exponent of the order parameter and δ = d + 2 = 5 is
the field one. The quantity

γ(±)
s = s−3

0 (fnp+1 − γ̄(±) + fG/s
3) (3.4)

contains contributions from CR (γ̄(±)), from the so-called transition region (fnp+1) and from limit
(inverse) Gaussian regime (fG) [15–17]. One should keep in mind that in the case of T < Tc the
quantity hc is to be replaced by hcm and the exit point np from (2.17) is to be replaced by n′

p from

(2.19). The quantity γ
(±)
s depends explicitly on the scaling variable α0 = h/τβδ only, but not on h

or τ separately. Another scaling variable widely used in literature is z = τ/h1/βδ. These variables
are interconnected via relationship α0 = z−βδ.

Finally, the last contribution to the free energy (3.1) comes from the final step of integrating
the partition function. It corresponds to the system free energy contribution from the collective
variable ρ0, the mean value of which is known to connect with the order parameter [5]. It has the
form

F
(±)
0 = −kBTN

[

e
(±)
0 h(h̃+ hc)

1
δ − e

(±)
2 (h̃+ hc)

dν
βδ

]

. (3.5)

Coefficients e
(±)
0 and e

(±)
2 are found in [15, 17]

e0 = σ0s
−1/2,

e2 =
1

2
σ2
0s

−3

(

rnp+2 +
1

12
unp+2s

3
0σ

2
0

)

. (3.6)

where quantity σ0 is a solution of a certain cubic equation

σ3
0 + pσ0 + q = 0 (3.7)

which has been obtained from the extremum condition for F
(±)
0 . Coefficients p and q take on the

following form

p = 6s−3
0

rnp+2

unp+2
, q = −6s

−9/2
0 s5/2

h0

unp+2

h̃

h̃+ hc

. (3.8)

Collecting free energy contributions we arrive at

F = Fa +∆Fs (3.9)

where Fa is given in (3.2) and singular part of free energy has the form

∆Fs = −kBTN

[

e
(±)
0 h

(

h̃+ hc

)
1
δ

+ γN

(

h̃+ hc

)
dν
βδ

]

(3.10)

and
γN = γ(±)

s − e
(±)
2 . (3.11)

The term ∆Fs plays a crucial role in describing the system behaviour near the critical point
(T = Tc, h = 0) and is responsible for singularities appearing therein.

Note that expression (3.10) can be presented in the form

∆Fs = fstτ
3ν (3.12)

where scaling function fst is written as

fst = −kBTN

[

γN (1 + α)
dν
βδ +

h0

s
3/2
0

e
(±)
0 α (1 + α)

1
δ

](

c1k
f0

)dν

. (3.13)

Here we have introduced a renormalized scaling variable α as

α =
h̃

hc
=

s
3/2
0

h0

(

f0
c1k

)βδ

α0 =
s
3/2
0

h0

(

f0
c1k

)βδ

z−βδ. (3.14)
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In the absence of the external field, the second term in brackets of (3.13) disappears.
On the other hand, ∆Fs can be expressed as

∆Fs = fshh
dν
βδ (3.15)

where scaling function fsh is written as

fsh = −kBTN

[

γN
(

1 + α−1
)

dν
βδ + e

(±)
0

(

1 + α−1
)

1
δ

](

s
3/2
0

h0

)
dν
βδ

(3.16)

The expression (3.12) is a customary notation for the system free energy near the phase transition
point in the absence of an external field. It is considered to be correct in the case of the presence of
a weak field as well when, based on (3.12)-like expression, one evaluates various scaling functions.
In the case of a strong field the expression (3.15) is commonly used [20]. In the case of intermediate
field values h̃ ≈ hc, the expression (3.10) should be used.

