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The present work is devoted to the investigation of the 3D Ising-like model in the presence of an external field
in the vicinity of critical point. The method of collective variables is used. General expressions for the order
parameter and susceptibility are calculated as functions of temperature and the external field as well as scaling
functions of that are explicitly obtained. The results are compared with the ones obtained within the framework
of parametric representation of the equation of state and Monte Carlo simulations. New expression for the exit
point from critical regime of the order parameter fluctuations is proposed and used for the calculation.
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Introduction

Most problems of statistical physics are not exactly solvable. Only certain problems of physical
interest have got exact analytical solutions. In particular, this is the two-dimensional Ising model
[1]. However, in the presence of an external field one should resort to some approximate methods
again. Thus, for theoretical description of physical phenomena two types of approaches are used.
The first one is the approximate description for physically reasonable models. Such an approach
does not possess a sufficient mathematical rigour. Nevertheless, it allows one to obtain qualitative,
and sometimes quantitative information on the system behaviour. Another way is to carry out the
investigation of either classical or quantum systems within the framework of some basic exactly
solvable model systems. In many cases this is evidently an effective means. On the one hand, any
mathematical model is only an approach to the real image of the physical system. On the other
hand, those several models, for which rigorous mathematical estimates can be obtained, deserve
careful study. An example of this way of implementation is the approximating Hamiltonian method
devised by N.N. Bogolyubov (Jr.) |2-4], Subject to these models it was argued in [3], that this
method gives rise to asymptotically exact solutions in the thermodynamical limit being sufficient
for many applications.

Nonetheless, so far the available theoretical methods frequently produce mathematical singular-
ities appearing in the vicinity of the second order phase transition point. Thus, the problem needs
to be treated very carefully in this case. From this point of view the Yukhnovskii’s method of a
phase transition description [5] used in this work is quite consistent with Bogolyubov’s(Jr.) ideas of
using the canonical collective variable transformation approach to the corresponding Bogolyubov’s
functional equation |6-8] for the correlation functions of a simple magnet system Hamiltonian in-
stead of that for the standard Ising model. The related functional equation splitting, compatible
with the Bogolyubov’s principle of correlations weakening, proves to be equivalent to the suitable
mean-field approximation of higher order, giving rise to a closed solution in the thermodynamical
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limit. Thereby, the both methods enable one to obtain a complete solution of the problem (at least
approximately) starting with specifying a Hamiltonian and finishing with calculating thermody-
namic functions [9]. In the present paper, the study of physical characteristics is performed at near
phase transition temperature T; in the presence of external field.

1. The model

The properties of spin systems are known to be very well described by the Ising model. The
Hamiltonian of this model in the external field is written in the form

1
H = 75 E @(T’i’j)UiO'j —H E gj . (11)
1) i

Here ®(r;;) is a short-range interaction potential between spins located at the i-th and j-th sites
of a simple cubic lattice with a lattice constant c¢. The spin variables o; take on two values £1, and
‘H is an external field.

The partition function of the three-dimensional (3D) Ising model can be expressed in terms of
the collective variables (CV) [5]

Z= /eXP <% > 5‘i>(k)PkP—k> Tn(p)(dp)™ (1.2)

keB

where Jp,(p) is the transition Jacobian from the spin variables oj to the CV px and 8 = 1/kpT is
the inverse temperature. The summation in (L2) is performed over the wave vectors k within the
first Brillouin zone

2T ny .
B= {k (ko by, k2| = f% + %;—n —1,2,...,N;:i xyz} (1.3)

that corresponds to the volume of periodicity

and N = NNy N, is the total number of spins.
In the expression for the partition function ([2)) the Fourier transform of an interaction poten-
tial arises. In the case of exponentially decreasing potential

®(ry;) = Aexp(—rij/b) (1.5)
its Fourier transform has the form
; a(0) ; 3
da(k) = ———2—,  B(0) = 8rA(b/c)>. 1.6

Here b is the effective interaction range.

The long-wave (small values of the wave vector k) fluctuations of the spin moment are known to
play a crucial role in the system behaviour near the critical point. Therefore, the explicit dependence
of the Fourier transform of the interaction potential is used only for small values of the wave vector.
For large k, ®(k) is assumed to be constant. In our investigation we will use the so-called parabolic
approximation for ®¢ (k) with “small” values of the wave vector k and an averaged estimation in
the short-wave region

i)(k:) _ { o(0)(1 — 2132k2), ke By,
dy = @(0)@, ke B\Bo
Here the quantity ®( characterizes the part of the potential averaged with respect to large values

of k € B\By which are not essential for describing the critical behaviour. However, the value @y is
essential in calculating non-universal quantities, for example, the critical temperature.