3.2. Order parameter

The obtained expressions (3.1)–(3.5) enable the equation of state of the 3D Ising-like system to
be established [16, 17] as well as some other system characteristics, such as susceptibility, entropy,
heat capacity. This paper aims to evaluate the temperature and field dependencies of the order
parameter (or, in other words, to establish the equation of state) and that of susceptibility.

In accordance with (3.1) the order parameter is presented in the form of three terms

M = Ma +M (±)
s +M

(±)
0 (3.17)

each of which is the derivative of a certain free energy contribution with respect to the external
field, so that

M = − 1

N

(

dF

dH

)

T

. (3.18)

The first term Ma corresponds to the analytical part of free energy (3.2) and has the form

Ma = tanhh ≈ h. (3.19)

The second contribution to the order parameter M
(±)
s is calculated in accordance with (3.3) and

can be expressed as

M (±)
s =

[

6

5

s
3/2
0

h0
γ(±)
s +

dγ
(±)
s

dh
(h̃+ hc)

]

(h̃+ hc)
1
δ . (3.20)

The derivative dγ
(±)
s /dh can be calculated explicitly by using formulas from [15, 17]

In order to calculate M
(±)
0 we use the expression (3.5). Note that differentiating quantity σ0

with respect to h leads to set of terms canceling out due to (3.7). Therefore, when calculating M
(±)
0

we consider quantity σ0 independent of the field. Thus, we get

M
(±)
0 =

[

e
(±)
0

(

1 +
1

5

h̃

h̃+ hc

)

− 6

5

s
3/2
0

h0
e
(±)
2 −

(

de
(±)
2

dh

)

σ0

(

h̃+ hc)

]

(

h̃+ hc

)
1
δ . (3.21)

Based on (3.20)–(3.21) we propose the following form for the equation of state

M = σ
(±)
00

(

h̃+ hc

)
1
δ (3.22)

where we have neglected Ma in comparison with other contributions to the order parameter. The
scaling function σ00 has the form

σ
(±)
00 = e

(±)
0

(

1 +
1

5

α

1 + α

)

+ e
(±)
00 + e

(±)
02 . (3.23)
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Here quantity e
(±)
0 is defined in (3.6) and for e

(±)
00 , e

(±)
02 we find the following expressions

e
(±)
00 =

6

5

s
3/2
0

h0

(

γ(±)
s − e

(±)
2

)

,

e
(±)
02 =

[

dγ
(±)
s

dh
−
(

de
(±)
2

dh

)

σ0

]

(h̃+ hc). (3.24)

The first two terms on the right side of equality (3.23) depend on α0 only. For the critical amplitude

σ00 to be a function of only α0, it is necessary for coefficient e
(±)
02 to be such a function. However,

this is so because of γ
(±)
s and e

(±)
2 being functions of only α0. The derivative of such a function

with respect to h results in

df(α0)

dh
= f ′(α0)

dα0

dh
= f ′(α0) |τ |−βδ

and obviously e
(±)
02 = e

(±)
02 (α0).

3

2

1

M

τ

0.3

−10

 

10−3

1086420−2−4−6

 

0.2

0.4

0.1

−8

Figure 2. The order parameter as a function of τ in constant external field h = 10−5. 1 –
b/c = 0.3, 2 – b/c = 0.4, 3 – b/c = 0.5.

The equation (3.22) permits direct crossing to be performed to the boundary cases when one
of the variables (field or temperature) becomes decisive for a description of the critical behaviour.
Thus, we refer to this equation as the crossover equation of state. The temperature dependence of
the order parameter in the constant external field h = 10−5 is demonstrated in figure 2, that of
quantity σ00 from (3.23) in figure 3. Hereinafter, we use, for h0 and n0, the numerical values as
follows [16, 17]

h0 = 0.760, n0 = 0.5. (3.25)

Several forms of the equation of state are known to exist for Ising-like systems [21–23]. In the
case of h = 0 the order parameter exists only when T < Tc and is written as follows

M = B|τ |β (3.26)
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τ

00σ

−8

1.0

0.6

−16

0.2

10−4

201612840−4

 