(1.7)
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Figure 1. A sketch for the Fourier transform (L€ of the interaction potential (L5)(curve 1)
and its parabolic approximation (IL7) (curve 2). The curve 3 corresponds to ®o = ®(0)® with

& from (CI0).
In such a way we replace (L)) with the formula () where

T 2m n,
B =<k= kx,k,kz kiif— ——Z; 111,2,,N2,: s Y, 1.8
o= { k= Gho byl = = 2 4 22 wizryeh 03

is the region of validity for the parabolic approximation. Equalities NozNoyNo. = Ng and Ny =
Nsy d (d = 3 is the space dimension) take place and sy > 1. The parameter sy determines an
effective block lattice with a lattice constant ¢y = csg. The parameter sg itself is determined
differently for different potentials provided that in the region of k € B\By the dependence of the
interaction potential on the wave vector should be the weakest. To find numerical value of sy we
impose the condition (see figure [])

B(By) = 0(0)d. (1.9)

Here By = B/sy with B = m/c being the boundary of Brillouin zone. The quantity ® is presented
in the form of two terms

® = (Pa(k))p\s, T Poo (1.10)
where the first one <ég(k')>3\30 is the averaged value of ®(k) in the interval (B/sg, B]
(e (b)), = / B (k)dk / / B(0)dk. (1.11)
B\Bo B\BO

It results in

= 3 s c\3|b spt 1
(@c(k)p\B, = 555 (—) [—< : - )
27253 — 1 \b c ~\2 /pr2 2 (b)?
0 1+ (2) (%) 1+ (0)
1 b 1 T b
+ —arctan | 71— | — —arctan | —— | |. (1.12)
T c T sp €
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The second term in (II0) ®o is determined by the condition that 5.®(0) — 1 when the ratio
of b/c — oo. Thereby, taking into account the condition (9] as well as the expressions (7)) and
(CLI0) we obtain the equation for finding sg

S0 :W\/ﬁé(l—@)’l/Q. (1.13)
C

As we can see, the quantity sy depends on the ratio of the effective range b to the lattice constant
c. The calculated values of sy (for different b/c) are reported in table [l

Table 1. Numerical values of the parameter sy depending on b/c.

b/c 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.8 1.0
so | 1.0996 | 1.7680 | 1.9429 | 2.1228 | 2.3070 | 2.4947 | 2.6853 | 3.4690 | 4.2741

2. The results of calculating the partition function in the e xternal field

In our calculations we will use the “p*-model” approximation [5]. The functional representation
for the partition function in this approximation is as follows

1 ag .
Z =2 /(dP)NO exp [al Nopo = 5 > d(k)prp—x — Mo " Otk |- (221)
keBo k;€Bo

Here the quantity d(k) contains the Fourier transform of the interaction potential
d(k) = az + BP(0)® — 3P (k) (2.2)

and expressions for a,, have been obtained in [10)].

Computation of ([ZJ)) is performed by using the Kadanoff’s idea of constructing block lattices
[11,[12]. These calculations were first realized by K.Wilson [13, [14]. In our work we will use the CV
method proposed by I.Yukhnovskii [5] being generalized to the case of an external field present in
[15]. Based on it, the step-by-step integration of the partition function over the layers of the CV
phase space leads to the following expression

np

2= zfe@)™ (T[ .) Zuen. (23)

n=1

Here 1
Zy = 2N (cosh )N exp(§N5q>(0)ci>) (2.4)

with the dimensionless field h = SH. The explicit expression for quantities Q(d) and @,, are given
n [15]. Specifically, @, corresponds with the partial partition function of the n-th layer (or, in
other words, the n-th block structure) and is expressed in the form

NW,

Qn = [Q(Pn—l)Q(dn)]

where N,, = Nys~2" with s being the parameter of splitting the set of CV into subsets. Explicit
expressions for Q(P,) and Q(d,) can be found in [9]. Every @Q,, is characterized by its own set of