0.8

−12

0.4

−20

Figure 3. The scaling function σ00 of the order parameter at b/c = 0.4 as a function of the
reduced temperature τ in constant external field h = 10−5.

where B is the order parameter critical amplitude. In our approach, the critical amplitude B takes
the form

B = (c1kE
n0

2 /f0)
βσ

(−)
00 |(h=0) . (3.27)

In the case of τ 6= 0, h 6= 0 near the phase transition temperature Tc the equation of state is
usually described by

M = h1/δfG(z). (3.28)

We can rewrite our equation of state (3.22) in the form of (3.28) and compare our results those
of works [20, 24] where evaluation of the quantity fG was performed. In the framework of our
approach fG is expressed as

fG = σ
(±)
00 (1 + α−1)1/δ(s

3/2
0 /h0)

1/δ. (3.29)

In figure 4 the scaling function fG is shown as a function of z for different values of the ratio b/c.
The thick line means the parametric representation of the equation of state from [24]

M = m0R
βΘ,

τ = R(1−Θ2),

h = H0R
βδĥ(Θ) (3.30)

normalized by conditions

M(τ = 0) = h1/δ, and M(h = 0) = (−τ)β . (3.31)

The function ĥ(Θ) was approximated in [24] by the following polynomial

ĥ(Θ) = Θ− 0.76201Θ3 + 0.00804Θ5. (3.32)

The zeros of this function correspond to h = 0 and τ > 0 (the first one Θ = 0) or τ < 0 (the
second one Θ0 = 1.154). For Θ = 1 one obtains τ = 0. Therefore, normalization constants H0, m0

take on the form

m0 =
(Θ2

0 − 1)β

Θ0
, H0 =

mδ
0

ĥ(1)
. (3.33)
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3

2

1

1/δ

z

M/h

3.6

2.0

1.2

0

0.4

8

 

10

 

3.2

6

2.8

2.4

1.6

2

0.8

0.0

−2−4−6−8−10 4

Figure 4. Scaling function fG of the order parameter as a function of z for different values of
b/c. 1 – b/c = 0.3, 2 – b/c = 0.4, 3 – b/c = 0.5. Thick dashed line shows the parametrization
from (3.30) [20, 24].

The scaling function fG and its argument z are then represented in terms of new variable Θ as

z =
1−Θ2

Θ2
0 − 1

Θ
1/β
0

(

ĥ(Θ)

ĥ(1)

)−1/βδ

, fG = Θ

(

ĥ(Θ)

ĥ(1)

)−1/δ

. (3.34)

In our investigation we do not impose any normalized conditions for the scaling functions.
However, for b/c = 0.5 we observe a good agreement of our results for fG(z) with parametric
representation results (see figure 4 and B = 1.064). In [20] an excellent agreement between the
Monte Carlo simulations data and the parametrization from (3.34) has been obtained.

3.3. Susceptibility

The system susceptibility is found by means of direct differentiation of the equation of state
with respect to the external field h. We have

χ = β(h̃+ hc)
1
δ

(

dσ
(±)
00

dh
+

1

d+ 2
σ
(±)
00

s
3/2
0

h0
(h̃+ hc)

−1

)

. (3.35)

Based on the expression for σ
(±)
00 (3.23) we can calculate its derivative with respect to the field h.

Let us do it for each term separately. We get

(

dσ
(±)
00

dh

)

1

=

(

1 +
1

5

h̃

h̃+ hc

)

de
(±)
0

dh
+

1

5

s
3/2
0

h0
e
(±)
0

hc

(h̃+ hc)2
, (3.36)

(

dσ
(±)
00

dh

)

2

=
6

5

s
3/2
0

h0

(

dγ
(±)
s

dh
− de

(±)
2

dh

)

(3.37)
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and
(

σ
(±)
00

dh

)

3

=
d

dh

(

dγ
(±)
s

dh
−
(

de
(±)
2

dh

)

σ0

)

+
s
3/2
0

h0

(

dγ
(±)
s

dh
−
(

de
(±)
2

dh

)

σ0

)

. (3.38)

It is important to emphasize that in (3.36)–(3.37) one should take into account the dependence of
σ0 on the field while differentiating by h. But in (3.38) such a dependence is considerable only for
the second derivative.

For convenience, the full expression for the derivative is written as follows:

dσ
(±)
00

dh
= χ

(±)
01 (h̃+ hc)

−1 (3.39)

where
χ
(±)
01 = χ

(±)
011 + χ

(±)
012 + χ

(±)
013 (3.40)

and for the terms in the last equality the following expressions are valid

χ
(±)
011 =

1

5
e
(±)
0

s
3/2
0

h0

1

1 + α
, (3.41)

χ
(±)
012 =

[(

1 +
1

5

α

1 + α

)

de
(±)
0

dh
+

s
3/2
0

h0

(

11

5

dγ
(±)
s

dh
− 6

5

de
(±)
2

dh
−
(

de
(±)
2

dh

)

σ0

)]

(h̃+ hc)
−1, (3.42)

and

χ
(±)
013 = (h̃+ hc)

2 d

dh

[

dγ
(±)
s

dh
−
(

de
(±)
2

dh

)

σ0

]

. (3.43)

For susceptibility we have eventually obtained

χ

β
= χ

(±)
00 (h̃+ hc)

1
δ
−1 (3.44)

where the scaling function for susceptibility has the form

χ
(±)
00 = χ

(±)
01 +

1

5

s
3/2
0

h0
σ
(±)
00 (3.45)

In figure 5 the susceptibility is graphically presented as a function of temperature at h = 10−5.

The expression (3.44) differs from that used in [20, 22]. In the vicinity of the critical point,
susceptibility is considered to have the following form

χ

β
= h1/δ−1fχ(z) (3.46)

where the quantity fχ(z) is the susceptibility scaling function. The simple relation is known to
exist between the susceptibility scaling function fχ and the order parameter scaling function fG

fχ(z) =
1

δ

(

fG(z)−
z

β
f ′
G(z)

)

. (3.47)

Adapted to our approach, fχ takes the form

fχ = χ
(±)
00 (1 + α−1)1/δ−1

(

s
3/2
0

h0

)1/δ−1

. (3.48)

In figure 6 this quantity is presented as a function of the scaling variable z. The thick line corre-
sponds to the parametrization of [24]. In [20] one can also find Monte Carlo simulations data for
fχ(z) according to the parametrization of [24].
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1,000

 

10−3

1050

3,000

2,000

−10

Figure 5. Susceptibility as a function of reduced temperature τ = (T − Tc)/Tc in constant
external field h = 10−5 at b/c = 0.4.

1

3

2

z

1−1/δ
hχ

−4

0.4

−6

0.2

−8

 

1086420−2

 

0.5

0.3

0.1

−10

Figure 6. Scaling function of susceptibility fχ as a function of the scaling variable z = τ/h1/βδ :
at b/c = 0.3 (curve 1), at b/c = 0.4 (curve 2) and at b/c = 0.5 (curve 3). Thick dashed line
shows the parametric representation from [24].

4. Conclusions

In the present work we investigate the 3D Ising-like model on a simple cubic lattice. The research
is carried out using the formalism of collective variables and in the framework of “ρ4-model”
approximation. The critical exponent η is considered to be equal to zero. Our approach also neglects
the corrections to scaling but the main critical exponents take on non-classical values. However,
we have obtained explicit expressions for physics quantities as functions of reduced temperature

43004-14



The order parameter and susceptibility of the 3D Ising-like system

τ, external field h and microscopic parameters of the model (the ratio of the effective range of
interaction b to the lattice constant c). Namely, we have calculated the free energy as well as the
order parameter and susceptibility. Some results are demonstrated graphically as well.