(2.5)

coefficients d, (k), a§") and afln). For them, recurrence relations (RR) take place (the work [10] is
devoted to this problem). By introducing notations

dn(Bpt1, Bn) = dn(0) +¢s72", ¢ = B®(0)q,

agn) =5 "wn, dn(0) = 872", ai") = sy,
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we get RR in the following form

d+2

Wnptl = 8 4 Wp,

Tn+l = 32[—q + (rn + @) N (z,)],

Unt1 = SupFE(xy,). (2.6)

Special functions N(z,,) and E(x,) are presented in [15]. Their argument is
1/2
3 /
Tn = dn(Bn+1; Bn) o) .
2

One of the solutions of the RR (2.6) is the fixed point given by coordinates

w* =0, r* = —f03%(0), u* = ¢o(BP(0))?. (2.7)
with coefficients fy and ¢q [9]
__ N(") -1 3@ 1-s2 77
B e N ] 25

where )

B b\ ~“ w2 9

q=2 (E) g“} >(371,1]
with s from (CI3).

When n < np, the system possesses renormalization group (RG) symmetry and the solutions of
RR can be written in the form of eigenvalue expansions

w, = 53/2hE{l ,
rn = 1"+ caFEY+ cREY,
Up, = U+ RiEY + coEY (2.9)

where Ej are the eigenvalues of a matrix of RG transformation for the RR linearized near the
fixed point (Z7) [16], R = R (u*)"'/? and R, = R§0> (u*)'/2. Coefficients ¢ are defined by initial
values of the quantities w,,, r, and u,, (at n = 0)

wozsg/Q h, ro = ag — P(0)(1 — ®), Uy = a4 .

Thus, n, determines the number of iterations while the system belongs to the critical regime of
the order parameter fluctuations. That is why the product in (23] is performed up to n, only.
Thereby, the quantity n, is referred to as the exit point.

The equality ¢;(T.) = 0 coincides with the required condition for the critical temperature (in
h =0) to exist [9]. It yields the equation [16]

A2’ +Bx+ D=0 (2.10)
where x = 8.9(0) and for coefficients we have
A=1—fo—RO¢?_&  B=-ay, D=asROV¢;"> (2.11)

Taking into account the above mentioned condition

lim B.2(0) =1 (2.12)
b/c—o0
we get for @
oo = —fo(1+ RV g5/ fo). (2.13)
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Further, we will consider the case when the value of quantity z, in the fixed point reduces
to zero (z* = 0). This is achieved by an appropriate choice of the value of the RG parameter
s = s* = 3.5862 [9]. Under such conditions, E; take on numerical values as follows

Ey = 24.3549; Ey = 8.2551; Es; =0.3763 (2.14)

and for R(©) REO) we get

0)

RO = 05307, R" =0.162.

Hence, now we are able to calculate numerical values of sy from (LI3). The results are listed in
table [l

The last factor in ([23) corresponds to the limit Gaussian regime (LGR) of the order parameter
fluctuations in the case of T' > T, (T is the critical temperature) or to the inverse Gaussian regime
(IGR) when T < T.. The explicit expression for Zy,gr is presented in [15] and for Ziggr in [17],
respectively. Especially,

Zigr = 2Wme i =V2Q(P, VN1 Z,, 1y (2.15)
where
1
Zngt1 = / (dp)"o+t exp (a‘l"””zv;gilpoi > duri(k)prpx
ke€Bn,+1
aglnp+1) 1
—— N D Pkl---Pk45k1+...+k4)- (2.16)
) k;€Bnj+1

In this work we make use of somewhat different (in comparison with [15-17]) expressions for
the exit point

In (h + he)
- _ -1 2.1
"' In E1 (2.17)
where B
h=hs?/he,  he=|FP,  F=T1cw/fo (2.18)

with reduced temperature 7 = (T — T)/T.. Quantities hy and cq; are presented in [18; [19]. As
was mentioned in [16] there is a difference between exit points in the cases of T > T, and T < T.
This implies the presence at T' < T, of a certain internal field conjugate to the spontaneous order
parameter. Let ng denote this difference in the absence of the external field. Therefore, in the
region of temperatures less than the critical one the exit point is written

In (h + hem)
= 2.19
"' mEL (2.19)

where the following notations are introduced

hem=nP, = g 2:20)
fo
and prime denotes that T' < T, and
2 In s*
=InE//InE2= = — = = 0.605.
Po nkE;/In v/, w dr2’ v In By

Here the critical exponents v and g describe the field (at T = T¢) and temperature (in A = 0)
behaviour of correlation length, respectively. Due to (ZI7) the following relationships take place

ST = (bt h) TR, B = (it he) 7
7B = He, He = #(h+ he) 75,
np+1 h b0
E, = H3, Hz = (h+ he)7o (2.21)

43004-6



The order parameter and susceptibility of the 3D Ising-like system

where A = —In E3/1n E5. Similar equalities result from (ZI9). In the first and the third line of
(ZZT)) we need to substitute n, and h. with n{D and hen, respectively. Instead of H. we have

FEST = CHew,  Hew = —7(h+ hem) 7 . (2.22)

In contrast to recent papers |15, [17], in the present work for calculations of partition function

we use slightly smaller values of the system exit point from CR order parameter fluctuations. In
[15] the expression

In (712 + h2)
2In F'1
was used as the exit point. Here we prefer a little bit changed dependence

np =

~1 (2.23)

In (k% 4 2hh + h?)
2In F1

np = — ~1 (2.24)

that coincides with (ZI7). Note that (2.23) as well as (2.24]) equally well characterize the properties
of the exit point from CR. Each of them in the limit of % — 0 takes the form [16]

In |7]
ny(H=0)=m, = “nE (2.25)
and when T' = T, one obtains
Inh
np(T = Te) = nn = =3 - = (2.26)

Generally speaking, a choice of n, only reshuffles the contributions in ([23)). Increasing n,, leads to
an increase of the factor number in []'*; @, and to a decrease of the number of variables py in
the expression for Zy,gr [ZI3). In the case of exact partition function calculations the total result
does not depend of this. The purpose of introducing this quantity is to optimize the mathematical
evaluations near phase transition point. Operating with expression (ZI7) turned out to be more
convenient than with (223) due to simplification of derivatives of free energy with respect to the
field as well as to temperature. The same applies to the expression for n; 2I9) that is used for a
description of the model critical behaviour at T' < T¢.

3. Scaling functions of the 3D Ising-like model in the vicini ty of phase tran-
sition point

3.1. Free energy

The scheme for calculating the free energy near T is presented in works |15, [17] in detail. Thus,
here we present only final expressions for free energy in the case of the exit points stated by (2I7)
and (ZI9). Let us write the free energy as a sum of three terms

F=F,+F% 4+ F® (3.1)

where the superscript “£” denotes the case of 7 > 0 and 7 < 0, respectively. The first term is the
same for the entire temperature interval and contains the analytical dependence on temperature 7
and field h

1 -
F, = —kgTN(Incosh h) — 5N<I>(O)<I> — kTN (yo + 717 + 7272). (3.2)

All coefficients included in (2] are presented in [15].
The next term in ([B.]) represents a non-analytical dependence of free energy on temperature
and field

d

F® = —kgTNA® (b + he) 5 (3.3)

S
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where 8 = v/2 is the temperature critical exponent of the order parameter and § =d+2 =5 is
the field one. The quantity

B = 553 (frot1 — 7 + fa/s®) (3.4)

contains contributions from CR (3*)), from the so-called transition region ( fn,+1) and from limit
(inverse) Gaussian regime (fg) [15-17]. One should keep in mind that in the case of T' < T, the
quantity h. is to be replaced by hem and the exit point n, from (ZI7) is to be replaced by n{D from

(ZI9). The quantity %(i) depends explicitly on the scaling variable ay = h/77 only, but not on h
or T separately. Another scaling variable widely used in literature is z = 7/h'/#%. These variables
are interconnected via relationship ag = z~79.

Finally, the last contribution to the free energy ([B.I]) comes from the final step of integrating
the partition function. It corresponds to the system free energy contribution from the collective
variable pg, the mean value of which is known to connect with the order parameter [5]. It has the
form

F® = —kpTN[e§9h(h+ he) s — 5 (b + he) %]. (3.5)
Coefficients eéi) and egi) are found in [15, [17]
€o = 0'08_1/2,
1 _ 1
ey = 50’85 3 (Tnp+2 + Euanrgsgag) . (36)

where quantity og is a solution of a certain cubic equation
o8 +pog+q=0 (3.7)

which has been obtained from the extremum condition for Féi). Coefficients p and q take on the
following form