References

1. Onsager L., Phys. Rev., 1944, 65, 117.
2. Bogolyubov N.N. (Jr.), A method of model Hamiltonians investigation, Nauka, 1974 (in Russian).
3. Bogolyubov N.N. (Jr.) et al., Uspekhi Mat. Nauk, 1984, 39, 3 (in Russian).
4. Seke J., Soldatov A.V., Bogolyubov N.N.(Jr.), Phys. Lett. A, 1997, 236, 261.
5. Yukhnovskii I.R., Phase Transitions of the Second Order. Collective Variables Method. World Scientific,

Singapore, 1987.
6. Bogolyubov (Jr.) N.N., Prykarpatsky A.K., Phys. Part. Nuclei, 1986, 17, 789.
7. Bogolyubov (Jr.) N.N., Prykarpatsky A.K., Nonlinear Oscil., 2007, 10, 32.
8. Bogolyubov (Jr.) N.N., Prykarpatsky A.K., Theor. Math. Phys., 1986, 66, 463.
9. Yuchnovskii I.R., Kozlovskii M.P., Pylyuk I.V., Microscopic Theory of Phase Transition in the three

dimensional systems. Eurosvit, Lviv 2001, (in Ukrainian).
10. Kozlovskii M.P., Condens. Matter Phys., 2005, 8, 473.
11. Kadanoff L.P., Physics (N.Y.), 1966, 2, 263.
12. Kadanoff L.P., Rev. Mod. Phys., 1967, 39, 395.
13. Wilson K.G., Phys. Rev. B, 1971, 4, 3174.
14. Wilson K.G., Kogut J., Phys. Rep., 1974, C 12, 75.
15. Kozlovskii M.P., Condens. Matter Phys., 2009, 12, 151.
16. Kozlovskii M.P., Ukr. Fiz. Zh./Reviews (Ukr. ed.), 2009, 5, 61, (in Ukrainian).
17. Kozlovskii M.P., Romanik R.V., J. Phys. Stud., 2009, 13, 4007.
18. Yukhnovskii I.R, Kozlovskii M.P., Pylyuk I.V., Phys. Rev. B, 2002, 66, 134410.
19. Kozlovskii M.P., Pylyuk I.V., Prytula O.O., Phys. Rev. B, 2006,73, 174406.
20. Engels J., Fromme J., Seniuch M., Nucl. Phys. B, 2003, 655, 277.
21. Widom B.J., J. Chem. Phys., 1965, 43, 3898.
22. Guida R., Zinn-Justin J., Nucl. Phys. B, 1977, 489, 626.
23. Hasenbusch M.J., Phys. A, 1999, 32, 4/851.
24. Zinn-Justin J., Phys. Rept., 2001, 344, 195.

Розрахунок параметра порядку та сприйнятливостi
тривимiрної Iзингоподiбної моделi поблизу точки фазового
переходу методом колективних змiнних

М.П. Козловський, Р.В. Романiк

Iнститут фiзики конденсованих систем НАН України, 79011 Львiв, вул. Свєнцiцького, 1

Робота присвячена дослiдженню тривимiрної Iзингоподiбної моделi поблизу критичної точки при

наявностi зовнiшнього поля. Використовується метод колективних змiнних. Розраховано загальнi
вирази для параметра порядку i сприйнятливостi системи як функцiї температури i зовнiшнього

поля, а також скейлiнговi функцiї цих величини отриманi в явному виглядi. Зроблено порiвняння

з результатами, що були отриманi в рамках параметричного представлення рiвняння стану i
методами Монте Карло симуляцiй. Запропонований i використаний при обчисленнях новий вираз

для точки виходу з критичного режиму флуктуацiй параметра порядку.

Ключовi слова: модель Iзинга, параметр порядку, колективнi змiннi, критична точка
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