Tnp+2 ho h

= 653 2= = —6sy /255/2 = . 3.8
p 0 Ung 12 q 0 Uno 2 b+ he (3.8)
Collecting free energy contributions we arrive at

F =F, + AF; (3.9)

where F, is given in ([3.2)) and singular part of free energy has the form

1 ~ dy
AF, = —kgTN {egﬂh (ﬁ + hc) N (h + hc) ’ } (3.10)
and N

yn = —ef. (3.11)

The term AF; plays a crucial role in describing the system behaviour near the critical point
(T =T,, h =0) and is responsible for singularities appearing therein.
Note that expression (BI0) can be presented in the form

AF, = far (3.12)
where scaling function fy is written as
dy ho  (+) 1 C1k dy
fst = —kTN |vv (1+«a)? + =360 @ (1+a)? %) (3.13)
So 0

Here we have introduced a renormalized scaling variable « as

= 3/2 86 3/2 Bs
o hﬁ _ S (ﬁ) ag = S0 <ﬁ> B8, (3.14)

ho \ cix
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In the absence of the external field, the second term in brackets of (813) disappears.
On the other hand, AF; can be expressed as

AF, = foh™ (3.15)
where scaling function fgy, is written as
NGO S (N
fan = kBTN [y (L4 a ) el (14a71) ] (2—) (3.16)
0

The expression ([B.I2)) is a customary notation for the system free energy near the phase transition
point in the absence of an external field. It is considered to be correct in the case of the presence of
a weak field as well when, based on ([BI2)-like expression, one evaluates various scaling functions.
In the case of a strong field the expression [BIH]) is commonly used [20]. In the case of intermediate
field values h ~ he, the expression (3I0) should be used.

3.2. Order parameter

The obtained expressions (BI)—(B3]) enable the equation of state of the 3D Ising-like system to
be established [16, [17] as well as some other system characteristics, such as susceptibility, entropy,
heat capacity. This paper aims to evaluate the temperature and field dependencies of the order
parameter (or, in other words, to establish the equation of state) and that of susceptibility.

In accordance with (1)) the order parameter is presented in the form of three terms

M = M, + M& + pm{® (3.17)

each of which is the derivative of a certain free energy contribution with respect to the external

field, so that
1 /dF
M=—-——(—] . 1
v (), @19

The first term M, corresponds to the analytical part of free energy ([B.2]) and has the form
M, = tanh h ~ h. (3.19)

The second contribution to the order parameter M) is caleulated in accordance with B3) and
can be expressed as

=

ME) =

S

3/2 (+)
6 dys™ =
[_So_v(i) il (3.20)

—=—(h+ he)| (b + he)3.
S gl 4 Tt )|t )
The derivative d’ys(i) /dh can be calculated explicitly by using formulas from |15, [17)

In order to calculate Méi) we use the expression (B). Note that differentiating quantity og

with respect to h leads to set of terms canceling out due to ([3.7)). Therefore, when calculating Méi)
we consider quantity oy independent of the field. Thus, we get

1 h 6 sy e\ - s
M = Jef? (14 2= — oS (=2 ) (A he)| (Rt he)® 3.21
o T U SR ) 5 he @ an” ), (B 1| (it he) (3.21)
Based on (20)-@21I) we propose the following form for the equation of state
- 1
M =05 (h+he)? (3.22)

where we have neglected M, in comparison with other contributions to the order parameter. The
scaling function ogg has the form

+ + I « + +
o) = ey )<1+31+—a)+680)+682)' (3.23)
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Here quantity eéi) is defined in (3.6) and for eézot), eg) we find the following expressions
3/2
& _ 850w @
€00 5 ho (’Ys €2 ),
(&) (&)
#) _ [|dsT (dey B h 3.24
602 |: dh ( dh )UO:|( + C)' ( . )
The first two terms on the right side of equality (3:23)) depend on «y only. For the critical amplitude
ogo to be a function of only «yg, it is necessary for coefficient e%) to be such a function. However,

this is so because of fys(i) and eéi) being functions of only «ag. The derivative of such a function

with respect to h results in

and obviously e%) = eg)(ao).

Figure 2. The order parameter as a function of 7 in constant external field h = 107°. 1 —
b/c=0.3,2-b/c=04,3-b/c=0.5.

The equation ([3.22]) permits direct crossing to be performed to the boundary cases when one
of the variables (field or temperature) becomes decisive for a description of the critical behaviour.
Thus, we refer to this equation as the crossover equation of state. The temperature dependence of
the order parameter in the constant external field » = 1075 is demonstrated in figure @] that of
quantity oo from (323) in figure B Hereinafter, we use, for hy and ng, the numerical values as
follows [16, [17]

ho = 0.760, ng = 0.5. (325)

Several forms of the equation of state are known to exist for Ising-like systems [21+23]. In the
case of h = 0 the order parameter exists only when T' < T, and is written as follows

M = B|r|? (3.26)

43004-10



The order parameter and susceptibility of the 3D Ising-like system

1.0 %0

107

Figure 3. The scaling function ooy of the order parameter at b/c = 0.4 as a function of the
reduced temperature 7 in constant external field h = 107°.

where B is the order parameter critical amplitude. In our approach, the critical amplitude B takes
the form
B = (15 fo) 745 | in=o) - (327)

In the case of 7 # 0, h # 0 near the phase transition temperature T, the equation of state is
usually described by
M = hY? fg(2). (3.28)

We can rewrite our equation of state (8.22)) in the form of ([B28) and compare our results those
of works [20, 24] where evaluation of the quantity fg was performed. In the framework of our
approach fq is expressed as

fa =0l (1 +a Y32 hg)' /0. (3.29)

In figure @ the scaling function fg is shown as a function of z for different values of the ratio b/c.
The thick line means the parametric representation of the equation of state from [24]

M = mORBG,
T = R(1-62?),
h = HyR*h(©) (3.30)
normalized by conditions
M(r=0)=h'Y"" and M(h=0)=(-7)". (3.31)

The function ﬁ(@) was approximated in [24] by the following polynomial
h(©) = © — 0.7620103 + 0.008046°. (3.32)

The zeros of this function correspond to h = 0 and 7 > 0 (the first one © = 0) or 7 < 0 (the
second one ©¢ = 1.154). For © = 1 one obtains 7 = 0. Therefore, normalization constants Hy, mg

take on the form ) 5 s
(90 B 1) , HO _ my )
Ao

mo = (3.33)
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~—————

Figure 4. Scaling function fg of the order parameter as a function of z for different values of
b/c. 1 —b/c =0.3,2-b/c =04, 3—-b/c=0.5. Thick dashed line shows the parametrization

from (B330) |20, 24].

The scaling function fg and its argument z are then represented in terms of new variable © as

_1—@2 18 h(@) -1/B6 B @ -1/6
T (ﬁ(n) ’ fG_e(f}(U) ' (3.34)

In our investigation we do not impose any normalized conditions for the scaling functions.
However, for b/c = 0.5 we observe a good agreement of our results for fg(z) with parametric
representation results (see figure [l and B = 1.064). In [20] an excellent agreement between the
Monte Carlo simulations data and the parametrization from (B3.34]) has been obtained.

3.3. Susceptibility

The system susceptibility is found by means of direct differentiation of the equation of state
with respect to the external field h. We have

X = B(h + he)

=

do éO) 1 (£) 83/2 T —1
( dh d —+ 2 00 h,() ( C) ) ( )

Based on the expression for U(%) B23) we can calculate its derivative with respect to the field h.
Let us do it for each term separately. We get

N - + 3/2
dol) Lot b Ydeg? 1)y he (3.36)
dh ) Shthe) dh "5 ho " (At he)?
+ 3/2 + +
o\ 6s? (dnd® def (3.37)
an ), 5 ho \ dh dh |
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N _ (@ () Y, 8 (e .
dh ), dh\ dh dh ho \ dh an ), ) '
oo
It is important to emphasize that in [B.36)-(3.37) one should take into account the dependence of
oo on the field while differentiating by h. But in (3.38) such a dependence is considerable only for

the second derivative.
For convenience, the full expression for the derivative is written as follows:

and

doly) () 1
— = =Xo1 (h+ he) (3.39)
dh
where (£) (£) (£) (+)
Xo1 = Xoii T Xor2 T Xo13 (3.40)

and for the terms in the last equality the following expressions are valid

* _ 1 (ﬂ:)sg/2 1
= - _ 3.41
Xo11 560 ho I+a’ ( )

1 def™ sy (11ayT 6dey” [ del” .
&) = [<1+— = ) % +S°—<— B 2% (S )](h+hc)1, (3.42)
oo

51+a) dh  ho \ 5 dh 5 dh dh
and (&) (&)
&) _ (4 poy2 L [de . (des 3.43
X013 ( + C) dh dh dh oo . ( . )
For susceptibility we have eventually obtained
% = XD b+ he)s? (3.44)
where the scaling function for susceptibility has the form
@ _ @, 157
Xoo = Xo1  t =7 %0 (3.45)
5 hg

In figure Bl the susceptibility is graphically presented as a function of temperature at h = 1075,

The expression ([344) differs from that used in [20, 22]. In the vicinity of the critical point,
susceptibility is considered to have the following form

X _

= =n7 () (3.46)
5
where the quantity f,(z) is the susceptibility scaling function. The simple relation is known to
exist between the susceptibility scaling function f, and the order parameter scaling function fg

z

1o =3 (£ - 376)). (3.47)

Adapted to our approach, f, takes the form

3/2\ 1/6—1
) (3.48)

+ _ _ S
fx = Xéo)(l t+a 1)1/6 ! (}OL—
0
In figure [0l this quantity is presented as a function of the scaling variable z. The thick line corre-
sponds to the parametrization of |24]. In [20] one can also find Monte Carlo simulations data for
fx(2) according to the parametrization of [24)].
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Figure 5. Susceptibility as a function of reduced temperature 7 = (T — T¢)/Tc in constant
external field h = 1075 at b/c = 0.4.

Figure 6. Scaling function of susceptibility f, as a function of the scaling variable z = 7/h/#?
at b/c = 0.3 (curve 1), at b/c = 0.4 (curve 2) and at b/c = 0.5 (curve 3). Thick dashed line
shows the parametric representation from [24].

4. Conclusions

In the present work we investigate the 3D Ising-like model on a simple cubic lattice. The research
is carried out using the formalism of collective variables and in the framework of “p*-model”
approximation. The critical exponent 7 is considered to be equal to zero. Our approach also neglects
the corrections to scaling but the main critical exponents take on non-classical values. However,
we have obtained explicit expressions for physics quantities as functions of reduced temperature
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7, external field A and microscopic parameters of the model (the ratio of the effective range of
interaction b to the lattice constant ¢). Namely, we have calculated the free energy as well as the
order parameter and susceptibility. Some results are demonstrated graphically as well.
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Po3paxyHoK napameTpa nopsaky Ta CNPpUAHATIIMBOCTI
TPUBUMIPHOT |I3nHronoaioHoI moaeni no6nan3y To4ukn pa3oBoro
nepexoany MeToAoM KOJIEKTUBHUX 3MIHHUX

M.I. Kosnoscbkuin, P.B. PomaHik

IHCTUTYT @i3nKkn KoHaeHcoBaHMx cuctem HAH Ykpainum, 79011 JibBiB, Byn. CBEHUiLbKOrO, 1

Po6oTa npucesiyeHa AOCHIAXKEHHIO TPMBUMIPHOI I3MHronoaibHoi Mmoaeni nobnmay KpUTUYHOT TOYKU Npur
HasIBHOCTI 30BHILLIHLOrO Nons. BUKopnCTOBYETbCA METOA, KONEKTUBHUX 3MIHHMX. PO3paxoBaHO 3arasbHi
BMpa3n Ans napamerpa nopaaky i CIpURHATAMBOCTI cuctemMu K OYHKLUii TemnepaTypu i 30BHILLHBOrO
nosisl, a TakoX CKeMNiHroBi GYHKUi LMX BENNYUHM OTPUMaHI B IBHOMY BUMsAj. 3pobneHo MnopiBHSHHS
3 pesynbratamu, WO OynnM OTPUMaHi B pamkax napameTpuyHOro MNPeAcTaBiEHHS PIBHSHHS CTaHy i
MeTogamu MoHTe Kapno cumynsuiin. 3anponoHoBaHui i BUKOPUCTaHUI Npu 064NCNEHHSIX HOBUIA BUPas3
AJ151 TOYKM BMXOAY 3 KPUTUHHOrO pexuMy rykTyaLii napaMmeTpa nopsaky.

Knio4oBi cnoBa: mogesis 13uHra, napameTp nopsigky, KOJIeKTUBHI 3MiHHI, KDUTUYHA TOYKa
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